
 2DArcReplacer

 The 2DArcReplacer replaces the geometry of the feature with a two-dimensional arc whose
 shape is set by the parameters, which can be either constant floating
 point values or the values of existing attributes.

 Input Ports

 Input

 This transformer accepts any feature.

 Output Ports

 Arc

 Output features with replaced arc geometries.

 Parameters

 Each parameter may either be entered as a number, or
 taken from the value of a feature attribute by selecting the attribute
 name from the pull-down list.

 Center X

 The center x and y parameters set the origin of the arc. If these values
 are blank, and the input features are points, the existing feature x/y
 values will determine the center of the arcs. If the parameter values
 are blank, and the input features are not points, the operation is undefined.

 Center Y

 The center x and y parameters set the origin of the arc. If these values
 are blank, and the input features are points, the existing feature x/y
 values will determine the center of the arcs. If the parameter values
 are blank, and the input features are not points, the operation is undefined.

 Primary Axis

 The primary and secondary axis set the radii of the arc. Note that the
 primary axis need not be larger than the secondary, however, the rotation
 angle is always measured from the x axis to the primary axis. To make
 a circular arc, set both the primary and secondary axis to the same value.

 Secondary Axis

 The primary and secondary axis set the radii of the arc. Note that the
 primary axis need not be larger than the secondary, however, the rotation
 angle is always measured from the x axis to the primary axis. To make
 a circular arc, set both the primary and secondary axis to the same value.

 Start Angle

 The start angle controls where the arc begins, and is measured in degrees
 counterclockwise from horizontal.

 Sweep Angle

 The sweep angle controls the duration of the arc, and is measured in degrees. For a positive sweep angle, the arc will run counterclockwise beginning at the start angle, and ending at the sum of the start angle and the sweep angle.

 Rotation

 The rotation angle is measured in degrees counterclockwise from horizontal,
 and measures the rotation of the primary axis from horizontal.

 Example

 [image: 2darcreplacer.png]

 Usage Notes

 If the parameters for the arc are not known and need to be calculated
 from a linear feature’s geometry, use the ArcEstimator.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 2DBoxReplacer

 Replaces the geometry of the feature
 with a two-dimensional box whose minima and maxima are fixed values,
 or are taken from attributes in the original feature.

 Input Ports

 Input

 This transformer accepts any feature.

 Output Ports

 Box

 Output features with replaced box geometries.

 Parameters

 Min X Value

 The minimum X value. You can enter parameters as a number, or choose them from the value of a feature attribute
 by selecting the attribute name from the pull-down list.

 Min Y Value

 The minimum Y value. You can enter parameters as a number, or choose them from the value of a feature attribute
 by selecting the attribute name from the pull-down list.

 Max X Value

 The maximum X value. You can enter parameters as a number, or choose them from the value of a feature attribute
 by selecting the attribute name from the pull-down list.

 Max Y Value

 The maximum Y value. You can enter parameters as a number, or choose them from the value of a feature attribute
 by selecting the attribute name from the pull-down list.

 Usage Notes

 To replace a feature with its bounding
 box in one step, use the BoundingBoxReplacer.

 To retrieve the bounds of a feature
 into attributes, use the BoundsExtractor.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 2DEllipseReplacer

 Replaces the geometry of the feature with a two-dimensional ellipse
 whose shape is set by the parameters, values or the values of existing attributes.

 Input Ports

 Input

 This transformer accepts any feature.

 Output Ports

 Ellipse

 Output features with replaced ellipse geometries.

 Parameters

 You can enter the parameters below as a number, or choose them from the value of a feature attribute
 by selecting the attribute name from the pull-down list.

 Center X

 The center x and y parameters set the origin of the ellipse. If these
 values are blank, and the input features are points, the existing feature
 x/y values will determine the center of the ellipses. If the parameter
 values are blank, and the input features are not points, the operation
 is undefined.

 Center Y

 The center x and y parameters set the origin of the ellipse. If these
 values are blank, and the input features are points, the existing feature
 x/y values will determine the center of the ellipses. If the parameter
 values are blank, and the input features are not points, the operation
 is undefined.

 Primary Axis

 The primary and secondary axis set the radii of the ellipse. Note that
 the primary axis need not be larger than the secondary, however, the rotation
 angle is always measured from the x axis to the primary axis. To make
 a circular arc, set both the primary and secondary axis to the same value.

 Secondary Axis

 The primary and secondary axis set the radii of the ellipse. Note that
 the primary axis need not be larger than the secondary, however, the rotation
 angle is always measured from the x axis to the primary axis. To make
 a circular arc, set both the primary and secondary axis to the same value.

 Rotation

 The rotation angle is measured in degrees counterclockwise from horizontal,
 and measures the rotation of the primary axis from horizontal.

 Usage Notes

 If the parameters for the ellipse are not known and need to be calculated
 from a linear feature's geometry, you should use the ArcEstimator.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 2DForcer

 Removes any elevation (Z) coordinates which may (or may not) have been
 present on the original feature.

 Some formats incur extra overhead to store three-dimensional data; in these cases, you may want to remove the elevation coordinates.

 After passing through this transformer, the feature will be two-dimensional.

 Input Ports

 Input

 This transformer accepts any features. Features without 3D geometries will be unchanged.

 Output Ports

 2D

 Output features that have been converted to a two-dimensional form.

 Parameters

 Not applicable.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 2DGridAccumulator

 Replaces the input features with a grid of two-dimensional point or
 polygon features having the spacing specified covering (at least) the
 bounding box area of all the features which enter the transformer.

 Input Ports

 Input

 This transformer accepts any feature.

 Output Ports

 Grid

 The grid of point or polygon features covering the bounding box area of the input features.

 Parameters

 Group By

 The input features may be partitioned into groups based on attribute values and one bounding box feature is output for each group. If you do not specify any Group By attributes, all input features will be processed together and a single bounding box will be output.

 Column Width (ground units)

 The Column Width and Row
 Height parameters specify in ground units the distance between
 output points in the grid or the width and height of the output polygons.

 Important: If you want to choose attribute values as the Column Width and/or Row Height, only attributes selected in the Group By field are allowed. This is because all other attributes will be dropped. It also avoids the ambiguity that would arise if features within the same group had different values in these attributes: FME would not know which value to pick.

 Row Height (ground units)

 The Column Width and Row
 Height parameters specify in ground units the distance between
 output points in the grid or the width and height of the output polygons.

 Important: If you want to choose attribute values as the Column Width and/or Row Height, only attributes selected in the Group By field are allowed. This is because all other attributes will be dropped. It also avoids the ambiguity that would arise if features within the same group had different values in these attributes: FME would not know which value to pick.

 Type of Grid to Create

 Choose point or polygon features.

 Polygon features will be rectangular boxes with the specified column width and row height.

 If point features are used, the point with minimum coordinates is chosen from each rectangle in the grid.

 Column Attribute

 If Column Attribute or Row Attribute are specified, attributes
 will be added to each output tile that identify the position of that tile
 in the input raster. These indices are zero-based.

 Row Attribute

 If Column Attribute or Row Attribute are specified, attributes
 will be added to each output tile that identify the position of that tile
 in the input raster. These indices are zero-based.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Collectors

 Transformer History

 This transformer has been renamed from 2DGridReplacer.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: MBR "minimum bounding rectangle"

 2DGridCreator

 Creates a grid of two-dimensional point or polygon features, at the
 origin and using the offsets specified. Each created feature will have
 a row and column attribute that indicates its position in the grid.

 Input Ports

 This transformer does not accept any input.

 Output Ports

 Created

 The grid of point or polygon features.

 Note that the same number of features will be output whether points or polygons are requested. Therefore, the bounds of the output will be smaller for a point grid than for a polygon grid. For instance, the width of the bounding box of a polygon grid will be (Number of Columns) * (Column Width), whereas the width of the bounding box of a point grid will be (Number of Columns – 1) * (Column Width).

 Parameters

 Starting Corner

 The starting corner of the grid. The possible values are:

 	Lower Left

 	Upper Left

 	Lower Right

 	Upper Right

 Starting X Coordinate

 The Starting X Coordinate and Starting Y Coordinate parameters specify the origin for the starting corner of the grid as a whole.

 Starting Y Coordinate

 The Starting X Coordinate and Starting Y Coordinate parameters specify the origin for the starting corner of the grid as a whole.

 Number of Columns

 The Number of Columns parameter specifies the number of features (points or polygons) each row of the grid will have. This must be at least one.

 Number of Rows

 The Number of Rows parameter specifies the number of features (points or polygons) each column of the grid will have. This must be at least one.

 Column Width

 The Column Width and Row
 Height parameters specify in ground units the distance between
 output points in the grid or the width and height of the output polygons.

 Row Height

 The Column Width and Row
 Height parameters specify in ground units the distance between
 output points in the grid or the width and height of the output polygons.

 Type of Grid to Create

 Choose point or polygon features.

 Polygon features will be rectangular boxes with the specified column width and row height.

 Point features will be located at the minimum coordinates of each rectangle in the grid.

 Row Attribute

 If Row Attribute is specified, an attribute
 will be added to each output tile that identifies the vertical position of that tile
 in the input raster. This index is zero-based.

 Column Attribute

 If Column Attribute is specified, an attribute
 will be added to each output tile that identifies the horizontal position of that tile
 in the input raster. This index is zero-based.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 3DAffiner

 Performs a 3D affine transformation on the coordinates of the feature.

 An affine transformation preserves parallelism of lines and planes in
 geometry. That is, any lines or planes that were parallel before the transformation
 are parallel after the transformation. As well, if a number of points
 falling on a straight line or a plane are transformed, the resulting coordinates
 will fall on a straight line or plane in the new coordinate system.

 Affine transformations include translations, rotations, scalings, and
 reflections.

 Input Ports

 Input

 This transformer only accepts features with 3D geometries. Arcs and ellipses will be stroked to lines and polygons (respectively) before undergoing the transformation.

 Output Ports

 Affined

 The transformed features.

 Parameters

 Coefficient A to L

 The transformation results in the x and y coordinates being modified
 by:

 x' = Ax + By + Cz + D

 y' = Ex + Fy + Gz + H

 z' = Ix + Jy + Kz + L

 Coefficients <A>, <F> and <K> must be non-zero.

 You can enter parameters as a number, or choose them from the value of a feature attribute
 by selecting the attribute name from the pull-down list.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 3DArcReplacer

 Replaces the geometry of the feature with a three-dimensional arc whose
 shape is set by the parameters, which can be either constant floating
 point values or the values of existing attributes.

 Input Ports

 Input

 This transformer accepts any feature.

 Output Ports

 Arc

 Output features with replaced arc geometries.

 Parameters

 You can enter parameters as a number, or choose them from the value of a feature attribute
 by selecting the attribute name from the pull-down list.

 Center X

 The center x, y, and z parameters set the origin of the arc.

 Center Y

 The center x, y, and z parameters set the origin of the arc.

 Center Z

 The center x, y, and z parameters set the origin of the arc.

 Primary Axis

 The primary and secondary axis set the radii of the arc. Note that the
 primary axis need not be larger than the secondary, however, the rotation
 angle is always measured from the x axis to the primary axis. To make
 a circular arc, set both the primary and secondary axis to the same value.

 Secondary Axis

 The primary and secondary axis set the radii of the arc. Note that the
 primary axis need not be larger than the secondary, however, the rotation
 angle is always measured from the x axis to the primary axis. To make
 a circular arc, set both the primary and secondary axis to the same value.

 Start Angle

 The start angle controls where the arc begins, and is measured in degrees
 counterclockwise from horizontal.

 Sweep Angle

 The sweep angle controls the duration of the arc, and is measured in
 degrees. The arc will run from the start angle to the start angle plus
 the sweep angle.

 Rotation

 The rotation angle is measured in degrees counterclockwise from horizontal,
 and measures the rotation of the primary axis from horizontal.

 Usage Notes

 If the parameters for the arc are not known and need to be calculated
 from a linear feature’s geometry, the ArcEstimator should be used.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 3DForcer

 Turns two-dimensional data into three-dimensional data by adding a z-value to every coordinate.

 Input Ports

 Input

 This transformer accepts any features. Features without 2D geometries will be unchanged.

 Output Ports

 Output

 Output features that have been converted to a three-dimensional form.

 Parameters

 Elevation

 You can enter the parameter as a floating point number, or choose it from the value of a feature attribute
 by selecting the attribute name from the pull-down list.

 If the feature was two-dimensional, it becomes three-dimensional with
 a constant elevation.

 If the feature was already three-dimensional, its previous elevations are wiped
 out and replaced with the value held in the specified attribute.

 Usage Notes

 Note that the SurfaceDraper
 transformer (available in FME Professional and higher) can be used to
 supply interpolated elevation values
 to the vertices of 2D features based on a 3D grid or set of 3D features.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 3DInterpolator

 Interpolates elevation values along a non-aggregated linear feature
 from a starting value to an ending value. The resulting feature’s elevation
 will monotonically increase (or decrease) from the starting value to the
 ending value.

 Input Ports

 Input

 This transformer accepts any feature. Only linear features will be affected.

 The elevation of an arc
 is interpolated on its defined end-points and possibly mid-point (if the
 arc is an arc by 3 points).

 If the feature was two-dimensional, it becomes three-dimensional.

 If the feature was three-dimensional, its previous elevations are removed and replaced.

 Output Ports

 Output

 The features with interpolated elevation values.

 Parameters

 You can enter the parameters as a number, or choose them from the value of a feature attribute
 by selecting the attribute name from the pull-down list.

 Starting Elevation

 The elevation value for the first vertex of the input feature.

 Ending Elevation

 The elevation value for the last vertex of the input feature.

 Usage Notes

 The SurfaceDraper
 transformer (available in FME Professional edition and higher) can be used to supply interpolated elevation values based on a 3D grid or set of 3D features
 to the vertices of two-dimensional features.

 FME Licensing Level

 FME Professional edition and above

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 3DRotator

 Rotates features according to the right hand rule, and in a counter-clockwise direction about the specified axis of rotation.

An axis is defined by an origin and a direction. To rotate features in the opposite direction along an axis of rotation, simply negate the direction vector that defines the axis.

 Input Ports

 Input

 This transformer accepts features with 2D and 3D geometries. 2D input features are forced to 3D with a z value of 0.

 Output Ports

 Rotated

 The rotated features.

 Parameters

 Most of these parameters may be entered as a number, or can be set to the value of an attribute.

 Angle in Degrees

 Specifies the rotation angle in degrees.

 Rotate Along

 X Axis, Y Axis, Z Axis: these axes are predefined.

 Custom Axis: need to specify axis origin and direction.

 Origin X, Y, Z

 Specify the coordinates of a point on the axis of rotation.

 Direction X, Y, Z

 Specify the axis direction vector. This vector does not have to be normalized.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Affiner

 Performs an affine transformation on the coordinates of the feature.

 An affine transformation preserves lines and parallelism in geometry.
 That is, any lines that were parallel before the transformation are parallel
 after the transformation. In addition, if a number of points falling on a
 straight line are transformed, the resulting coordinates will fall on
 a straight line in the new coordinate system.

 Affine transformations include translations, rotations, scalings, and
 reflections.

 Input Ports

 Input

 This transformer accepts all features. Arcs and ellipses are preserved.

 Output Ports

 Affined

 The transformed features.

 Parameters

 Coefficient A to F

 To use the Affiner, you need to provide the 6 parameters that drive the following affine transform equation:

 x' = Ax + By + C

 y' = Dx + Ey + F

 Where (x,y) is the input point and (x',y') is the transformed output point.

 Examples

 Translating Features East and North

 To move features 500 units east and 1000 units north, use the following formula:

 x' = 1x + 0y + Easting

 y' = 0x + 1y + Northing

 x' = 1x + 0y + 500

 x' = 1x + 0y + 500

 You would then enter the corresponding values for A to F in the Affiner parameters (for example, A=1, B=0, C=500, D=0, E=1, F=1000)

 Scaling a Feature Set

 To scale features by factor R, use the scale factor to the X and Y terms as follows:

 x' = Rx + 0y + 0

 y' = 0x + Ry + 0

 To increase the scale by 10 times:

 x' = 10x + 0y + 0

 y' = 0x + 10y + 0

 Rotating Features

 To rotate features, apply the appropriate cos and sin functions associated with the rotation angle to the X,Y coefficients:

 x' = cos(w)x + -sin(w)y + 0

 y' = sin(w)x + cos(w)y + 0

 where w = angle of rotation.

 So, for a rotation of 30 degrees, cos(30) = 0.866025, sin(30) = 0.5, you would use:

 x' = 0.866025*x + -0.5*y + 0

 y' = 0.5*x + 0.866025*y + 0

 to rotate a set of features by 30 degrees.

 Combining Transformations

 You can combine a set of transformations into one formula, or perform them in series to make it easier to debug or edit. For example, it may be easier to do your rotation and then scaling in two different Affiner transformers rather than trying to combine them into one transformation. Naturally, one advantage to doing it all in one transformation would be speed.

 Hint: Right-click on the transformer in the workspace and click Show Summary Annotation. This makes it easy to preview the transformation formula that will be used.

 Usage Notes

 	Use the Affiner, rather than the Scaler, when scaling rasters. Because raster data is scaled around the data origin, not the coordinate origin, using the Scaler can cause an unexpected data shift).

 Related Transformers

 	Please also see the AffineWarper, which performs warping operations on the spatial coordinates of features.
 The AffineWarper is used to adjust a set of observed features so they more closely match
 some set of reference features.

 	The Scaler and Offsetter are both simplified versions of the Affiner. For example:

 x' = Ax + By + C

 and

 y' = Dx + Ey + F

 where A = 1000 and E = 1000

 In this case, x' = 1000x and y' = 1000y is the same as Scaler.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 AffineWarper

 Performs warping operations on the spatial coordinates of features.
 It is used to adjust a set of observed features so they more closely match
 some set of reference features. This transformer computes an affine (scale,
 rotation, and offset) transformation based on Control
 vector features and applies this transformation to the Observed features to generate output,
 and produces good corrections when the entire set of Observed
 data requires a single transformation.

 Each Control feature represents
 a control vector whose start point is at some location in the original
 Observed data space, and whose
 end point is at the corresponding location in the desired output data
 space. The control vector represents the correction required to go from
 the observed vertex to the desired vertex. (Control vectors with only
 one point are interpreted as a requirement that this location not change
 from the observed dataset to the reference dataset. This is often referred
 to as a tie point.)

 Input Ports

 Two sets of features must be routed into this transformer.

 Control

 Features
 that enter the Control port
 represent the control features used to compute the corrections.

 Observed

 Features
 that enter the Observed port
 are the features that will be corrected.

 Output Ports

 Corrected

 The modified Observed features
 are output via the Corrected
 port.

 Parameters

 Not applicable.

 Related Transformers

 	The RubberSheeter transformer
 provides similar functionality but applies a different transformation
 to each Observed vertex, depending
 on its distance to nearby Control
 vectors. This makes the RubberSheeter
 more appropriate for cases when the distortions in the data are not constant.

 	Please also see the Affiner, which performs an affine transformation on the coordinates of the feature.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 AggregateFilter

 Routes features differently depending on if their geometry consists
 of an aggregate of several geometries, or if it is a simple,
 single piece geometry.

 Note: To distinguish between different types
 of geometry, use the GeometryFilter.

 Input Ports

 Input

 This transformer accepts any feature.

 Output Ports

 Aggregate

 The features that are aggregates of other geometries.

 NotAggregate

 The features that are not aggregates of other geometries.

 Parameters

 Not applicable.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Filters

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Aggregator

 Combines feature geometries into heterogeneous collections, homogeneous collections, or multiple geometries. Alternatively, combines feature attributes alone.

 Features are aggregated in the order they are received by this factory. If the order of individual geometry parts within the resulting aggregate is important, you can first route the features through a Sorter.

 Parameters

 Group By

 If you do not select Group By attributes, then all features fall into the same group.

 When you select Group By attributes, this transformer will aggregate the geometries of the input features, based on the selection in the Group By parameter. Each group of features that have the same values for the Group By attributes will be processed independently of other groups.

 Input is Ordered by Group

 If Input is Ordered by Group is set to Yes, the transformer
 will output all the aggregates it has accumulated every time the
 values of the Group By attributes change from one feature to the next.

 Mode

 Geometry - Assemble One Level: Combines all features within a group into a single heterogeneous collection, homogeneous collection, or multiple geometry.

 Geometry - Assemble Hierarchy: Reconstructs the hierarchical geometries defined by the input features. In this mode, a single group can output multiple heterogeneous collections, homogeneous collections, and/or multiple geometries. Input features should define one or more hierarchical geometries. Remnants of the hierarchy reconstruction process are considered parts of corrupt aggregates and are therefore output via the Aggregate output port.

 Attributes Only: Allows for attribute aggregation and accumulation without aggregation of the feature geometries. Output features will have no geometry.

 Count Attribute

 If a Count Attribute is entered, then an attribute with this name will be added to each output aggregate, containing the number of features that were combined to form the aggregate.

 Keep Input Attributes

 If Keep Input Attributes is set to Yes, the attributes from the original features will be merged onto the output Aggregate features.

 List Name

 If a List Name is specified, then all attributes of an input feature will be stored as part of a list attribute entry in the output Aggregate feature.

 Attributes to Concatenate

 Attributes can be concatenated so that the resulting Aggregate feature preserves multiple source attribute values under the same attribute name. For example, if input feature 1 has an “id” attribute of 1 and input feature 2 has an “id” attribute of 2, specifying “id” for this parameter together with a separate character of “,” will cause the output Aggregate feature to have an “id” with value “1, 2”.

 Separator Character

 The Separator Character is used to separate elements within an attribute value string. For example, if features with attribute values of “River Rd”, “Marine Dr” and “HWY 1” for the attribute named “Road Name” respectively, and the Separator Character is “, ” (a comma followed by a space) on the output aggregate feature, the attribute “Road Name” will contain “River Rd, Marine Dr, HWY 1” as a value.

 The separator character can be expressed as a regular character but it can also contain special characters beginning with a backslash ("\"), as specified in the following table.

 If the sequence is not listed in the table, the backslash character is ignored. (For example, entering lan\es will be interpreted as lanes.) If no separator character is supplied, attributes will be concatenated without a separator.

 	Sequence
 	Description

 	
 \a

 	
 Audible alert (bell) (0x07)

 	
 \b

 	
 Backspace (0x08)

 	
 \f

 	
 Form feed (0x0c)

 	
 \n

 	
 Newline (0x0a)

 	
 \r

 	
 Carriage return (0x0d)

 	
 \t

 	
 Tab (0x09)

 	
 \v

 	
 Vertical tab (0x0b)

 	
 \\

 	
 Backslash

 (Note: A single backslash entered at the end of a value will be converted to an escaped backslash.)

 Attributes to Sum

 Any attributes specified in this field will undergo statistical accumulation.

 For example, if two input polygons have an attribute “salary” set to 30000 and 50000, then summing them would result in a “salary” of 80000 on the aggregate output.

 Attributes to Average

 Any attributes specified in this field will undergo statistical accumulation.

 For example, if two input polygons have an attribute “salary” set to 30000 and 50000, then averaging them would result in a “salary” of 40000 on the aggregate output.

 Attributes to Average, Weighted by Area

 Any attributes specified in this field will undergo statistical accumulation.

 For example, if two input polygons have an attribute “salary” set to 30000 and 50000, and the second polygon was 3 times larger than the first polygon, then the weighted average would be 45000.

 Attributes to Average, Weighted by Area may produce non-numeric results if some input features have zero, or no area.

 Aggregate Type

 Heterogeneous Collection: the output geometry will be an IFMEAggregate.

 Homogeneous Collection (If Possible): if the output geometry can be made into a homogeneous collection without changing the geometry type of any of its parts, then this option will perform the conversion.

 Multiple Geometry: combines input features into a Multiple Geometry.

 Geometry Name Attribute

 If Geometry Name Attribute is specified, each incoming feature will store the value of this attribute as the name of the geometry it owns. This way, as the input geometries are combined to form the output Aggregate feature, we will have transferred the geometry names onto the output features.

 ID Selection

 In Assemble Hierarchy mode, the user may reconstruct hierarchical geometries either using ID and Parent ID, ID and Child ID, or all three sets of ID information. If a hierarchical geometry were to be represented as a tree, then each tree node would have a unique ID. Each node would refer to its parent by Parent ID and its children by child IDs.

 ID Attribute

 The attribute that uniquely identifies each input node feature.

 Parent ID Attribute

 The attribute that identifies a node feature’s parent node.

 Child ID List Attribute

 The list attribute that identifies all child nodes of a node.

 Convert Attributes to Traits

 If set to Yes, then attributes on an input feature will be stored as traits on the geometry owned by the feature. This way as geometries are combined to form aggregates, the input attribute information is preserved.

If set to No, then no input attributes are saved, except the input attributes of the root node feature.

 Preserve IDs

 IDs are used to reconstruct hierarchical geometries and may be removed after the reconstruction. Specify Yes to keep these IDs as traits. Specify No to remove these IDs.

 Usage Notes

 This transformer will not dissolve adjacent area boundaries
 – it
 simply creates a collection of all that it is given. Use the Dissolver
 if adjacent areas are to be merged into a single area.

 Example

 Geometric Representation

 [image: aggregator.png]

 Data Structure Representation

 [image: aggregator2.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Collectors

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Amalgamator

 Generalizes polygonal input by connecting nearby geometries.

 The Amalgamator accepts polygonal geometries – including donuts – as input, and produces triangles that join input features into connected pieces, or amalgams. Small holes are removed at the end of this process.

 The strategy for generalizing polygonal geometries is as follows:

 	Redirect non-polygonal geometries onto the Invalid port.

 	Dissolve the input polygonal geometries to remove shared boundaries and overlapping regions.

 	Densify the dissolved polygonal geometries.

 	Determine the convex hull of the densified polygonal geometries.

 	Overlay the convex hull against the densified polygonal geometries to compute empty regions between the polygonal geometries.

 	Triangulate the empty regions. Keep only triangles that are sufficiently short in length – those that satisfy the Maximum Triangle Length parameter.

 	Dissolve the triangles to form connectors.

 	For each connector, check to see if it is valid. It is valid if it shares a boundary with a dissolved polygonal geometry.

 	Output all features not touched by any connectors to the Untouched port.

 	Dissolve valid connectors with dissolved polygonal geometries to form amalgams.

 	For each amalgam, remove small holes that do not satisfy the Minimum Hole Area parameter. Remaining (large) holes are output to the Holes port.

 	For each amalgam, find all triangles that formed a part of its connectors. Output these triangles to the Triangles port.

 	Output all amalgams to the Amalgamated port.

 	For attribute behavior, please see List Name and ID Attribute in the Parameters section.

 Input Ports

 Areas

 Polygonal geometries, including donuts. The polygonal geometries may overlap and share boundaries. However, each geometry should be valid (that is, not self-intersecting or non-planar).

 Output Ports

 Amalgamated

 Amalgams computed from input polygonal geometries.

 Untouched

 Input polygonal geometries that are not touched by valid triangle connectors.

 Holes

 Holes in the amalgams whose areas exceed the Minimum Hole Area parameter.

 Triangles

 Triangles that form the valid connectors joining input polygonal geometries.

 Invalid

 Non-polygonal input. Occasionally, if an unexpected condition is met, some invalid intermediate results will be posted to this port.

 	Input
 	Output

 	
 [image: amalgamator_greay.png]

 	
 [image: amalgamator_triangles.png]
 Triangles (red)

 	
 [image: amalgamator_greay.png]

 	
 [image: amalgamator_amalgamated.png]
 Amalgamated (green)

 	
 [image: amalgamator_greay.png]

 	
 [image: amalgamator_holes.png]
 Holes (black)

 Parameters

 Group By (optional)

 By specifying one or more Group By attributes, the input polygonal features will be partitioned into groups and the amalgamation process will be executed separately on each group. Within each group, all features will have the same values for the selected Group By attributes.

 If no Group By attributes are selected, a single group will be formed containing all input polygonal features. By default, no Group By attributes are selected.

 Amalgamation Mode

 This parameter controls the mode of amalgamation. The Amalgamator is conceptually a binary operator that causes two nearby geometrical details to connect together. However, two geometrical details may be on the same geometry. Imagine two peninsulas protruding from the same coast line, or two different geometries, such as two neighboring islands. Therefore, a number of options are provided here to accommodate the two conceptual models:

 	Self Amalgamation: This mode amalgamates a polygonal geometry against itself. It would handle the two peninsulas case, but not the two neighboring islands case.

 	Binary Amalgamation (default): This mode amalgamates different polygonal geometries. It would handle the two neighboring islands case, but not the two peninsulas case.

 	Self, Binary Amalgamation: This mode combines the Self Amalgamation and the Binary Amalgamation. It would handle both the two peninsulas case and the two neighboring islands case.

 	Input
 	Output: Amalgamated

 	
 [image: amalgamator_grey2.png]

 	

 [image: amalgamator_selfamalg.png]

 Self Amalgamation

 	
 [image: amalgamator_grey2.png]

 	

 [image: amalgamator_binary.png]

 Binary Amalgamation

 	
 [image: amalgamator_grey2.png]

 	

 [image: amalgamator_selfbinary.png]

 Self, Binary Amalgamation

 Dissolve Input

 This parameter controls whether input polygonal features are dissolved up front. The default value is Yes.

 	Yes: This value dissolves input polygonal features. The Amalgamator was designed with the assumption that input features do not overlap. This value enforces that assumption. Dissolving input up front also remedies input polygonal features that may not be overlapping, but whose shared boundaries become overlapping after the densification step due to limited precision. The overlapping due to limited precision could reduce the performance of the Amalgamator.

 	No: This value is meant for advanced users who want finer control of the Amalgamator. Some users would rather not dissolve the input to improve performance because in some cases, not dissolving the input will not cause undesirable side effects.

 	Overlapping Input
 	
 Dissolve Input: Yes

 Amalgamation Mode: Binary

 	
 Dissolve Input: No

 Amalgamation Mode: Binary

 	
 [image: 0001.jpg]

 	
 [image: 0001.jpg]

 	
 [image: 0003.jpg]

 	Explanation
 	
 The input dissolves into one polygon, thus the Binary mode causes the one polygon not to amalgamate.

 	The input is not dissolved, thus the Binary mode causes the two input features to amalgamate, but because overlapping features were not dissolved, a hole results in the middle of the amalgam.

 	Overlapping Input
 	
 Dissolve Input: Yes

 Amalgamation Mode: Self

 	
 Dissolve Input: No

 Amalgamation Mode: Self

 	
 [image: 0001.jpg]

 	
 [image: 0005.jpg]

 	
 [image: 0001.jpg]

 	Explanation
 	
 The input dissolves into one polygon, thus the Self mode causes the one polygon to amalgamate.

 	The input is not dissolved, thus the Self mode causes the two input features not to amalgamate.

 Maximum Triangle Width

 This parameter controls the widths of triangles that form the connectors. The width of the triangle is the width of its base, which is incident on the boundary of an input polygonal geometry (see figure below). The larger its value, the wider the triangles will be.

 In terms of triangle count, decreasing this value generally increases (and will not decrease) the number of triangles generated. In terms of performance, having this value set too low could cause significant slowdowns. In terms of the appearance of the triangle connectors, having this value set too high could result in coarse looking connectors that appear skewed in shape.

 Tip: set the value of this parameter as high as possible, given that the amalgamated output still looks good to the eye.

 More rigorously, after the input polygonal geometries are dissolved, extra vertices are added through a densification process. The densification interval controls the widths of triangles created. This parameter specifies the length of the densification interval.

 [image: amalgamator_maxtrianglelen.png]

 Maximum Triangle Length

 This parameter controls the lengths of triangles that form the connectors. The length of the triangle is defined by the length of its longest side (see figure below). This value should not be less than the Maximum Triangle Width. The larger its value, the farther apart two input polygons can be and still be connected together by triangles in the formation of amalgams.

 In terms of triangle count, decreasing this value generally decreases (and will not increase) the number of triangles generated. Changes in this value are not expected to have a significant impact on performance. In terms of the appearance of the triangle connectors, having this value set too high could result in the input polygons being output as a single amalgam.

 [image: amalgamator_maxtrianglelen.png]

 Minimum Hole Area

 This parameter controls which holes should be eliminated from the amalgams. The larger its value, the larger the remaining holes will be. In terms of hole count, decreasing this value generally increases (and will not decrease) the number of holes remaining in the amalgams.

 List Name (optional)

 This parameter specifies the name of a list attribute for the amalgams. For each amalgam, this list will contain an entry for each input feature whose polygonal geometry shares a boundary with the amalgam. All attributes from the input feature are recorded in the list entry, except feature level attributes prefixed by fme_.

 ID Attribute (optional)

 This parameter specifies the name of a unique identifier for the amalgams. If specified, each amalgam will receive an ID value that is unique across groups. All triangles and holes contained in an amalgam will receive the same ID as that amalgam.

 Usage Notes

 Dissolving the input is necessary to remove shared boundaries and overlapping regions, with which the Amalgamator cannot be expected to function properly. However, dissolving the input has some side effects:

 	If multiple input features dissolve into a single feature, then only one set of feature attributes are kept on the dissolved feature.

 	If two input geometries share a boundary – for example, two peninsulas glued together – the user might expect triangle connectors to form between the two geometries when the “Binary Amalgamation” mode is selected. However, such geometries will first be dissolved, making it much more likely that “Binary Amalgamation” will not cause triangle connectors to form between the peninsulas. To overcome this issue, please select the “Self, Binary Amalgamation” mode.

 If the Maximum Triangle Length specified is less than Maximum Triangle Width, the results may be unpredictable.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Collectors

 FMEpedia

 See FMEpedia for additional information about this transformer.

 Related Transformers

 Generalizer

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 AnchoredSnapper

 Takes a series of features that match the input specification and performs snapping on the features that lie within the specified tolerance from other features that match the input specification. You can use this transformer to perform cleaning operations on data during a translation.

 The difference between the AnchoredSnapper and the Snapper is that anchor features are considered to be accurate and consequently do not move.

 Input Ports

 Anchor

 Features that may have Candidate features snapped to them. Arcs are snapped as linear features, and ellipses
 are snapped as polygonal features.

 Candidate

 Features that may be snapped to Anchor features. Arcs are snapped as linear features, and ellipses
 are snapped as polygonal features.

 Output Ports

 Snapped

 Features whose geometry is changed by the transformer.

 Untouched

 Features that leave the transformer without being changed.

 Parameters

 Group By

 If you select Group By attributes, only those features with the same Group By attribute values will be snapped together.

 Snapping Type

 When Snapping Type is End Point Snapping:

 	The transformer snaps endpoints of features that enter via the Candidate port to endpoints of features that enter
 via the Anchor port. Anchor
 features are not output.

 	Point features can be used as Anchor
 or Candidate features, and Candidate points will be snapped
 together (or to a linear base feature) as well.

 	The transformer will not alter area features.

 When Snapping Type is Vertex Snapping:

 	The transformer snaps vertices of features that enter via the Candidate
 port to vertices of features that enter via the Anchor port. Anchor features
 are not output.

 	Point features can be used as Anchor or Candidate
 features, and Candidate points will be snapped together (or to a linear
 Anchor feature) as well.

 	The transformer will alter area features.

 When this parameter is set to Segment Snapping:

 	Snaps vertices of curves or points that enter via the Candidate port to lines of features that enter via the Anchor port, if their distances are within the specified tolerance. Anchor features are not output.

 	Snaps vertices of Candidate segments to Anchor segments if their distances are within the specified tolerance at any point along the segment. New vertices will be introduced to the segment where the new snapped vertex has been moved to.

 	Candidate segments which cross Anchor segments will have new vertices introduced at the point of intersection, but the Candidate segments will remain intact.

 	Segment snapping may cause duplicate points, where segments have degenerated to a point.

 	Area features are altered by this operation as its vertices and segments are snapped.

 Snapping Tolerance

 Snapping Tolerance specifies the distance, in ground units, that the snapping occurs between features.

 Add Additional Vertex

 This parameter applies only when the end point of a feature is being snapped.

 	NEVER:
 the endpoint of a line is moved when it is snapped and no additional
 vertex is added.

 	ALWAYS: the
 original end point (start point) of the line becomes the second from the
 end (start) and a new vertex is added to complete the snap.

 	FORWARD_ONLY: a new vertex is added only when
 doing so creates an angle greater than 90 degrees with the original line
 segment. In this case, if adding the vertex would cause a less than 90-degree
 angle, the old end point is still moved.

 Usage Notes

 	Any feature that undergoes dimensional collapse as a result of being
 snapped will be logged as "degenerate" and dropped. "Dimensional
 collapse" refers to a line or area that becomes a point, or an area
 that becomes a line.

 	A short cleanup step is performed after snapping. This step will remove duplicate points, and may create aggregates to preserve overlapping, directed segments.

 Example

 [image: anchoredsnapper.gif]

 FME Licensing Level

 FME Professional Edition and above

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 AngleConverter

 Converts angles of a feature's geometry and/or attributes from one representation to another.

 Input Ports

 Input

 This transformer accepts any feature.

 Output Ports

 Output

 All processed features are output through this port.

 Parameters

 Convert Angles on

 Choose from Geometry and Attributes or Attributes Only.

 If geometry is being converted, then it assumed that the geometry of
 the input features is represented in the source angular format and will
 be converted to the destination angular format. For example, if a two-point
 line is represented in DDMMSS as 1800000,223000 900000,450000, then it
 would be represented as 180,22.5 90.0,45.0 when converted to DECIMAL_DEGREES.

 Attributes Containing Angles

 Choose from the list of attributes containing angles that are to be converted.

 Source and Target Angle Type

 DECIMAL_DEGREES,
 RADIANS, DDDMMSS, DDDMMSSSS, NSDDEW, NSDDMMSSEW and DD1234

 where:

 	DECIMAL_DEGREES
 - The angle is represented as decimal degrees.

 	RADIANS - The angle is represented as radians.

 	DDDMMSS - The angle is represented as an
 integer in degrees, minutes, seconds. For example, 180 degrees would be
 1800000, and 22.5 degrees is represented as 22 degrees and 30 minutes
 and encoded as 223000.

 	DDDMMSSSS - The angle is represented as an
 integer in degrees, minutes, hundredths of a second. For example, 180
 degrees would be 180000000, and 22.5 degrees is represented as 22 degrees
 and 30 minutes and encoded as 22300000.

 	NSDDEW - The angle is represented as decimal degrees with an indicated bearing. The degrees will never exceed 90 degrees. For example, 150 degrees would be represented as S30E.

 	NSDDMMSSEW - The angle is represented as an integer in degrees, minutes, and seconds with a bearing indicating direction. The degrees will never exceed 90. For example 180 degrees would be S00-00-00E, and 22.5 degrees is represented as North 22 degrees and 30 minutes East and encoded as N22-30-00E.

 	DD1234 - The angle is represented as decimal degrees followed by a quadrant. Quadrant 1=NE, 2=SE, 3=SW and 4=NW. The decimal degrees will never exceed 90. For example 150 degrees will be represented as 30-2.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 AngularityCalculator

 Calculates the "angularity" of a linear or area feature. Angularity indicates the degree of curvature of a feature. The higher the value, the more curved its geometry.

 A value of 0 indicates the geometry is a straight line. This mode works on linear and polygonal geometries, and all other geometries will receive a value of 0.

 The calculation of this property utilizes the angle between segments and, as a result, linear and polygonal features must have more than one segment to receive a non-zero value. Arcs are stroked into lines before determining this value. The actual value is the sum of the angles between the segments divided by the total length of the segments.

 Input Ports

 Input

 This transformer accepts all features. Only linear and polygonal features with more than one segment will receive a non-zero value.

 Output Ports

 Output

 All processed features are output through this port.

 Parameters

 Angularity Attribute

 The name of the attribute that will contain the angularity calculation.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: sinuous sinuosity

 AppearanceExtractor

 Extracts appearance style(s) from the front and/or back side of the geometries.

 The output appearance style feature can either be an attributes-only feature or a feature with a raster geometry and attributes, depending on whether the extracted appearance has textures on it or not. It will be output from the Appearance port.

 If a geometry does not have any appearances that were extracted from it (either because it had none to extract or the Geometry XQuery did not
match any part of it), the feature will be output through the Unused port.

 For more information on appearance support in FME, see Appearance.

 Input Ports

 Input

 This transformer accepts any feature.

 Output Ports

 Appearance

 The features with the extracted appearance style(s).

 Appearance definition information will be present on the output feature, if defined on the specific Appearance. See the AppearanceSetter parameters for details on each attribute name string.

 Unused

 Features that had no appearance extracted.

 Parameters

 Geometry Part Selection

 Geometry XQuery

 Use this parameter if you want to isolate only a portion of the geometry passed in to the transformer. If no criteria are specified, the action will apply to the entire geometry at all levels.

 Selection can be based on structural location, geometry name, type, appearance information, or traits. The syntax used is a restricted set of XQuery, where the return clause is fixed.

 The basic Geometry XQuery dialog allows you to construct simple selection queries by automatically writing the necessary query based on specified test clauses. Clicking the Switch to Advanced button opens the Advanced Editor, which allows you to type a query free-form, for more expressive queries.

 Note that once you switch to Advanced mode, you will have to clear all parameters before you can return to Basic mode.

 A hierarchical geometry is represented as nodes of type geometry, with attributes containing information about traits, type, and name for each geometry.

 Parameters

 Extract Appearance(s) From

 This parameter specifies side(s) of the geometry from which appearances should be extracted. They can be extracted from either the front, the back, or both front and back of each specified geometry.

 Output Unique Appearances

 If Output Unique Appearance is set to Yes, a style is output only once if the appearance is shared by multiple geometries. If this parameter is set to No, every single usage of an Appearance will output a separate feature, even if there are duplicates.

 Keep Input Attributes

 If this parameter is set to Yes, all attributes from the input feature will be copied onto the output Appearance features. The feature where the attributes are copied from is the feature which has the geometry from which that Appearance was referenced. If this parameter is set to No, then no feature-level attributes will be copied onto the output Appearance features.

 Keep Input Traits as Attributes

 If this parameter is set to No, then no geometry traits will be copied onto the output Appearance features.

 If this parameter is set to Yes, all traits from the geometry that referenced the appearance will be copied onto the output Appearance features as attributes. The following attributes will also be placed on the output feature, if appropriate. These values describe in more detail exactly how the Texture was specifically applied to the geometry from which it was referenced.

 	
 Attribute Name

 	
 Description

 	
 fme_geometry_part_name

 	Geometry Part Name: This is the Geometry Name that was present on the geometry part that referenced the Appearance

 	
 fme_appearance_from_front

 	Appearance From Front: This attribute will be present and have the value ‘yes’ if the appearance was placed on the front of the geometry part. This attribute will not be present if it was not attached to the front

 	
 fme_appearance_from_back

 	Appearance From Back: This attribute will be present and have the value ‘yes’ if the appearance was placed on the back of the geometry part. This attribute will not be present if it was not attached to the back.

 	
 fme_appearance_texture_gen_info

 	
 Appearance Texture Gen Info: Generally speaking, this will hold all the details required to understand how the texture coordinates were generated for the geometry part which referenced this appearance. (Texture coordinates may be viewed as a way of mapping from the x,y,z coordinate space of the geometry to the u,v coordinate space of the Texture.)

 Specifically, this parameter contains the data necessary to extrapolate the XYZ to UV transformation required to transform data based in ground coordinates into the same coordinate space as the texture came from.

 The values are comma separated in the following format:

 X,Y,Z,U1,V1,dU2,dV2,dU3,dV3,a,b,c,d,e,f

 Where (X,Y,Z) is the first selected representative coordinate, U1,V1 is the texture coordinate at that location, (dU2,dV2) is the difference between the first and second selected representative texture coordinate, and (dU2,dV2) is the difference between the first and third selected representative texture coordinate. The matrix represented by a,b,c,d,e,f allows for the calculation of two parametric values, alpha and beta such that the following expression can be used to map from (X,Y,Z) space -> (U,V) space, or the reverse, if the user wishes to later bring geometries into the same coordinate space as the Raster, or the reverse, in further feature processing.

 Given a ground coordinate (x,y,z), find (u,v):

 dX = x-X

 dY = y-Y

 dZ = z-Z

 alpha = a*dX+b*dY+c*dZ

 beta = d*dX+e*dY+f*dZ

 u = alpha*dU2+beta*dU3+U1

 v = alpha*dV2+beta*dV3+V1

 For example, one value for this attribute may be:

 `-0.500576565314848,0.803943350158095,4.94542140836595,-1.11022302462516e-015,1.98164442416027e-015,1.11022302462516e-016,0.999999999999999,0.999999999999999,1,-6.55663808803325,-6.16047694893307,-4.1725949293875,-0.292710919283411,5.84378207124815,3.53907266079942'

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Surfaces

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 AppearanceJoiner

 Sets the front and/or back appearance style(s) of specified geometries to be identical to a specific source geometry. This is useful if you already have a geometry that has an appearance that you’d like to duplicate on other geometries.

 You can set appearances on all Surfaces and most geometry types that are, or can contain, Surfaces.

 If you do not want to use the texture coordinates already present, you can also (at the same time) use the option to generate the texture coordinates of the affected surfaces.

 Note that when features pass through this transformer and have their appearances set, they will not simply have appearances with identical properties to the source, but they will in fact be sharing the same singular appearance definition.

 For more information on appearance support in FME, see Appearance.

 Input Ports

 Requestor

 Features that contain some geometry on which an appearance may be set.

 Supplier

 The appearance to be used as the source is taken from the first feature from each group sent into this port.

 Output Ports

 Output

 All input Requestor features are output whether or not anything was changed.

 Coordinate Space Terminology

 In order to reduce confusion between the real coordinate space of the surface and the texture coordinate space, this transformer uses "u" and "v" instead of "x" and "y" when referencing the latter. Note that this is also reflected in the parameter names.

 Parameters

 Group By

 Note that only the first Supplier feature will be used in each "Group By" group.

 Supplier Geometry XQuery

 This filter is used to indicate which part on the Supplier geometry is to be used as the source Appearance Style. As well, if more than one Geometry Part match the Supplier Geometry XQuery filter, the first Geometry Part is used as the source of the appearance style.

 Supplier: Get Appearance From

 You can specify which side of the Supplier geometry from which the source appearance style should be retrieved.

 Front Side: The texture will be retrieved from the front side of the geometry only.

 Back Side: The texture will be retrieved from the front side of the geometry only.

 Requestor Geometry XQuery

 This filter is used to indicate onto which part on the Requestor geometry the Appearance Style is to be applied. The appearance is only directly set on the geometries which are specified through the Requestor Geometry XQuery selection. However, because appearances may be inherited further down a geometry hierarchy, setting an appearance directly at one level may have an effect further down a geometry hierarchy as well. Texture coordinates are therefore calculated, if necessary, on every geometry part that is affected by the setting of this appearance.

 Requestor: Set Appearance On

 You can specify which side of the Supplier geometry from which the source appearance style should be retrieved.

 Front Side: The texture will be applied to the front side of the geometry only.

 Back Side: The texture will be applied to the front side of the geometry only.

 Front and Back Sides: The texture will be applied to both sides of the geometry.

 Use Existing Texture Coordinates

 When an appearance with a raster texture is set, each part of the Geometry that is affected will also require texture coordinates. When this parameter is No, new texture coordinates are always calculated for each part of the geometry that is affected by the appearance which is being set. When this parameter is Yes, new texture coordinates are only calculated on the affected parts of the geometry where they do not already exist. Existing texture coordinates are left unchanged.

 Texture Mapping Type

 This parameter specifies how the texture defined in an appearance style will be mapped onto the surface. This is only applicable to textures which have raster images.

 Surface Normal: The textures are projected onto the surfaces along their normals. For composite surfaces and meshes, each of the child parts will be treated separately, since the parts can have different normals.

 From Top View: The textures are projected onto the surfaces along a single normal – one that is perpendicular to the x-y plane. In this mode, a composite surface is considered as one single geometry when the texture coordinates are applied.

 U Origin Offset

 You can specify how the texture is shifted in the u direction with this parameter.

 V Origin Offset

 You can specify how the texture is shifted in the v direction with this parameter.

 Texture u Repeat Factor

 Texture u Repeat Factor can be used to specify the number of times the texture is repeated in rows.

 Texture v Repeat Factor

 Texture v Repeat Factor can be used to specify the number of times the texture is repeated in columns.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Surfaces

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 AppearanceRemover

 Removes appearances from the front and/or back side of geometries. Removing the appearance of a geometry causes that geometry to inherit its appearance from its parent, if a parent with an appearance exists.

 Input Ports

 Input

 This transformer accepts any feature.

 Output Ports

 Output

 All features, whether or not they had appearances removed, are output through the Output port.

 Parameters

 Geometry Part Selection

 Geometry XQuery

 Use this parameter if you want to isolate only a portion of the geometry passed in to the transformer. If no criteria are specified, the action will apply to the entire geometry at all levels.

 Selection can be based on structural location, geometry name, type, appearance information, or traits. The syntax used is a restricted set of XQuery, where the return clause is fixed.

 The basic Geometry XQuery dialog allows you to construct simple selection queries by automatically writing the necessary query based on specified test clauses. Clicking the Switch to Advanced button opens the Advanced Editor, which allows you to type a query free-form, for more expressive queries.

 Note that once you switch to Advanced mode, you will have to clear all parameters before you can return to Basic mode.

 A hierarchical geometry is represented as nodes of type geometry, with attributes containing information about traits, type, and name for each geometry.

 Parameters

 Remove Appearance(s) From

 This parameter specifies the geometry side(s) whose appearance should be removed.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Surfaces

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 AppearanceSetter

 Sets appearance style(s) onto the front and/or back sides of geometries. All Surfaces and most geometry types which are, or can contain, surfaces may have appearances set directly on them.

 You may also, at the same time, generate the texture coordinates of the surfaces that are affected. Texture coordinates are only required where Raster textures are used.

 The appearance is only directly set on the geometry parts which are specified through the Geometry XQuery selection. However, because appearances may be inherited further down a geometry hierarchy, setting an appearance directly at one level may also have a visible effect further down a geometry hierarchy. Texture coordinates are therefore calculated, if necessary, on every geometry part that is affected by the setting of this appearance.

 This transformer accepts appearance values in two ways: input appearance style feature and transformer parameter values. If a value is specified in both places, the parameter value will be the only one used. For example, if an input appearance style feature has the appearance name wall, and the appearance name is also set in the transformer parameter as brick wall, then the appearance that is set on the feature will have the name brick wall.

 There are also two fundamental modes in which this transformer is used:

 	One mode may send in many Appearance style features and specify, through the two join parameters, which Appearance to apply to each selected geometry part.

 	In the other mode, where no join is specified, a single input Appearance style feature is expected and it is used for all selected geometry parts.

 For more information on appearance support in FME, see Appearance.

 Input Ports

 Appearance

 This input port is optional. If this input port is not used, only the values specified in the parameters of this transformer will be used.

 Appearance style features coming in through this port will be applied to the front and/or back sides of geometries. The format of this feature should be precisely what exits the AppearanceExtractor or AppearanceStyler transformers.

 It may have many optional attributes which express the color and/or texture parameters of the appearance. It must also have either a Raster geometry (which is understood to be the Raster texture to use) or a null geometry. The Style parameters in this transformer, if used, will override any values on these input features.

 Geometry

 Features that contain some geometry on which an appearance may be set.

 Holder

 Using this input port is optional.

 All features that enter this port are held back until this transformer has completed all its processing, and are then output through the Holder port at the very end. These features will not be directly modified in any way by this transformer, but may have been indirectly changed. Please read the documentation for the Replace Existing Definitions’ value for the ‘Appearance Storage’ option for details on how this may occur.

 The reason these Holder ports are useful is that in some situations, it is important to control the timing of features passing through the workspace. By holding back some features, you are ensuring that this transformer has a chance to complete its processing before allowing some other features to continue further along the workspace.

 Example

 There are 100 features passing through the workspace, and they all contain some surfaces that refer to a “red brick” Appearance. Their natural flow would be directly out to a writer. However, in a separate section of the workspace, an AppearanceSetter exists, and it uses the Replace Existing Definitions option on the Appearance Storage parameter. It replaces the definition of the “red brick” Appearance with “brown brick”, obviously using a different color.

 In this situation, if there is no explicit control over the order of features, the first 50 features could be inadvertently sent to the writer, followed by the AppearanceSetter processing, followed by the last 50 features being sent to the writer. Here, the output would contain 50 “red brick” features and 50 “brown brick” features. You would not be able to control the arbitrary ordering of features flowing through the workspace.

 If, however, all 100 features are routed through the Holder port, it is guaranteed that the AppearanceSetter will do its processing before any of the 100 features are sent to the writer. In this case, the output would contain 100 “brown brick” features. This is probably the desired outcome: change the definition of one Appearance, make sure that definition is reflected throughout the entire dataset (without having to locate each reference to that modified appearance), and have the guarantee that all features reflect that change regardless of the order of the flow of input features.

 Output Ports

 Output

 All input Geometry features are output whether or not anything was changed.

 Holder

 All features that came in through the Holder input port will be output through this port. See the Holder input port for more details on correct usage of these ports.

 <Rejected>

 Only appearance style features with null or raster geometry types are accepted. All other appearance style features are rejected.

 If the Join parameters (described below) are not used, then only the first Appearance style input per group is used. All other extra Appearance styles are rejected and output through this port.

 Coordinate Space Terminology

 In order to reduce confusion between the real coordinate space of the surface and the texture coordinate space, this transformer uses "u" and "v" instead of "x" and "y" when referencing the latter. Note that this is also reflected in the parameter names.

 Parameters

 Group By

 Note that only the first appearance styles will be used in each "Group By" group.

 Geometry Part Selection

 Geometry XQuery

 Use this parameter if you want to isolate only a portion of the geometry passed in to the transformer. If no criteria are specified, the action will apply to the entire geometry at all levels.

 Selection can be based on structural location, geometry name, type, appearance information, or traits. The syntax used is a restricted set of XQuery, where the return clause is fixed.

 The basic Geometry XQuery dialog allows you to construct simple selection queries by automatically writing the necessary query based on specified test clauses. Clicking the Switch to Advanced button opens the Advanced Editor, which allows you to type a query free-form, for more expressive queries.

 Note that once you switch to Advanced mode, you will have to clear all parameters before you can return to Basic mode.

 A hierarchical geometry is represented as nodes of type geometry, with attributes containing information about traits, type, and name for each geometry.

 Set Appearance On

 You can specify which side of the geometry on which the appearance should be set.

 Front Side: The texture will be applied to the front side of the geometry part only.

 Back Side: The texture will be applied to the front side of the geometry part only.

 Front and Back Sides: The texture will be applied both sides of the geometry part.

 Appearance Join Attribute and Geometry Join Trait

 Both of these parameters must be used together, or neither is used.

 If you are not using these parameters, this transformer expects only one Appearance style feature (per Group) and it is used for all selected geometry parts.

 If these join parameters are specified, all of the Appearance style features (per Group) are kept as possible matches for each individual selected geometry part. In each case, the value of the Trait specified on the geometry part is matched to the value of the Attribute specified on the Appearance style features. (If there is more than one match, an arbitrary Appearance style feature is chosen. If there is no match, no processing is done for that geometry part.) The matched Appearance style is then used for the processing of that geometry part.

 Note that a missing Trait on the geometry part, or a missing Attribute on the Appearance style features are equivalent to blank traits or attributes. Traits with blank values will match to Attributes with blank values. This will, for example, allow you to intentionally send in a “default” Appearance style feature without the join attribute, and use it for any geometry parts that may not have the trait present. This is useful if not all geometry parts are expected to have the join trait.

 Appearance Storage

 When you pass in Appearance style features, this transformer will be creating Appearance definitions. However, there are two ways these new appearances may be stored and used:

 	Create New Definitions: This is the simplest approach. With this option, a new Appearance Definition is created and stored in the internal FMELibrary. This new definition is referenced by the selected geometry parts; references to previous definitions are dropped, leaving those definitions unchanged in the internal FMELibrary.

 	Replace Existing Definitions: This approach is powerful and may change many things in the dataset very efficiently. With this option, a new Appearance Definition is not created, but instead, the link to every Appearance Definition which is referenced by the selected Geometry Parts is followed, and each of those definitions is overwritten within the internal FMELibrary.

 This is reflected in two ways: First, all chosen geometry parts reflect the new Appearance style properties, even though they do not change how they reference Appearances. Second, a more subtle effect is that all geometry parts, on all active features (even those features not passing through this factory) that refer to the overwritten Appearance definitions will immediately see the new values as well.

 This transformer can, therefore, modify the effective nature of some features that never pass through it. Please see the documentation for the HOLDER input and HOLDER output ports for more details on management of these effects.

 Color Parameters

 Appearance Name

 A name that will help you remember what the appearance is for, such as "castle wall" or "house roof". Note that it does not have to be unique.

 Attribute name string: fme_appearance_style_name

 Diffuse Color

 The most instinctive meaning of the color of an object, the essential color that is revealed under pure white light. It is perceived as the color of the object rather than a reflection of the light.

 Attribute name string: fme_appearance_style_diffuse_color

 Ambient Color

 The color that the object reflects when illuminated by color from the surrounding medium rather than direct light.

 Attribute name string: fme_appearance_style_ambient_color

 Specular Color

 The color of the light reflected from the object through specular reflection (the type of reflection that is characteristic of light reflected from a shiny surface).

 Attribute name string: fme_appearance_style_specular_color

 Emissive Color

 Color of the light that the object is emitting itself.

 Attribute name string: fme_appearance_style_emissive_color

 Shininess

 A value from 0.0 to 1.0 that specifies the shine of specular reflection, with 0.0 being completely dull and 1.0 extremely shiny.

 Attribute name string: fme_appearance_style_shininess

 Alpha

 Specifies the transparency level of the appearance, with 0.0 being completely transparent and 1.0 completely opaque.

 Attribute name string: fme_appearance_style_alpha

 Texture Parameters

 Texture Center u

 Used to specify the origin of texture coordinate system. It is only used in conjunction with scaling and rotation.

 Attribute name string: fme_texture_style_center_u

 Texture Center v

 Used to specify the origin of texture coordinate system. It is only used in conjunction with scaling and rotation.

 Attribute name string: fme_texture_style_center_v

 Texture Rotation Angle

 Specifies the counter-clockwise rotation angle of the texture in degrees around the texture center (from a line parallel to the u-axis, passing through the texture center).

 Attribute name string: fme_texture_style_rotation_angle

 Texture u Shearing Factor

 Used to specify the amount of shear along the u texture coordinate system axis, relative to the center.

 Attribute name string: fme_texture_style_u_shearing_factor

 Texture v Shearing Factor

 Used to specify the amount of shear along the v texture coordinate system axis, relative to the center.

 Attribute name string: fme_texture_style_v_shearing_factor

 Texture u Scaling Factor

 Used to specify the amount that the texture should be scaled along the u-axis.

 Attribute name string: fme_texture_style_u_scaling_factor

 Texture v Scaling Factor

 Used to specify the amount that the texture should be scaled along the v-axis.

 Attribute name string: fme_texture_style_v_scaling_factor

 Texture u Offset

 Used to specify the offset applied to the texture after all the other transformations are done.

 Attribute name string: fme_texture_style_u_offset

 Texture v Offset

 Used to specify the offset applied to the texture after all the other transformations are done.

 Attribute name string: fme_texture_style_v_offset

 Texture Wrap Style

 Only affects the area outside the 0 to 1 U and V range. Note that not all texture wrapping styles are supported by all output formats, in which case the texture wrapping style will be defaulted to a supported style individual writer.

 None: means no texture wrapping style is given and behavior outside the 0 to 1 range is unspecified.

 Repeat in U and V: will tile the texture in both directions.

 Clamp in U and V: clamps both U and V to the 0 to 1 range and a constant boundary color will fill values outside this range.

 Clamp in U and Repeat in V: clamps U to the 0 to 1 range and tiles in the V direction.

 Repeat in U and Clamp in V: clamps V to the 0 to 1 range and tiles in the U direction.

 Mirror: will mirror the texture in the U and V direction.

 Border Fill: will use a constant border color to fill values outside the U, V 0 to 1 range.

 Attribute name string: fme_texture_style_wrap

 Texture Border Color

 This parameter is used only with the Border Fill wrapping style, and is only supported by certain formats. It specifies the color to "bleed" into the space surrounding the texture raster.

 Attribute name string: fme_texture_style_border_color

 Texture Coordinate Generation Parameters

 Use Existing Texture Coordinates

 When an appearance with a raster texture is set, each part of the Geometry that is affected will also require texture coordinates. When this parameter is No, new texture coordinates are always calculated for each part of the geometry that is affected by the appearance which is being set. When this parameter is Yes, new texture coordinates are only calculated on the affected parts of the geometry where they do not already exist. Existing texture coordinates are left unchanged.

 Texture Mapping Type

 This parameter specifies how the texture defined in an appearance style will be mapped onto the surface. This is only applicable to textures which have raster images.

 	Surface Normal: The textures are projected onto the surfaces along their normals. For composite surfaces and meshes, each of the child parts will be treated separately, since the parts can have different normals.

 	From Top View: The textures are projected onto the surfaces along a single normal – one that is perpendicular to the x-y plane. In this mode, a composite surface is considered as one single geometry when the texture coordinates are applied.

 U Origin Offset

 You can specify how the texture is shifted in the u direction with this parameter.

 V Origin Offset

 You can specify how the texture is shifted in the v direction with this parameter.

 Texture u Repeat Factor

 Texture u Repeat Factor can be used to specify the number of times the texture is repeated in rows.

 Texture v Repeat Factor

 Texture v Repeat Factor can be used to specify the number of times the texture is repeated in columns.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Surfaces

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 AppearanceStyler

 Creates an appearance style that can later be applied to a surface (using the AppearanceSetter, for instance).

 Input Ports

 Input

 A feature that contains either a raster or no geometry. If the input feature contains unsupported geometry, the unsupported geometry will be removed from the feature.

 Output Ports

 Output

 The set options that become attributes on that feature when it is sent out through the Output port.

 Coordinate Space Terminology

 In order to reduce confusion between the real coordinate space of the surface and the texture coordinate space, this transformer uses "u" and "v" instead of "x" and "y" when referencing the latter. Note that this is also reflected in the parameter names.

 Parameters

 Appearance Name

 A name that will help you remember what the appearance is for, such as "castle wall" or "house roof". Note that it does not have to be unique.

 Diffuse Color

 The most instinctive meaning of the color of an object, the essential color that is revealed under pure white light. It is perceived as the color of the object rather than a reflection of the light.

 Ambient Color

 The color that the object reflects when illuminated by color from the surrounding medium rather than direct light.

 Specular Color

 The color of the light reflected from the object through specular reflection (the type of reflection that is characteristic of light reflected from a shiny surface).

 Emissive Color

 Color of the light that the object is emitting itself.

 Shininess

 A value from 0.0 to 1.0 that specifies the shine of specular reflection, with 0.0 being completely dull and 1.0 extremely shiny.

 Alpha

 Specifies the transparency level of the appearance, with 0.0 being completely transparent and 1.0 completely opaque.

 Texture Center u

 Used to specify the origin of texture coordinate system. It is only used in conjunction with scaling and rotation.

 Texture Center v

 Used to specify the origin of texture coordinate system. It is only used in conjunction with scaling and rotation.

 Texture Rotation Angle

 Specifies the counter-clockwise rotation angle of the texture in degrees around the texture center (from a line parallel to the u-axis, passing through the texture center).

 Texture u Shearing Factor

 Used to specify the amount of shear along the u texture coordinate system axis, relative to the center.

 Texture v Shearing Factor

 Used to specify the amount of shear along the v texture coordinate system axis, relative to the center.

 Texture u Scaling Factor

 Used to specify the amount that the texture should be scaled along the u-axis.

 Texture v Scaling Factor

 Used to specify the amount that the texture should be scaled along the v-axis.

 Texture u Offset

 Used to specify the offset applied to the texture after all the other transformations are done.

 Texture v Offset

 Used to specify the offset applied to the texture after all the other transformations are done.

 Texture Wrap Style

 Only affects the area outside the 0 to 1 U and V range. Not all texture wrapping styles are supported by each format, in which case the texture wrapping style will be defaulted to a supported style by the consumer.

 	NONE means no texture wrapping style is given and behavior outside the 0 to 1 range is unspecified.

 	REPEAT_BOTH will tile the texture in both directions.

 	CLAMP_BOTH clamps both U and V to the 0 to 1 range and a constant boundary color will fill values outside this range.

 	CLAMP_U_REPEAT_V clamps U to the 0 to 1 range and tiles in the V direction.

 	REPEAT_U_CLAMP_V clamps V to the 0 to 1 range and tiles in the U direction.

 	MIRROR will mirror the texture in the U and V direction.

 	BORDER_FILL will use a constant border color to fill values outside the U, V 0 to 1 range.

 Texture Border Color

 This parameter is used only with the BORDER_FILL wrapping style, and is only supported by certain formats. It specifies the color to "bleed" in the space surrounding the texture raster.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Surfaces

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 ArcEstimator

 Replaces the geometry of the feature with a two-dimensional circular
 arc whose shape is estimated from the first, middle, and last point of
 the linear feature passed in. The result is an approximation only and
 unless the linear feature is previously known to be circular, the result
 could be completely different than the original feature.

 This transformer is most useful when the feature was known to have been a circular
 arc originally, and was stroked into a line. This transformer can then
 be used to turn it back into an arc.

 For example, a feature containing these points:

 2,1

 1,2

 0,2.236067977
 (sqrt(5))

 will be turned into an arc feature with this geometry:

 0,0

 and these attributes:

 fme_primary_axis
 2.236067977

 fme_secondary_axis
 2.236067977

 fme_start_angle
 26

 fme_sweep_angle
 63

 fme_rotation
 0

 Input Ports

 Input

 This transformer accepts linear features with at least 3 points.

 Output Ports

 Arc

 The estimated arc features are output through this port.

 Parameters

 Not applicable.

 Usage Notes

 If the parameters for the arc are already available as attributes on
 the feature, then use the 2DArcReplacer
 or 3DArcReplacer
 transformer.

 Example

 [image: arcestimator.gif]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 ArcPropertyExtractor

 Sets the given attributes to the properties of an arc geometry. This transformer works on a single feature at a time.

 Input Ports

 Input

 Features with arc geometry.

 Output Ports

 Output

 Features with given attributes set to the properties of the arc geometry.

 Parameters

 Primary Radius Attribute

 Attribute name that is set to the length of the primary radius for the ellipse upon which the arc is based.

 Secondary Radius Attribute

 Attribute name that is set to the length of the secondary radius for the ellipse upon which the arc is based.

 Rotation Attribute

 Attribute name that is set to the rotation of the ellipse that defines the arc. The rotation angle specifies the angle in degrees from the horizontal axis to the primary axis in a counterclockwise direction.

 Start Angle Attribute

 Attribute name that is set to the parametric angle of the start point of the arc, in degrees.

 Sweep Angle Attribute

 Attribute name that is set to the parametric sweep angle of the arc, in degrees.

 Start X Attribute

 Attribute name that is set to the x coordinate value for the arc’s start point

 Start Y Attribute

 Attribute name that is set to the y coordinate value for the arc’s start point

 Start Z Attribute

 Attribute name that is set to the z coordinate value for the arc’s start point

 End X Attribute

 Attribute name that is set to the x coordinate value for the arc’s end point

 End Y Attribute

 Attribute name that is set to the y coordinate value for the arc’s end point

 End Z Attribute

 Attribute name that is set to the z coordinate value for the arc’s end point

 Center X Attribute

 Attribute name that is set to the X coordinate of the center of the ellipse. If not specified, the first coordinate of the feature is used.

 Center Y Attribute

 Attribute name that is set to the Y coordinate of the center of the ellipse. If not specified, the first coordinate of the feature is used.

 Center Z Attribute

 Attribute name that is set to the Z coordinate of the center of the ellipse. If not specified, the first coordinate of the feature is used.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 ArcPropertySetter

 Sets the properties of an arc geometry to those specified. All parameters are optional; if a value is unspecified, it is left unmodified on the geometry. This transformer works on a single feature at a time.

 This transformer can also be used to create an arc by using a point as an input. The point geometry will be used as the center point for the new arc. When using this creation mode, you must supply, at minimum, the following parameters: New Primary Axis, New Start Angle, New Sweep Angle.

 Input Ports

 Input

 Features with arc or point geometry.

 Output Ports

 Output

 Features with the properties of the arc geometry modified according to the new values provided, or the newly created arc geometry.

 <Rejected>

 Invalid features will be output via this port.

 Parameters

 New Primary Axis

 The new length of the primary axis for the ellipse upon which the arc is based.

 New Secondary Axis

 The new length of the secondary axis for the ellipse upon which the arc is based.

 New Rotation

 The new rotation of the ellipse that defines the arc. The rotation angle specifies the angle in degrees from the horizontal axis to the primary axis in a counterclockwise direction.

 New Start Angle

 The new parametric angle of the start point of the arc, in degrees.

 New Sweep Angle

 The new parametric sweep angle of the start arc, in degrees.

 The default is 360.

 New Start X

 The new x coordinate value for the arc’s start point

 New Start Y

 The new y coordinate value for the arc’s start point

 New Start Z

 The new z coordinate value for the arc’s start point

 New End X

 The new x coordinate value for the arc’s end point

 New End Y

 The new y coordinate value for the arc’s end point

 New End Z

 The new z coordinate value for the arc’s end point

 New Center X

 The new X coordinate of the center of the ellipse. If not specified, the first coordinate of the feature is used.

 New Center Y

 The new Y coordinate of the center of the ellipse. If not specified, the first coordinate of the feature is used.

 New Center Z

 The new Z coordinate of the center of the ellipse. If not specified, the first coordinate of the feature is used.

 Transformer Parameter Menu

 Editing transformer parameters

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 ArcSDEGridSnapper

 Simulates the ArcSDE conversion on a feature
 by performing ArcSDE translation, scaling, and coordinate snapping. Also
 removes duplicate vertices resulting from snapping multiple formerly separate
 vertices to the same grid point. These coordinates will also be recorded
 in a list attribute.

 If the feature was an aggregate feature,
 the ArcSDE conversion is executed individually on each geometry in the aggregate feature.

 Input Ports

 Input

 This transformer accepts features whose geometry is consistent with the ArcSDE format.

 Output Ports

 Snapped

 Features with the ArcSDE conversion are output through this port.

 Parameters

 Minimum X

 The false origin for x-values. It corresponds to the Feature Class Domain’s Min X property in ArcGIS.

 Minimum Y

 The false origin for y-values. It corresponds to the Feature Class Domain’s Min Y property in ArcGIS.

 Scale

 A scale factor to convert to integers for x- and y-values. It corresponds to the inverse of the XY Resolution Feature Class property in ArcGIS. Together with Minumum X and Minimum Y and Spatial reference precision, this is used to calculate the domain of the spatial reference.

 Minimum Z (if 3D)

 The false origin for z-values. It corresponds to the Feature Class Domain’s Min Z property in ArcGIS.

 Z Scale (if 3D)

 A scale factor to convert to integers for z-values. It corresponds to the inverse of the Z Resolution Feature Class property in ArcGIS.

 Output as integer coordinates

 Select to view output as either the underlying integer ArcSDE grid or the original plane coordinates

 Spatial reference precision

 The precision the coordinates are stored in. Feature Classes created after ArcGIS 9.2 will all be high precision (53-bit storage). Those created before can be low-precision (31-bit storage).

 Usage Notes

 The ArcSDE simulation is executed only when
 all coordinates of the geometry are within the valid range defined by
 the ArcSDE format. Otherwise, the conversion is cancelled and the error
 attribute ‘_ArcSDE_Error’ is added to the feature. Currently, the only value of the error attribute is ‘out of bounds’ which occurs when a geometry contains a coordinate that lays outside the calculated domain.

 Note that illegal geometries, such
 as areas with dangles, will not be checked for validity on the ArcSDE
 format.

 Arcs and ellipses passed through the ArcSDEGridSnapper
 will be stroked into lines; this matches the behavior of the ArcSDE writer,
 which does not support the storage of these types of geometries.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 FME Licensing Level

 FME Professional Edition and above

 FMEpedia

 See FMEpedia for additional information about this transformer.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 ArcSDEQuerier

 Performs queries on an ArcSDE spatial database. The queries can have
 both a spatial and a nonspatial component.

 One query is issued to the ArcSDE database for each feature that enters
 the transformer. The
 results of the query are then output to the output port that matches the
 table name, if it exists; otherwise, results are output to the OTHER
 port.

 If the Mode parameter is set to Delete, the results of the query
 are deleted from ArcSDE before they are output from the transformer. If
 the Mode parameter is set to Update, the features in ArcSDE matching the
 query feature will be updated with that feature's complete set of attributes.

 The query feature defines the geometry which will be used to define
 the spatial component of the query, unless the search method is SDE_NONE.
 In that
 case, only an attribute query as defined by the WHERE clause will be executed.

 An attribute named _table_name will be added to each result feature,
 specifying which table the result feature came from.

 An attribute named _matched_records will be added to each query feature,
 specifying how many database rows the query matched.

 Parameters

 Remove Table Qualifier

 If the Remove Table Qualifier parameter is set to Yes, then user names
 will not be included in table names when they are not required.

 Table Name in Attribute

 If the Table Name in Attribute parameter is blank, the set of tables
 to query is defined by the Tables parameter, which is set in the "Select
 Tables" panel. Alternatively,
 if the Table Name in Attribute parameter is not blank, the tables to query
 are read from the specified attribute in the input features. In
 this case, the tables to query should be specified as a colon-separated
 list.

 ArcSDE Spatial Query Operators

 The complete set of ArcSDE spatial query operators is supported, and
 each is described below:

 SDE_NONE

 No spatial filtering is done. Any
 features matching the Where Clause parameter are output, and if no where
 clause was specified, then all features from each target table are output.

 SDE_ENVELOPE

 The envelope of the output feature
 overlaps or touches the envelope of the search feature.

 SDE_COMMON_POINT

 The search feature shares at
 least one common point with the output feature.

 SDE_LINE_CROSS

 The search feature and the output
 feature have intersecting line segments.

 SDE_COMMON_LINE

 The search feature and the output
 feature share one or more common line segments.

 SDE_CP_OR_LC

 The search feature and the output
 feature have line segments that intersect or have a common point.

 SDE_AI_OR_ET

 The search feature and the output
 area feature edge touch (ET) or their areas intersect (AI).

 SDE_AREA_INTERSECT

 The search feature and the
 output feature's area intersect.

 SDE_AI_NO_ET

 The output feature and search feature
 have intersecting areas with no edge touching. One feature is therefore
 contained in the other.

 SDE_CONTAINED_IN

 The search feature is contained
 in the output feature. For area features, this is clear. If search feature
 is a line, then a linear feature will be output when the search feature
 path is included in output feature. If search feature is a point, then
 the search feature will be one of the output features vertices.

 SDE_CONTAINS

 The output feature is contained
 by the search feature. If both features are linear features, then the
 output feature must lie on the search feature's path. Point features that
 lie on a search feature vertex are also output.

 SDE_CONTAINED_IN_NO_ET

 The returned feature must
 be an area feature that does not touch or share a vertex with the search
 feature. The returned feature contains the search feature.

 SDE_CONTAINS_NO_ET

 The returned feature is contained
 within the search feature. The returned features cannot touch the edge
 of, or share a vertex with, the search feature.

 SDE_POINT_IN_POLY

 The returned feature contains
 the first point of the search feature.

 SDE_IDENTICAL

 The returned feature has the same
 feature type and geometry. This is used to find duplicate data.

 Search Order

 The Search Order parameter controls
 the manner in which the search is performed. If
 Optimize is specified, then the SDE engine decides how to perform the
 search. If Attribute First is specified, then the attribute portion of
 the search is performed first and then the spatial component is performed
 on the set resulting from the attribute set. If Spatial First is specified,
 then the spatial search is performed first and then the attribute search
 is performed on the resulting set. This
 is useful if the Optimize setting makes the wrong choice and you want
 to force the search to be performed in a different order.

 Attribute Handling

 	Result Attributes Only: result feature attributes
 are based solely on the query results.

 	Keep Query Attributes if Conflict: result feature
 attributes are a combination of both the query results and the query feature's
 attributes. If there is a conflict, attribute values are taken from the
 query feature.

 	Keep Result Attributes if Conflict: result feature
 attributes are a combination of both the query results and query feature's
 attributes. If there is a conflict, attribute values are taken from the
 query results.

 Geometry Handling

 	Result Geometry Only: result feature geometry
 is taken from the query results.

 	Query Geometry Only: result feature geometry is
 taken from the query feature.

 	Aggregate Query and Result Geometry: result feature
 geometry is an aggregate of the geometry from the query feature followed
 by the geometry from the query results.

 Process Duplicates

 Specifies whether or not duplicate features will be output from the transformer.
 If the Mode parameter is set to Update, this parameter also specifies
 whether duplicate updates will be performed.

 Get Spatial Relations

 Specifies whether or not the relationships between the query and result
 geometries should be computed. Refer to the SDE30QueryFactory factory
 documentation for more information (see Workbench Help > FME Functions and Factories Reference).

 Make Connection Persistent

 Specifies whether to create a connection to SDE that persists and can be shared by other SDE Readers, Writers, and ArcSDEQuerier transformers. When set to Yes, the connection will remain open until FME shuts down, even if this transformer is finished using it. Otherwise, the connection will be closed when the transformer is shut down (unless another reader/writer/transformer is still using the connection).

 Creating a new connection is an expensive operation. Depending on how FME is being used (that is, if there are multiple instances of the SDE Reader/Writer being used, or if the ArcSDEQuerier is being used to query/update the same SDE), the performance may improve by setting this parameter to Yes.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Database

 FME Licensing Level

 FME Professional Edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 ArcStroker

 Converts arc features into lines replacing the feature geometry with
 a series of edges interpolated along the arc boundary. Ellipse features
 are converted into polygons by interpolating edges along the elliptical
 boundary.

 If the input geometry is a path consisting of arcs and lines, or an
 area whose boundary is such a path, then any arcs in the path will be
 stroked, also using the Number of Interpolated Edges given.

 Input Ports

 Input

 This transformer accepts features with arc or ellipse geometry. Other features are unchanged.

 Output Ports

 Stroked

 All features are output through this port.

 Parameters

 Stroke By

 You can convert arc or ellipse features into lines either by specifying the Number of Interpolated Edges or the Maximum Deviation.

 The Number of Interpolated Edges and the Maximum Deviation may either be entered as a number,
 or can be taken from the value of a feature attribute by selecting the
 attribute name from the pull-down list.

 Number of Interpolated Edges

 If this parameter is specified and set to 0, then a reasonable number of edges will be interpolated for the
 arc.

 Maximum Deviation

 If the Maximum Deviation is specified and has a value greater than 0, then arcs are converted into lines such that the maximum distance between the lines and the arcs is not greater than the value specified. If the Maximum Deviation value is greater than the primary or secondary axis of the arc or ellipse, then the converted lines will have minimum number of edges possible. If the Maximum Deviation value is smaller than or equal to 0, then the value of the Stroke Maximum Deviation advanced setting set in the workspace is used. If both values are smaller than or equal to 0, then arcs are converted into lines using the Number of Interpolated Edges value of 0.

 Make Polygon Out of 360 Degree Arcs

 If this parameter
 is set to Yes, then arc features with a 360-degree sweep angle are converted
 into polygons. Otherwise, they are converted into lines.

 Example

 [image: arcstroker.gif]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 AreaBuilder

 Takes a set of topologically connected linework and creates topologically correct polygon features where the linework forms closed shapes.

 Input Ports

 Input

 The input lines must be topologically correct
 and must neither self-intersect nor intersect each other. They must close
 at their endpoints. If these conditions are met, any area features implied by the input
 lines are created. (You can use the Snapper, Intersector, and MRF2DCleaner to clean data that does not meet these conditions
 before it enters this transformer.) This transformer can also create polygons and donuts (holes/islands). Any lines that cannot be formed into polygons are joined together to create maximum length linestrings.

 Output Ports

 Area

 Contains the output polygons.

 Incomplete

 Contains any lines that did not close.

 <Rejected>

 Contains any geometries that were rejected.

 Parameters

 Transformer

 Group By

 The default behavior is to use the entire set of input features as the group. This option allows you to select attributes that define which groups to form – each set of features that have the same value for all of these attributes will be processed as an independent group.

 No attributes other than the Group By ones will be carried across from the Input features to the output features.

 Parallel Processing Level

 How parallel processing works with FME: see About Parallel Processing for detailed information.

 This parameter determines whether or not the
transformer should perform the work across parallel processes. If it is enabled, a process will be launched for each group specified by the Group
By parameter.

 Parallel Processing Levels

 	Parameter
 	Number of Processes

 	No Parallelism
 	1

 	Minimal
 	cores1 / 2

 	Moderate
 	exact number of cores

 	Aggressive
 	cores x 1.5

 	Extreme
 	cores x 2

 For example, on a quad-core machine, minimal parallelism will result in two simultaneous FME processes. Extreme parallelism on an 8-core machine would result in 16 simultaneous processes.

 You can experiment with this feature and view the information in the Windows Task Manager and the Workbench Log window.

 Donut Parameters

 Create Donuts

 Yes: The resulting polygons will contain holes created by any other resulting polygons they completely
 contained. Following this, any holes that share an common edge will be
 dissolved together to make a larger hole.

 No: The resulting polygons are output via the Area port. Note
 that if you want to create donut polygons, you will need to use the DonutBuilder.

 Drop Holes

 Yes: The operation is the same as when the Create Donuts parameter
 is set to Yes, except that any polygons that were holes of another polygon
 will not be output.

 Hole List Name

 If you enter a list name in this field,
 then a list will be created on each output feature, containing an element
 for each input feature that became a hole on that geometry, in order
 of appearance. Note that this parameter requires that a Polygon List Name also be specified.

 Snapping Parameters

 Snapping Type

 When this parameter is set to None, no snapping takes place.

 When this parameter is set to End Point Snapping, the transformer:

 	Snaps end points of lines together if their distances are within the specified tolerance.

 When this parameter is set to Vertex Snapping, the transformer does the following:

 	Snaps vertices of lines together if their distances are within the specified tolerance.

 When two features are snapped together, the feature that entered the factory most recently is the one that is modified.

 Snapping Tolerance

 Snapping Tolerance specifies the distance, in ground units, that the snapping occurs between features.

 Polygon Parameters

 Polygon List Name

 If you enter a Polygon List Name,
 a list will be created on each output feature, containing an element for
 each input feature which contributed to that geometry, in order of appearance.

 This parameter can also be used to preserve attributes from input features.

 Preserve Lines as Path Segments

 If set to Yes, then when lines originating from different input curves are concatenated into a longer curve in the output, they will be left as separate segments in a path. The default is No, which means that such lines will be joined into longer lines in the output unless they have different properties (e.g. traits, measures, geometry name).

 Build Internal Edges (Advanced)

 Specifies that coordinate "cycles" within a polygon are allowable
 and will be constructed; such polygons might be considered invalid by
 other parts of FME or by output formats. A "cycle" is a line segment that occurs twice in the same polygon's boundary (once in each direction).

 Example

 [image: polygonbuilder.gif]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: CAD fenceline island ring PolygonBuilder

 1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 AreaCalculator

 Calculates the area of a polygonal object and stores the value in an attribute. The area is calculated in square map units, whatever they are.

 The type of area calculation that is performed is chosen by the Type parameter.

 Input Ports

 Input

 This transformer accepts any feature. Features without an area geometry will have an area of 0.

 Output Ports

 Output

 Features with the calculated area are output through this port.

 Parameters

 Type

 For the traditional projected area of features, use "Plane Area" as
 the type.

 For 2D/2.5D geometries, the option of calculating 3D sloped areas is
 available by selecting "Sloped Area" as the type. This option calculates
 the surface area of the feature, taking height (Z) coordinates into consideration.

 Area Attribute

 The attribute that contains the area of the polygonal feature.

 Multiplier

 The multiplier parameter can be used to scale the area from being square
 ground units (the units of the feature's coordinates) to something else.
 This parameter may either be entered as a number, or can be taken from
 the value of a feature attribute by selecting the attribute name from
 the pull-down list.

 For 3D geometries, the surface area is always returned.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: Euclidean

 AreaOnAreaOverlayer

 Performs an area-on-area overlay so that all input areas are intersected against each other and resultant area
 features are created and output. The resultant areas have all the attributes
 of all the original features in which they are contained.

 Input Ports

 Area

 This transformer accepts area features as input. Area features are expected to be non-self-intersecting.

 Tip: If input areas are self-intersecting, first use the GeometryValidator’s Self-Intersection in 2D rule to remove self-intersections.

 Output Ports

 Area

 Area features resulting from the intersection of input areas are output through this port.

 Parameters

 Group By

 The default behavior is to use the entire set of features as the group. This option allows you to select attributes that define which groups to form.

 Parallel Processing Level

 How parallel processing works with FME: see About Parallel Processing for detailed information.

 This parameter determines whether or not the
transformer should perform the work across parallel processes. If it is enabled, a process will be launched for each group specified by the Group
By parameter.

 Parallel Processing Levels

 	Parameter
 	Number of Processes

 	No Parallelism
 	1

 	Minimal
 	cores1 / 2

 	Moderate
 	exact number of cores

 	Aggressive
 	cores x 1.5

 	Extreme
 	cores x 2

 For example, on a quad-core machine, minimal parallelism will result in two simultaneous FME processes. Extreme parallelism on an 8-core machine would result in 16 simultaneous processes.

 You can experiment with this feature and view the information in the Windows Task Manager and the Workbench Log window.

 Overlap Count Attribute

 The Overlap
 Count Attribute holds the number of features that the resultant
 feature overlapped, which will be at least one.

 List Name

 If a List Name is supplied, a list is created of all the
 attributes of each input area that overlaps the resultant feature.

 Example:

 [image: areaonareaoverlayer.png]

 Usage Notes

 When attributes are merged between features, existing attributes are
 not replaced. Therefore if the polygons being overlaid have attributes
 with the same name, then the values will not be transferred from one to
 the other. You can work around this by renaming (AttributeRenamer),
 prefixing (AttributeExpressionRenamer),
 or removing (AttributeRemover)
 attributes to avoid name collisions.

 Aggregates are not supported by this transformer.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 AttributeClassifier

 Tests whether the contents of the source attribute are entirely of a particular
 character classification, and routes the feature accordingly.

 Empty strings are not considered part of any class and will always fail.

 Null attribute values will only match the ‘Null’ classification and will fail any other classification.

 Input Ports

 Input

 This transformer accepts any feature.

 Output Ports

 Passed

 Features where the contents of the source attribute match the specified classification.

 Failed

 Features where the contents of the source attribute do not match the specified classification.

 Parameters

 Source Attribute

 Choose the source attributes to classify.

 Classification to Test

 Empty strings and missing attributes are not considered part of any class and so will always
 fail.

 Null attribute values will only match the ‘Null’ classification and will fail any other classification.

 The following character classes are available:

 	Character Class
 	Description

 	Alphanumeric
 	Any Unicode alphabet or digit character.

 	Alphabetic
 	Any Unicode alphabet character.

 	ASCII
 	Any character with a value less than \u0080 (those that are in the
 7-bit ASCII range).

 	Boolean
 	The value matches 0, 1, false, true, no, or yes.

 	Control
 	Any Unicode control character.

 	Date
 	Any date in the form YYYYMMDD.

 	Digit
 	Any Unicode digit character. Note that this includes characters outside
 of the [0-9] range.

 	Double
 	
 A double precision number, which is: white space; a sign; a sequence
 of digits; a decimal point; a sequence of digits; the letter ‘‘e’’; and
 a signed decimal exponent.

 Any of the fields may be omitted, except that
 the digits either before or after the decimal point must be present and
 if the ‘‘e’’ is present then it must be followed by the exponent number.

 	False
 	The value matches 0, false, or no.

 	Graphical
 	Any Unicode printing character, except space.

 	Hexdigit
 	Any hexadecimal digit character ([0-9A-Fa-f]).

 	Integer
 	An integer number, defined as a collection of integer digits, optionally
 signed and optionally preceded by white space. If the first two characters
 of string are ‘‘0x’’ then string is expected to be in hexadecimal form;
 otherwise, if the first character of string is ‘‘0’’ then string is expected
 to be in octal form; otherwise, string is expected to be in decimal form.

 	Lowercase
 	Any Unicode lowercase alphabet character.

 	NaN (Not a Number)
 	
 A floating point number equal to the special "not a number" value. Note: This option tests for the presence of a NaN (Not a Number) marker. It does not test the value itself to see whether it is numeric.

 Example of correct usage: You overlay points onto a raster elevation model. Some points fall outside of the model and receive an elevation of NaN. You can now use the AttributeClassifier to test which points are NaN.

 Example of incorrect usage: You have an attribute that represents a US zipcode. You want to filter out values such as ABCDE which are not a proper numeric value. You cannot use the AttributeClassifier for this. It will not reject a feature unless its attribute value is specifically "NaN". In this case, you can use the AttributeClassifier to check whether the attribute is an integer. In other cases, you may need to consider a StringSearcher to check for alphabetic characters.

 Also see Usage Notes below.

 	Null
 	Attribute value is null.

 	Printable
 	Any Unicode printing character, including space.

 	Punctuation
 	Any Unicode punctuation character.

 	Space
 	Any Unicode space character.

 	True
 	
 The value matches 1, true, or yes.

 	Uppercase
 	Any uppercase alphabet character in the Unicode character set.

 	Wordchar
 	Any Unicode word character. That is, any alphanumeric character, and
 any Unicode connector punctuation characters (e.g., underscore).

 For an attribute to pass, all of its contents must belong to the specified
 classification.

 Usage Notes

 This test succeeds only for the specified value; it does not succeed simply for any value that is not numeric. NaN is a special value that can be output, for instance, by the RasterDEMGenerator.

 If you just want to find attributes whose values are not numeric, choose Double and use the Failed port of the transformer.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Strings

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 AttributeCompressor

 Compresses and (optionally) encrypts the values of the specified attributes. The compressed and encrypted attribute values can be decompressed and decrypted using the AttributeDecompressor.

 This transformer is particularly useful for compressing large blocks of XML, or geometry-storing attributes.

 Input Ports

 Input

 Features with attributes.

 Output Ports

 Output

 List of compressed attributes.

 Parameters

 Attributes to Compress

 After connecting the transformer, click the browse button to select the attributes.

 Compression Level

 The value of this parameter controls the compression level which will be applied to the attributes. A value of 0 indicates that no compression should be used, while a value of 9 indicates that maximum compression should be used. The default value is 6.

 Encryption Parameters

 Encryption Type

 Use this parameter to select an encryption type. Currently, only the AES-256 encryption algorithm is supported.

 Password

 If encryption is being used, the value of this parameter will be used to generate an encryption key. The same value may then be used to decrypt the attribute values in the AttributeDecompressor transformer.

 Usage Notes

 The AttributeCompressor uses the zlib library to provide basic compression, and the OpenSSL library to provide encryption.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: compress compression compressing zlib zip

 AttributeCopier

 Copies existing attributes to new attributes with the specified names. The existing attribute remains and a new attribute is created that has a different name, but the same value.

 Input Ports

 Input

 Features with attributes.

 Output Ports

 Output

 List of attributes, including any that have been copied. All copied attributes will initially appear at the bottom of the list.

 Parameters

 Attributes To Copy

 Source Attribute: The attribute to copy.

 Target Attribute: The name of the attribute to create. The value of the attribute will be the value of source attribute. If Source Attribute does not exist, the value specified in the Default Value will be used.

 Default Value: The value to set the Target Attribute to if the Source Attribute does not exist on the feature. A Default Value of Do Nothing will result in the Target Attribute not being created if the Source Attribute does not exist.

 Example

 Tip: Use an AttributeCopier rather than manually connecting attributes.

 You can replace manual
 attribute connections with an AttributeCopier transformer. In this example, FME won't connect the attributes because either the case is different or the name is different.

 [image: attributecopierexample.png]

 If you right-click on the existing connection and choose Auto Connect Attributes, FME will guess at the connections, choosing to connect the attributes that have lowercase names.

 [image: attributecopierexample1.png]

 FME won't connect NUMOFLANES to lanes because the attribute names are different, so you will have to manually connect these attributes.

 [image: attributecopierexample2.png]

 If these connections are somehow deleted, you will have to repeat these steps. However, if you insert an AttributeCopier to map the attributes, then the connections are saved.

 Right-click on the connection and choose Replace with AttributeCopier:

 [image: attributecopierexample3.png]

 The transformer replaces the attribute connections. The new attribute names are in the list:

 [image: attributecopierexample4.png]

 Click the properties button to see how the old attributes map to the new attributes.

 [image: attributecopierexample5.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 AttributeCreator

 Adds a number of attributes to the feature, supplying them with constants, attribute values, and expressions. Any feature that enters the transformer emerges with a new set of attributes
 as defined in the transformer’s parameters dialog.

 Input Ports

 Input

 This transformer accepts any feature.

 Output Ports

 Output

 Features with the created attributes.

 Parameters

 Multiple Feature Attribute Support

 Enabling this parameter allows the user to set an attribute value based on the attributes of features prior or subsequent to the current feature. Attributes of prior features are referenced as feature[-1].AttrName, feature[-2].AttrName, etc. Attributes of subsequent features are referenced as feature[+1].AttrName, feature[+2].AttrName, etc. The attributes of the currently processed feature are accessed directly without a prefix, such as AttrName.

 Number of Prior Features

 This parameter specifies the maximum number of prior features that can be referenced by the AttributeCreator. If Multiple Feature Attribute Support is enabled, this must be a value from 0 to 100.

 Number of Subsequent Features

 This parameter specifies the maximum number of subsequent features that can be referenced by the AttributeCreator. If Multiple Feature Attribute Support is enabled, this must be a value from 0 to 100.

 If Attribute is Missing, Null, or Empty

 This parameter specifies the desired behavior when the specified attribute does not exist, has a null value, or has an empty string value. Such attributes can be thought of as unresolved attributes. For example, since there are no features prior to the first input feature, the AttributeCreator will fail to resolve the value of feature[-1].AttrName for the first input feature. If this parameter is set to Use Empty String, the AttributeCreator will resolve all unresolved attributes with an empty string. As another example, if the value of feature[2].AttrName is the empty string and Use Other Value is specified, then the empty string will be treated as an unresolved attribute, and will be resolved as the value specified under Attribute Replacement Value.

 If this parameter is set to Use Attribute Value of Closest Feature, then the unresolved attributes will be resolved as the corresponding attribute of the closest feature, if such a feature exists. When looking for closest features, features with unresolved attributes are ignored. For example, if the value of feature[-2].AttrName is unresolved, then to resolve the value of feature[-2].AttrName the AttributeCreator will look at the closest features to feature[-2], alternating between features prior to and subsequent to feature[-2]. It will first look at feature[-3].AttrName, followed by feature[-1].AttrName if needed, and then feature[-4].AttrName if needed, until all prior and subsequent features specified have been exhausted. If the attribute remains unresolved within the specified prior and subsequent features, then it will be resolved as the value specified in the Attribute Replacement Value parameter.

 Attribute Replacement Value

 This parameter specifies the value used to resolve unresolved attributes when the If Attribute Value is Missing, Null, or Empty parameter is set to Use Attribute Value of Closest Feature (but there is no closest value found) or Use Other Value.

 Attributes To Set

 	Attribute Name: Enter a new attribute name in each Attribute Name field. The name entered can be an existing attribute, a constant, a user parameter or an expression. If a user parameter or expression is used, then the attribute name will be the value as computed at runtime.

 	Value: Enter values associated with attribute names.

 For the Value column, you can also click the browse button in the cell to open a code editor:

 [image: attributecreator4.gif]

 This editor is useful for entering multi-line attribute values, such as HTML or XML fragments.

 Characters can be expressed as regular characters but they can also include any number of control characters.

 Special
 character sequences (Advanced Editor only) are interpreted as shown below:

 	Sequence
 	Description

 	
 Ctrl+Shift+h (^H)

 	
 Backspace (0x08)

 	
 Ctrl+Shift+l (^L)

 	
 Form feed (0x0c)

 	
 Ctrl+Shift+j (^J)

 	
 Newline (0x0a)

 	
 Ctrl+Shift+r (^M)

 	
 Carriage return (0x0d)

 	
 Ctrl+Shift+i (^I)

 	
 Tab (0x09)

 	
 Ctrl+Shift+k (^K)

 	
 Vertical tab (0x0b)

 Defining Special Characters

 You can define special characters through the Basic or Advanced Editors. Click Open Editor from the parameter menu:

 [image: special_char1.png]

 Basic Text Editor

 Select Constant from the String Type column (or, in some transformers, the Value column) and click on the empty field in the column:

 [image: special_char2.png]

 Click the browse button to the right of the column to open an Edit Value dialog. In this editor, enter characters using the shortcut keys
from the table above.

 Advanced Text Editor

 Enter characters using the shortcuts from the table above.

 Note: To see tab characters, click the Options menu on the bottom left and select Show Spaces/Tabs.

 Example

 Adding attributes and values to a dataset

 Features with the created attributes.

 [image: attributecreator.png]

 In Workbench, the new attributes are added to the transformer:

 [image: attributecreator2.png]

 And if you output to an Inspector, the attributes and values appear
 in the Information pane:

 [image: attributecreator3.gif]

 Using Multiple Feature Attribute Support

 Suppose we are given the dataset below:

 	ID
 	Latitude
 	Longitude

 	
 0

 	
 49.1640

 	
 -123.061

 	
 1

 	
 49.1643

 	
 -123.063

 	
 2

 	
 49.1642

 	
 -123.062

 	
 3

 	
 49.1642

 	
 -123.064

 If the Number of Prior Features and Number of Subsequent Featuresparameters are both set to 2, then when the first feature is read, the AttributeCreator has access to the following features:

 	Feature Reference
 	ID
 	Latitude
 	Longitude

 	
 current feature

 	
 0

 	
 49.1640

 	
 -123.061

 	
 feature[+1]

 	
 1

 	
 49.1643

 	
 -123.063

 	
 feature[+2]

 	
 2

 	
 49.1642

 	
 -123.062

 	
 	
 3

 	
 49.1642

 	
 -123.064

 After the second feature is read, the window of prior and subsequent features available to AttributeCreator shifts to produce the following:

 	Feature Reference
 	ID
 	Latitude
 	Longitude

 	
 feature[-1]

 	
 0

 	
 49.1640

 	
 -123.061

 	
 current feature

 	
 1

 	
 49.1643

 	
 -123.063

 	
 feature[+1]

 	
 2

 	
 49.1642

 	
 -123.062

 	
 feature[+2]

 	
 3

 	
 49.1642

 	
 -123.064

 The following settings can be used to compute the average latitude and longitude of the two features prior to the currently processed feature:

 [image: attributecreator5.png]

 When using multi feature mode, the Advanced Editor sorts the attributes for the current feature above the attributes of prior and subsequent features.

 [image: attributecreator6.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 AttributeDecompressor

 Decompresses and decrypts the values of the specified attributes that were compressed by the AttributeCompressor.

 Input Ports

 Input

 Features with attributes that were compressed by the AttributeCompressor.

 Output Ports

 Output

 List of decompressed attributes.

 Parameters

 Attributes to Decompress

 After connecting the transformer, click the browse button to select the attributes to Decompress.

 Character Encoding for Decompressed Attributes

 The decompression/decryption algorithms produce a string of bytes. Use this parameter to instruct the transformer how to interpret those bytes. If an encoded attribute was compressed in the AttributeCompressor transformer, this parameter should be set to the same encoding.

 Encryption Type

 Use this parameter to select an encryption type. Currently, only the AES-256 encryption algorithm is supported.

 Password

 If encryption is being used, the value of this parameter will be used to generate an encryption key. This must be the same value used to encrypt the attribute values in the AttributeCompressor transformer.

 Usage Notes

 The AttributeDecompressor uses the zlib library to provide basic compression, and the OpenSSL library to provide encryption.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: decompress compress zip zlib AttributeCompressor compressing decompressing

 AttributeDereferencer

 Copies the value of an attribute whose name is referenced in the source attribute. The value is added
 to a newly created attribute.

 Input Ports

 Input

 Features with attributes.

 Output Ports

 Output

 Features with a copy of the value of the referenced source attribute.

 Parameters

 Source Attribute

 The attribute containing a reference to another attribute.

 Destination Attribute

 The new attribute that will contain a copy of the source attribute's value.

 Example

 Suppose you have two attributes:

 	Attribute A has the value B

 	Attribute B has the value 999

 In the transformer parameters:

 	Set the
 Source Attribute parameter to A.

 	Create a new Destination Attribute called newAttr.

 [image: attributedeferencer.png]

 When you run the workspace, the value 999 (from Attribute B) is added to the
 destination attribute, as shown in the log file:
2010-11-27 18:13:38| 0.1| 0.0|INFORM|Attribute(string) : `A' has value `B'
2010-11-27 18:13:38| 0.1| 0.0|INFORM|Attribute(string) : `B' has value `999'
2010-11-27 18:13:38| 0.1| 0.0|INFORM|Attribute(string) : `_newAttr' has value `999'

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 AttributeExploder

 Creates a new pair of attributes (attribute name/attribute value) from each attribute on the input feature and either outputs these on a new feature or adds them as a list element to the original feature. In both cases, it is possible to either conserve or delete the original attributes and geometry.

 Input Ports

 Input

 Features with attributes.

 Output Ports

 Output

 Features containing the attribute-value pairs.

 Parameters

 Attribute Name Label

 The new attribute used for the name of the extracted attribute.

 Attribute Value Label

 The new attribute used for the value of the extracted attribute.

 Exploding Type

 The original attributes and geometry
 are conserved or deleted depending on the settings for Keep
 geometry and Keep attributes.

 When Exploding Type is set to Features, one feature is output for each original attribute. Each output feature will have two new attributes: one named Attribute Name Label (whose value will be the initial attribute's name) and one named Attribute Value Label (whose value will be the initial attribute's value).

 When Exploding Type is set to List, the processed feature will have a new list attribute defined by List Name which will contain one entry (with attribute name and attribute value members, named by Attribute Name Label and Attribute Value Label) for each attribute of the feature. In order for Workbench to access these attributes (such as _attr_list{0}._attr_name), an AttributeExposer must be used.

 Keep Geometry

 If Keep Geometry is Yes, each output feature will have the same geometry as the given input feature. Otherwise, output features will have no geometry.

 Keep Attributes

 If Keep Attributes is Yes, the initial attributes on the processed features are preserved. Otherwise, output features will only have the attributes created by this factory.

 List Name

 The list attribute to be used when the Exploding Type parameter is set to List.

 Example

 Suppose we have an input feature with the following two attributes:.

 	Name = John

 	Type = Employee

 If Keep Attributes is set to Yes, the parameter Exploding Type: Feature will produce two features with four attributes each:

 Name = John

 Type = Employee

 _attr_name = Name

 _attr_value = John

 Name = John

 Type = Employee

 _attr_name = Type

 _attr_value = Employee

 The parameter Exploding Type: List will add an attribute list to the original feature:

 Name = John

 Type = Employee

 _attr_list{0}._attr_name = Name

 _attr_list{0}._attr_value = John

 _attr_list{1}._attr_name = Type

 _attr_list{1}._attr_value = Employee

 Related Transformers

 AttributeExposer

 FME Licensing Level

 FME Professional edition and above

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Lists

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 AttributeExposer

 Exposes a series of hidden attributes, so they can be used by other transformers.

 This transformer can be useful when dealing with
 transformers, such as the
 GMLFeatureReplacer
 or SchemaMapper, that dynamically add attributes onto features.

 It is also useful if
 you know that features have hidden attributes (FME Attributes and the more obscure Format Attributes) that aren't shown in Workbench. You can use the AttributeExposer to "expose" these attributes.

 This transformer is a more dynamic version of the Expose Attributes option in the context-menu of an input feature type.

 Once the attributes are exposed, they can be used by other transformers.

 The input features are not modified in any way.

 Input Ports

 Input

 Features with attributes.

 Output Ports

 Output

 Features with exposed attributes.

 Parameters

 Attributes to Expose

 After you place the transformer, you can type attribute names or choose them from the drop-down list. The order in which they appear in the list is the order in which they will appear in the Output port of the transformer.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 AttributeFileReader

 Reads the contents of a file and stores them as the value for the specified
 attribute.

 Input Ports

 Input

 This transformer accepts any feature.

 Output Ports

 Output

 All incoming features with an additional new attribute whose value is the
contents of a file.

 Parameters

 Destination Attribute

 The name of the attribute whose value is to be read from the file. The entire contents of the file are stored in this attribute of the feature.

 Source Filename

 Name of the file from which data is to be read. The filename can be taken either from the value of an attribute or from a fixed constant name.

 Source File Character Encoding

 Specifies the source file's character encoding. The default encoding is Binary (fme-binary), which is not appropriate for text files.

 The most common text encodings are Windows Latin-1 (windows-1252) and Unicode 8-bit (utf-8). If the text contains special characters, choosing the wrong encoding may result in a garbled value being assigned to the Destination Attribute.

 Note that if necessary, full pathnames can be created from existing
 attribute values by using the StringConcatenator to prepend directory names
 and/or append extensions prior to using this transformer. The resulting
 attribute can then be used to specify the source file.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 AttributeFileWriter

 Writes the contents of the specified attribute to a file.

 Input Ports

 Input

 This transformer accepts any feature.

 Output Ports

 Output

 The features with the specified attribute written to a file. The features themselves will be unchanged.

 Parameters

 Source Attribute

 Name of the attribute whose value will be written out to the file.

 Target Filename

 Name of the output file. The filename can be taken either from the value of an attribute or from a fixed constant name.

 If Target File Exists

 Specifies the action to take if the target file already exists.

 You can choose to overwrite the file, or append the contents of the Source Attribute to the file. The default action is to overwrite the target file if it already exists.

 Target File Character Encoding

 The character encoding of the target file. The default encoding is System default (fme-default). The most common text encodings are Windows Latin-1 (windows-1252) and Unicode 8-bit (utf-8).

 Note that if necessary, full pathnames can be created from existing
 attribute values by using the StringConcatenator to prepend directory names
 and/or append extensions prior to using this transformer. The resulting
 attribute can then be used to specify the target file name.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 AttributeFilter

 Routes features to different output ports depending on the value of
 an attribute. The set of possible attribute values can be entered manually, or extracted
 from an input source in the properties dialog.

 Input Ports

 Input

 The feature type that contains the attributes you want to filter.

 Output Ports

 <Empty>

 If the feature’s attribute value is an empty string, the feature is output via the
 <Empty> port.

 <Missing>

 If the feature does not have the specified attribute, it is output via the <Missing> port.

 <Null>

 If the feature’s attribute has a value of null, the feature is output via the <Null> port.

 <Unfiltered>

 If the feature’s attribute
 has a value not in the list, the feature is output via the <Unfiltered>
 port. This port can be used for collecting all features with "positive" values, that is, values that are not missing, null, or empty.

 Parameters

 Attribute to Filter by

 When you connect the transformer to the feature type, the list of attributes will appear in a pull-down list. Choose the attribute from the list.

 Possible Attribute Values

 If you know the possible attribute values, you can type them here. If not, you can import them from a source dataset:

 	Click the Import button to start the import wizard, and click Change Dataset.

 	Choose the source dataset. Click Next.

 	Choose the desired feature types. Click Next

 	Select an attribute to be scanned for values. Click Next.

 	FME will scan the dataset, and the processing summary will appear in the wizard. For example:

 [image: attributefilter_processingsumm.png]

 	Click Import to add the values to the AttributeFilter. The list will appear in the transformer properties dialog.

 Usage Notes

 Ideally, you will want to keep the filter list fairly small; otherwise you can end up with a very long list of attributes. If FME determines that the list might be too large, it will return a warning.

 Example

 You have a feature type called ROADS, and you know you have an attribute value called TYPE. You want to filter by TYPE (in this example, loose, paved, or rough). When you set up the transformer properties and click OK, you will see that the AttributeFilter now has new attributes that correspond to the filter settings:

 [image: attributefilter.png]

 The transformer will filter and, after you run the workspace, output the separate attributes.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Filters

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 AttributeKeeper

 Removes all attributes and list attributes from the feature, except the ones that are selected from the attribute list.

 This can be useful when features have large numbers of unnecessary attributes.
 You can clean up the features so that they only retain the attributes you
 want to work with.

 Input Ports

 Input

 This transformer accepts any feature.

 Output Ports

 Output

 All processed features are output through this port.

 Parameters

 Attributes to Keep

 Click the browse button to display the list dialog. Select the attributes that you want to keep on the feature. The unchecked attributes will be removed, except for any fme_* attributes.

 Lists to Keep

 After you connect this transformer, click the Browse button and select the lists to keep.

 Note that if you select to keep a list, your selection will include any list attributes or nested lists. For example, if you select to keep a list called

 list{}

 then list{}.attr or list{}.sublist{}

 will also be kept.

 Usage Notes

 	If the number of attributes you want to keep is greater than the number of attributes you want to remove, consider using the AttributeRemover. AttributeRemover can also be used to remove fme_* attributes.

 	Use the AttributeRemover to remove selected individual attributes from a
feature.

 	Use the BulkAttributeRemover to remove all attributes that match a pattern.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: ListKeeper lists

 AttributePivoter

 Restructures and regroups incoming features based on specified “Group by attributes” and calculates summary statistics based on a designated “Attribute To Analyze” in order to form a Pivot table output.

 Like its cousin, the StatisticsCalculator, the AttributePivoter groups features according to selected attributes, and computes statistics on a single attribute for all features in each group (Grouping by rows). Beyond this, the AttributePivoter allows for the order of these row grouping attributes to be specified so that a logical nesting of additional summary rows can be generated. In addition, the AttributePivoter also allows for new attributes to be generated dynamically based on the unique values of a selected attribute (Grouping by Column) with values populated by statistics performed on the resultant groupings. Because the AttributePivoter generates attributes dynamically, it is important to set any writer feature types to dynamic mode if you wish to include these attribute in the output. This is described in more detail in the section titled “Result Grouping and Tabular Structure”.

 Input Ports

 Input

 All features enter the transformer through the Input port.

 Output Ports

 Data

 A single new feature will be output containing all computed statistics for each completely defined row group. The attributes on these features are described in the “Result Grouping and Tabular Structure” section.

 The first row emitted from the Data port will contain information to define the schema for a dynamically configured feature type.

 Summary

 For each logically nested grouping as described in the “Result Grouping and Tabular Structure” section, a summary row will be emitted prior to the first data row for the group. It provides summary information for all rows contained in the group. An overview summary of all rows will always be generated.

 The first row emitted from the Summary port will contain information to define the schema for a dynamically configured feature type.

 Parameters

 Group Rows By

 One or more attributes are chosen to specify how features are grouped to form the rows of the resulting table. Unlike most “group by” parameters, the user has the opportunity to specify the order of the grouping attributes, so that nested summary groupings can be generated, adding a hierarchical structure to the resulting table.

 Group Columns By

 In addition to row groups, the user can optionally select an attribute whose unique values will generate new attributes, hence “pivoting” the data and further subdividing the groupings on which the statistics are calculated.

 Attribute to Analyze

 A single attribute is chosen upon which to compute statistics. The features are grouped according to the row and column grouping attributes, and statistics are calculated over all values of this attribute within the features in each group.

 Pivot Summary Statistic Types

 The user can choose to compute multiple types of summary statistics simultaneously. Each chosen statistic type will be represented as a separate column within each column group of the result table.

 One or more of the following statistic types may be selected.

 	Average: The statistical mean of all numeric values of the attribute to analyze, for all features in the group. Non-numeric values are not included in the result

 	Count: The number of features in each group that has a value for the attribute to analyze.

 	Minimum: The numerical minimum of all values of the attribute to analyze within the features of each group.

 	Maximum: The numerical maximum minimum of all values of the attribute to analyze within the features of each group.

 	Sum: The sum of all numeric values of the attribute to analyze, within each group.

 Row Group Summary Line Descriptor

 The section entitled “Result Grouping and Tabular Structure” defines a logical nesting of row groups. For each such logically nested group, the AttributePivoter computes summary statistics, which it emits as table rows through the Summary port. The value for the most specific row grouping attribute for the summary row is given a value of “<attrName> <description>”, where <attrName> is the name of the row grouping attribute, and <description> is the value given to the “Row Group Summary Line Description” parameter. For example, if grouping by the attribute “Region_RSS”, the summary row over all regions would have a value of “Region_RSS Total” for the “Region_RSS” attribute, assuming the row group summary line descriptor is left with the default value of “Total”.

 Result Grouping and Tabular Structure

 Input features are grouped by “grouping attributes”, and statistics are computed on the specified analyzed attribute in each group. There are two kinds of grouping attributes which work together to define these groups:

 	Row Grouping Attributes: The user specifies an ordered set of attributes that divide the statistics into rows. There is a single row of result data for each unique set of values for the specified set of row grouping attributes.

 	Column Grouping Attribute: The user can optionally specify a single attribute to define columns in the resulting rows. If specified, each unique value of the column grouping attribute contributes a column of statistical data to the result, for each statistic being computed. Additionally, if there is more than one unique value for the column, a summary column will be generated for each statistic.

If no column grouping attribute is selected, each row will contain a single computed result for each selected output statistic.

 Because the row grouping attributes are ordered, they effect a sort of logical nesting of groups. At the lowest level, a complete set of unique values is represented as a single row of the result. One level up is the logical grouping consisting of the set of rows where all row grouping attributes are unique except for the last one specified. This logical nesting carries up to the first specified row grouping attributes.

 A row resulting from a complete set of unique data values is known as a “data row”. There is an additional “summary row” generated for each logically nested grouping, which summarizes the data for the data rows contained in the grouping.

 The sequence of resulting rows form a table with the following attributes:

 	All of the row grouping attributes, whose combined values specify the actual group

 	For each pivot summary type, an attribute with the corresponding statistic, computed over all features in the row group.

 	If there was more than a single column group defined, each of the attributes in (2.) will be repeated for all column groups, along with a summary value (i.e. a “grand total”) computed over the attribute values over all column groups. The method for computing the summary value depends on the statistic it is representing:	Count and Sum statistics are summarized with the sum of the computed statistics for the row group.
	Average statistics are summarized with the average of all values in the row group.
	Min values are summarized by the minimum of all occurrences of the analyzed attribute for the group.
	Max values are summarized by the maximum of all occurrences of the analyzed attribute for the group.

 The first data feature and first summary feature emitted will contain additional attributes which will contain the schema information needed to write the data out to a feature type configured for dynamic writing.

 Example

 Creating pivot tables in FME

 Use AttributePivoter to create a simple pivot table, with the same contents as one created with Excel.

 Source Table and Excel Pivot Table

 Fictitious data generated in Excel was exported it to a CSV file for use in Workbench. A simple pivot table
 was also created in Excel to show what we want to produce from FME; basically
 we want to summarize observed values based on region and potential.

 [image: statisticscalculator.gif]

 FME Pivot Table

 The workspace shown below uses the AttributePivoter transformer to create statistics for the observed attribute, grouping features by region and potential. The new statistics features are written to a CSV file which has all of the same attributes/fields as the Excel pivot table. An additional CSV file is generated to hold the summary for each of the groups in the pivot table. Notice that the output feature types are both defined with dynamic schema; the schema actually comes from the schema information included in the first features emitted from the AttributePivoter’s Data and Summary ports at runtime.

 [image: attributepivoter.png]

 The
 table written by FME and viewed in Excel resembles the Excel pivot table:

 [image: attributepivoter2.png]

 The summary table contains summary information for each group. It has the same schema as the result table above. The “region total” row contains the results for all data within the table.

 [image: attributepivoter3.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 AttributeRangeFilter

 Performs a lookup on a range-based lookup table, and routes the feature to the appropriate output port. If the input attribute does not match any of the given ranges, the feature is routed to the <Unfiltered> port.

 Input Ports

 Input

 The feature type that contains the attributes you want to filter.

 Output Ports

 <Unfiltered>

 If the feature’s attribute
 has a value that does not match any of the given ranges, or the attribute is not present, the feature is output via the <Unfiltered>
 port.

 Parameters

 Source Attribute

 When you connect the transformer to the feature type, the list of attributes will appear in a pull-down list. Choose the attribute from the list.

 Range Lookup Table

 This table specifies a set a ranges and the port that a feature will be sent to if the Source Attribute value is within that range.

 To automatically generate a set of ranges:

 	Click the Generate button to start the generation wizard.

 	Choose the minimum and maximum values of the attribute.

 	Choose the number of ranges you would you want to generate. The ranges will be equally spaced between the specified minimum and maximum values.

 	Select the Include Open-ended Ranges checkbox to create two additional ports for values that are smaller than the minimum value or larger than the maximum value.

 It’s important to note that the ranges you create are inclusive and that the order in which they appear on the table matters. For example, suppose one range is from 10 to 20 and the next range is from 20 to 30. The number 20 can belong to both ranges because each range is inclusive, but the number will only be matched to the first range.

 Each range has a From value and a To value. These values are inclusive, and each feature will be matched to the first range (in the order present in the table) that contains the value of that feature's Source Attribute. If either From or To is omitted, the range is open-ended; that is, it will match any value greater than (for From) or less than (for To) what is specified.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Filters

 Related Transformers

 AttributeValueMapper

 AttributeRangeMapper

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: LUT lookup look-up

 AttributeRangeMapper

 Performs a lookup on a range-based lookup table and stores the resulting value, or writes the value to, a new output attribute. This transformer lets you use an input attribute to classify features by numeric ranges.

 Input Ports

 Input

 The feature type that contains the attributes you want to filter.

 Output Ports

 Output

 All features are output through this port, with the classification of the Source Attribute stored in the Output Attribute.

 Parameters

 Note: The ranges you create are inclusive and the order in which they appear on the table matters. The ranges are tested starting with the first one in the list and progressing to the last range listed. For example, suppose one range is from 10 to 20 and the next range is from 20 to 30. The number 20 can belong to both ranges because each range is inclusive, but the number will only be matched to the first range.

 Source Attribute

 The Input Attribute value is the attribute whose value is matched in the range lookup table.

 The list of available input attributes are those that are exposed to this transformer, which depends on the transformers connected to it.

 This is the attribute you want to classify. Open the list and select the input attribute you want to use for classifying ranges.

 Output Attribute

 This is the name of the new attribute that is created as the result of the classification.

 Range Lookup Table

 This table specifies a set a ranges and the value that will be assigned to the Output Attribute if the Source Attribute value matches that range.

 The table contains the following elements:

 	From: Specify the start value for the range that you are classifying. This field accepts numerical input only and must be less than the value in the To field.

If a From value is not specified, an open-ended range is specified.

 	To: Specify the end value for the range that you are classifying. This field accepts numerical input only and must be greater than the value in the From field.

If a To value is not specified, an open-ended range is specified.

 	Output Value: Enter the name you want to give this range of values.

 	Default Value: If an attribute’s value does not match any input ranges set in the table, the output class assigned is specified by the Default Value.

 How to Quickly Generate Range Table Values

 When you know the total number of values in a range, and you know how many groupings you want, this is a quick way to generate the range table values. Click Generate button in the Parameters dialog.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Related Transformers

 AttributeValueMapper

 AttributeRangeFilter

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: LUT lookup look-up

 AttributeRemover

 Removes the selected attributes and list attributes from the feature.

 This is usually not
 necessary unless the feature will later be processed by a transformer
 that merges attributes onto it from other features. In such a case, if the other features have attributes with the same
 names as this feature, the attributes must first be removed for the merge
 to occur.

 Input Ports

 Input

 The feature type that contains the attributes you want to remove.

 Output Ports

 Output

 All features are output through this port.

 Parameters

 Attributes to Remove

 Click the browse button to display the list dialog. Select the attributes that you want to remove from the feature. The unchecked attributes will be retained.

 Lists to Remove

 After you connect this transformer, click the Browse button and select the lists to remove.

 Note that if you select to remove a list, your selection will include any list attributes or nested lists. For example, if you select to remove a list called

 list{}

 then list{}.attr or list{}.sublist{}

 will also be removed.

 Usage Notes

 	Use the BulkAttributeRemover to remove all attributes that match a pattern.

 	Use the AttributeKeeper to keep selected individual attributes on a feature.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 AttributeRenamer

 Renames, deletes, or creates the specified attributes.

 Input Ports

 Input

 Features with attributes.

 Output Ports

 Output

 List of attributes, including any that have been renamed. All renamed attributes will initially appear at the bottom of the list.

 Parameters

 Attributes To Rename

 Connect the transformer to one or more feature types and click the Transformer properties button. Three columns (Old Attribute, New Attribute, and Default Value) are displayed in the Parameters dialog:

 	The Old Attribute column specifies the name of the original attribute. If left empty, the New Attribute will be created with the specified default value.

 	The New Attribute column specified the destination attribute name. If left empty, the Old Attribute will be deleted and not appear on the output feature.

 	The Default Value column specifies a default value to use if the Old Attribute specified does not exist on the input feature. The value can be a constant, an expression, a published parameter, or a combination of all three. If the default value is set to ‘Do Nothing’ and the Old Attribute does not exist on the input feature, the New Attribute will not be created.

 [image: attributerenamer.png]

 Use the Import button to retrieve data from an external source to populate the various columns of the table.

 Usage Notes

 	To rename a group of attributes (by changing
attribute name case, or adding or removing prefixes to attribute names), use the BulkAttributeRenamer.

 	You cannot use the AttributeRenamer to rename multiple reader feature type attributes with different names to a single writer feature type attribute. Only the last reader feature type attribute would actually be renamed. The transformer does not act as a filter to see if the attribute already exists.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Related Transformers

 AreaOnAreaOverlayer

 BulkAttributeRenamer

 LineOnAreaOverlayer

 LineOnLineOverlayer

 PointOnAreaOverlayer

 PointOnLineOverlayer

 PointOnPointOverlayer

 SpatialRelator

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 AttributeReprojector

 Reprojects attributes from one coordinate
 system to another.

 Input Ports

 Input

 The feature type that contains the attributes you want to reproject.

 Output Ports

 Output

 All processed features are output through this port.

 Parameters

 X Attribute

 Choose which X attribute to reproject.

 Y Attribute

 Choose which Y attribute to reproject.

 Source Coordinate System

 Choose from recently accessed coordinate systems, or click the browse button to access the Coordinate System Gallery.

 Destination Coordinate System

 Choose from recently accessed coordinate systems, or click the browse button to access the Coordinate System Gallery.

 Usage Notes

 This transformer does not alter the feature’s coordinates – only
 the values of the selected X and Y attributes (if they contain coordinate values) are changed.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Coordinate Systems

 Related Transformers

 GtransReprojector

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 AttributeRounder

 Rounds off attributes to the specified number of decimal places.

 Input Ports

 Input

 The feature type that contains the attributes you want to round.

 Output Ports

 Output

 All processed features are output through this port.

 Parameters

 Attributes to Round

 Select the source attributes to round.

 Decimal Places

 Enter a number or take the value of a feature attribute by selecting the attribute
 name from the pull-down list.

 Round-off Direction

 This parameter controls how the rounding will take place.

 	nearest: the number is rounded up or down to nearest
 value

 	up: the number will always be rounded up

 	down: the number will always be rounded down

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 AttributeSplitter

 Splits a selected attribute into a
 list attribute. Each item in the list will contain a single token split
 from the list.

 You would use this transformer, for example, to separate an attribute that has a comma-separated value list into its component pieces.

 Input Ports

 Input

 The feature type that contains the attribute you want to split.

 Output Ports

 Output

 Features with the selected attribute value split into a list attribute.

 Parameters

 Attribute to Split

 After you connect this transformer, choose an attribute from the pull-down menu.

 Delimeter or Format String

 Characters can be expressed as regular characters but they can also include any number of control characters.

 Special
 character sequences (Advanced Editor only) are interpreted as shown below:

 	Sequence
 	Description

 	
 Ctrl+Shift+h (^H)

 	
 Backspace (0x08)

 	
 Ctrl+Shift+l (^L)

 	
 Form feed (0x0c)

 	
 Ctrl+Shift+j (^J)

 	
 Newline (0x0a)

 	
 Ctrl+Shift+r (^M)

 	
 Carriage return (0x0d)

 	
 Ctrl+Shift+i (^I)

 	
 Tab (0x09)

 	
 Ctrl+Shift+k (^K)

 	
 Vertical tab (0x0b)

 Alternatively, instead of using a delimiter character you can provide a string in the format #s#s#s, where each number is the length of the substring you wish to extract.

 Defining Special Characters

 You can define special characters through the Basic or Advanced Editors. Click Open Editor from the parameter menu:

 [image: special_char1.png]

 Basic Text Editor

 Select Constant from the String Type column (or, in some transformers, the Value column) and click on the empty field in the column:

 [image: special_char2.png]

 Click the browse button to the right of the column to open an Edit Value dialog. In this editor, enter characters using the shortcut keys
from the table above.

 Advanced Text Editor

 Enter characters using the shortcuts from the table above.

 Note: To see tab characters, click the Options menu on the bottom left and select Show Spaces/Tabs.

 Trim Whitespace

 By default, the resulting strings have both leading and trailing (left and right) whitespace removed but you can change the setting to either left or right, or none.

 List Name

 The default list name is _list, but you can change it to a name that is more specific to your workflow.

 Drop Empty Parts

 Determines whether to keep empty parts (or tokens) that resulted from splitting. By default, all parts will be returned, whether or not they are empty. If the parameter value is set to Yes, only non-empty parts will be returned.

 If this parameter is set to No, splitting a,b,,,c,d,e with commas returns the following list:

 `_list{0}' has value `a'

 `_list{1}' has value `b'

 `_list{2}' has value `'

 `_list{3}' has value `'

 `_list{4}' has value `c'

 `_list{5}' has value `d'

 `_list{6}' has value `e'

 If this parameter is set to Yes, splitting a,b,,,c,d,e with commas returns the following list:

 `_list{0}' has value `a'

 `_list{1}' has value `b'

 `_list{2}' has value `c'

 `_list{3}' has value `d'

 `_list{4}' has value `e'

 Usage Notes: Accessing Individual List Elements

 Lists are usually indicated in Workbench by name, followed by a pair of curly brackets

 mylist{}

 A specific list element contains its number between the brackets:

 mylist{0}

 Attributes of a list element are shown like this:

 mylist{0}.myattribute

 However, list elements generated by the AttributeSplitter contain values but no attributes.

 To access specific list elements in Workbench, right-click on a list name in the attribute list and choose Expose Elements.

 [image: attributesplitter_exposeelements.png]

 In the dialog that appears, type the number of elements you want to expose.

 Keep in mind that list elements start counting at 0, so exposing 1 element of mylist{} will result in the extra attribute mylist{0}.

 Examples

 [image: AttributeSplitter2.png]

 Using a delimiter to split myattr into mylist

 if
 myattr = A,B,C
 and the delimiter is ,

 then
 the result would be:

 mylist{0}
 = A

 mylist{1}
 = B

 mylist{2}
 = C

 Using a format string to split myattr into mylist

 if
 myattr = 20030210
 and the format string is 4s2s2s

 then
 the result would be:

 mylist{0}
 = 2003

 mylist{1}
 = 02

 mylist{2}
 = 10

 FMEpedia

 See FMEpedia for additional information about this transformer.

 Related Transformers

 You can also use the
 StringSearcher to split apart the
 values of attributes using regular expression pattern matching.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Strings

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 AttributeTrimmer

 Removes leading and trailing trim characters from selected attributes.

 Input Ports

 Input

 The feature type that contains the attribute you want to trim.

 Output Ports

 Output

 Features with the selected trimmed attribute.

 Parameters

 Attributes to Trim

 After you connect this transformer, click the Browse button and choose from the list of attributes.

 Trim Type

 Characters may be trimmed from the right, left, or from both sides.

 Trim Characters

 Characters can be expressed as regular characters but they can also include any number of control characters.

 Special
 character sequences (Advanced Editor only) are interpreted as shown below:

 	Sequence
 	Description

 	
 Ctrl+Shift+h (^H)

 	
 Backspace (0x08)

 	
 Ctrl+Shift+l (^L)

 	
 Form feed (0x0c)

 	
 Ctrl+Shift+j (^J)

 	
 Newline (0x0a)

 	
 Ctrl+Shift+r (^M)

 	
 Carriage return (0x0d)

 	
 Ctrl+Shift+i (^I)

 	
 Tab (0x09)

 	
 Ctrl+Shift+k (^K)

 	
 Vertical tab (0x0b)

 If you do not specify a trim character, white space
 is removed (spaces, tabs, newlines, and carriage returns).

 Defining Special Characters

 You can define special characters through the Basic or Advanced Editors. Click Open Editor from the parameter menu:

 [image: special_char1.png]

 Basic Text Editor

 Select Constant from the String Type column (or, in some transformers, the Value column) and click on the empty field in the column:

 [image: special_char2.png]

 Click the browse button to the right of the column to open an Edit Value dialog. In this editor, enter characters using the shortcut keys
from the table above.

 Advanced Text Editor

 Enter characters using the shortcuts from the table above.

 Note: To see tab characters, click the Options menu on the bottom left and select Show Spaces/Tabs.

 Allow Trim Down to Nothing

 If a given attribute value contains only Trim Characters, the
 character that remains depends on the Trim Type: for Both it will be the middle
 character, for Left it will be
 the last character, and for Right
 it will be the first character.

 If the Allow
 Trim Down to Nothing option is set to No, the output of the
 trimming will have at least one character remaining.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Strings

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 AttributeValueMapper

 Looks up and assigns attribute values based on other attributes, and stores the looked-up value in a new attribute.

 This transformer does not modify feature types.

 Input Ports

 Input

 The feature type that contains the source attribute to be mapped.

 Output Ports

 Output

 Features with the mapped source attribute stored in a new attribute.

 Parameters

 Attribute Selection

 Source Attribute

 The attribute to map the value of. If the attribute does not exist on the input feature, the default value will be used.

 Destination Attribute

 The attribute that will store the looked-up value. You can use the default, or type a different name.

 Default Value

 The value to give the Destination Attribute if the value of the Source Attribute is not found in the map table. The value can be a constant value or a computed value (such as an attribute value), the value of a user parameter, the value of a system parameter or a mixture of the above.

 You can also enter a default value using the word KEY (uppercase). If, for example, if you have entered a default value of KEY-0 and the Source Attribute has a value d that is not in the mapping table, new attribute value will be set to d-0 because KEY is replaced by the original value (d).

 Parameter Menu Choices

 Null: the Destination Attribute will be created with a value of null.

 Do Nothing: the Destination Attribute will not be created.

 Abort Translation: If the value cannot be mapped, the translation will be aborted with the specified message.

 Value Map

 This table of values specifies the mapping information.

 When the mapping direction is set to Forward (Source to Destination), if the value of the Source Attribute is specified in the Source Value column, the Destination Attribute will be created with the value specified in the Destination Value column for that source value.

 [image: attributevaluemapper1.png]

 This process is reversed if the mapping direction is set to Reverse (Destination to Source).

 The Source Value and Destination Value can be a constant value or a computed value such as an attribute value, the value of a user parameter, the value of a system parameter, or a mixture of the above.

 If Null is set for the Source Value, the value will match if the incoming feature does not contain the specified Source Attribute or the attribute exists on the incoming feature but has a value of null.

 [image: attributevaluemapper2.png]

 If Null is specified for the Destination Value, then the Destination Attribute will be created with a value of null.

 If Do Nothing is specified for the Destination Value, then the Destination Attribute will not be created.

 Abort Translation: If the value cannot be mapped, the translation stops, and the log pane will display the specified message.

 Import

 You can import attribute values (source value, destination value, or both) from any FME-supported source dataset.

 The most common use would be to import from the same dataset that is being mapped, but you can also import the mappings from a lookup table stored in a text, CSV or Excel file, or another dataset.

 Click the Import button and pick Source Value, Destination Value, or both. A wizard will step you through the import procedure:

 	Select the format and dataset to be read. Click Next.

 	The next pane displays the list of feature types associated with the dataset. The features in the dataset will be scanned, and the attribute values found will be added to the attribute list in the AttributeValueMapper. Click Next.

 	Choose the key attribute. The values of this attribute should match the attribute on features that are entering the AttributeValueMapper. Click Next.

 	Choose the value attribute. The values of this attribute will be added to the AttributeValueMapper. Click Next.

 	The status will show how many features were scanned, and the overall number of unique attribute values found. Click Import to include the values in the table.

 Example

 [image: AttributeValueMapper.png]

 Assign a different color to each type of feature

 You could use the AttributeValueMapper to assign a different color to each type of feature.

 This AttributeValueMapper maps the Source Attribute featureType to a new attribute fme_color. The format of this attribute is r,g,b where each of r, g, and b is a number between 0 and 1.

 [image: attributevaluemapper3.png]

 FMEpedia

 See FMEpedia for additional information about this transformer.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Strings

 Transformer History

 This transformer was previously named the ValueMapper.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 BaseConverter

 Converts an attribute's value from one numeric system (base) to another,
 putting the resulting value in a new attribute. The base is the number of unique digits, including zero, that a positional numeral system uses to represent numbers.

 The most common base values are 2 (binary), 10 (decimal) and 16 (hexadecimal), and 8 (octal). The BaseConverter supports bases from 2 (binary) to 36 (hexatridecimal / sexatrigesimal).

 Input Ports

 Input

 The feature type that contains the source attribute to be converted.

 Output Ports

 Output

 Features with the converted source attribute stored in a new attribute.

 Parameters

 Source Attribute

 Choose the source attribute that contains the base to be converted.

 Original Base

 Enter the base of the value to be converted.

 Destination Base

 Enter the base to which the value is to be converted.

 Output Width

 The output width parameter specifies the total width of the output attribute.
 The value after conversion will be padded on the left with zeroes to make
 up the necessary width. If the width is set to 0, no padding is done.
 If the value is wider than the width before padding, it is not touched.

 Destination Attribute

 The name of the attribute that will contain the results, and will appear in the list of Output port attributes.

 Example

 What if you want to convert a Microstation color to a KML color?

 	Expose the igds_color.red, igds_color.green and igds_color.blue attributes.

 	Add three BaseConverter transformers.

 	Edit the parameters so that each transformer converts one of the color values from base 10 to base 16.

 	Use a StringConcatenator to combine the three color strings.

 Usage Notes

 	This transformer supports only unsigned whole numbers. It does not handle fractions or decimal points.

 	This transformer supports very large numbers.

 	Digits are chosen from the set below. Any lowercase digits are automatically converted to uppercase.

 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 BinaryDecoder

 Converts ASCII text to binary data using Base64 or HEX decoding methods.

 The transformer converts the ASCII text into a sequence of bytes, and then sets these bytes as the value of the destination attribute. If the ASCII text represents an encoded string value, use the Character Encoding for Output Data parameter to set the character encoding of the output attribute.

 For example, if the encoding string was produced from a UTF-8 string, the Character Encoding parameter should be set to UTF-8, or the string value will not be meaningful in other transformers. If no character encoding is selected, the attribute is tagged as containing binary data.

 If the attribute value contains invalid data (that is, the attribute value was not properly encoded using the selected encoding method), the translation will stop.

 Parameters

 Encoding Type

 Identifies the method the transformer will use to decode the attribute: HEX (default) or Base64.

 String to Decode

 The value of this attribute will be decoded using the selected method.

 Destination Attribute

 This attribute will store the decoded data.

 Character Encoding for Output Data

 Select the character encoding for the destination attribute.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Strings

 Transformer History

 Selecting HEX as the Encoding Type replaces the HexDecoder transformer, which is now deprecated.

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.
Keywords: HexDecoder

 BinaryEncoder

 Converts binary data to ASCII strings using Base64 or HEX encoding methods. The transformer can convert attributes that contain any type of data. This is useful when a binary file, such as an image, must be included in a text file.

 Unlike the TextEncoder transformer, this transformer will not change the character encoding of text attributes. The TextEncoder converts all attribute values to UTF-8 before they are encoded. This transformer simply encodes the attribute using its existing character set.

 Parameters

 Encoding Type

 Identifies the method the transformer will use to encode the attribute: HEX (default) or Base64.

 Attribute to Encode

 The value of this attribute will be encoded using the selected method.

 Destination Attribute

 This attribute will store the encoded data.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Strings

 Transformer History

 Selecting HEX as the Encoding Type replaces the HexEncoder transformer, which is now deprecated.

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.
Keywords: HexEncoder

 BMGReprojector

 Reprojects feature coordinates from one coordinate system to another using the Blue Marble Geographic Calculator library.

 Parameters

 This transformer allows you to specify the coordinate transform through a parameter settings dialog containing controls similar to those found in the Blue Marble Desktop. The controls use the coordinate system definitions (data source), shift data files and workspace settings from a required local installation of the Desktop.

 Source Coordinate System Control Group

 Click the browse buttons next to the text fields to select a source coordinate system, and optionally the source coordinate units of measure, vertical reference and vertical coordinates units of measure. Whenever the user changes the coordinate system, the units of measure is set to the new system's specified units and any vertical reference is cleared. Right-click on the text fields to view the selected object's definition in the Blue Marble data source.

 Destination Coordinate System Control Group

 Click the browse buttons next to the text fields to select a destination coordinate system, and optionally the destination coordinate units of measure, vertical reference and vertical coordinates units of measure. Whenever the user changes the coordinate system, the units of measure is set to the new system's specified units and any vertical reference is cleared. Right-click on the text fields to view the selected object's definition in the Blue Marble data source.

 Datum Shift Control Group

 Click the browse button next to the text field to select a datum shift between the currently-specified coordinate systems. Selecting a datum shift is necessary when the two coordinate systems have different horizontal datums.

 Note: Whenever you change one of the coordinate systems, the datum shift is cleared; you should re-select it before closing the dialog.

 Right-click on the text field to view the datum shift's definition in the Blue Marble data source.

 Interpolation Type (Raster)

 The Interpolation Type affects only raster data. Cell values are interpolated in order to change the raster to the specified size.

 Nearest Neighbor is the fastest but produces the poorest image quality.

 Bilinear provides a reasonable balance of speed and quality.

 Bicubic is the slowest but produces the best image quality.

 Average 4 and Average 16 have a performance similar to Bilinear and are useful for numeric rasters such as DEMs.

 Cell Size (Raster)

 The Cell Size applies only to raster features.

 Square Cells: The number of rows and columns as well as the spacing will be changed to maintain approximately the same cell ground area and form square cells where the horizontal and vertical cell sizes are equal.

 Like the Square Cells option, Preserve Cells will change both the number of rows and columns and the spacing to maintain cell ground area, but will also try to preserve the original cell aspect ratio, taking into account any warping caused by the reprojection.

 Stretch Cells: The cell size of the raster will be adjusted to maintain the same number of rows and columns in the reprojected raster as there were in the input raster.

 Usage Notes

 Any coordinate system set on the input features is ignored. A user-specified source coordinate system is required.

 Vertical transformations may require specific grid shift files that are available at www.bluemarblegeo.com.

 This transformer works with both raster and vector data, and is not affected by raster band and palette selection.

 Licensing Level

 This transformer is not available in FME Base Edition.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Coordinate Systems

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 BoundingBoxAccumulator

 Takes a set of point, linear, polygonal, and/or aggregate features, and creates a two-dimensional bounding box, which contains all features. The bounding box is defined as the minimum enclosing rectangle for all input features. The minimum rectangle is such that all sides of the rectangle are parallel to the x axis and the y axis.

 The input features may be partitioned into groups based on attribute values using the Group By parameter, and one bounding box feature is output for each group. If the Group By parameter is not specified, then all input features will be processed together and a single bounding box will be output. If a given bounding box has zero area, it will become a line or a point.

 Group By

 One bounding box feature
 is output for each unique combination of values of the attributes specified
 in Group By parameter. The bounding box is the smallest
 rectangle that contains all the features that were members of the group. If Group By attributes are not specified, a single feature is output that represents the bounding box of all the features.

 Calculate Topfer Index

 The Topfer index is a rule of thumb that dictates the number of source and destination features a generalized map should maintain. This parameter defaults to No. If you choose Yes, the Topfer Index Attribute and Source/Destination Scale parameters are enabled.

 Topfer Index Attribute

 If you set the Calculate Topfer Index parameter to Yes, an attribute containing the Topfer index will be attached to both the BoundingBox and Original output features.

 Source and Destination Scale

 The following formulas are used to calculate the scale factors of the source and destination data:

 N-destination = N-source*((S-source/S-destination)**0.5)

 where:

 N-destination = number of features output

 N-source = number of features in input

 S-source = scale of source map

 S-destination = scale of destination map

 Example

 [image: boundingboxaccumulator.gif]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Collectors

 Related Transformers

 To retrieve the bounds of a feature into attributes, use the BoundsExtractor.

 To replace a feature with its bounding box, use the BoundingBoxReplacer.

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.
Keywords: MBR "minimum bounding rectangle" neatline envelope "Topfer index"

 BoundingBoxReplacer

 Replaces the geometry of the feature with either its two-dimensional bounding box or its two-dimensional minimum oriented bounding box.

 If a feature’s bounding box has zero area, it will become a line or
 a point. If the feature was originally 3D, it will be set to 2D upon leaving,
 and the z values will be ignored and dropped.

 Parameters

 Replace With

 Choose Bounding Box (which means the axis-aligned or rectilinear bounding box) or Oriented Bounding Box

 Length of Shorter and Longer Side Attribute

 Optionally, you can calculate the lengths of the shorter and longer sides of the chosen bounding box. They will appear as attributes in the Box output port.

 Example

 [image: boundingboxreplacer.gif]

 Related Transformers

 	To accumulate the bounding box of a number of
 features, use the BoundingBoxAccumulator.

 	To retrieve the bounds of a feature into attributes,
 use the BoundsExtractor.

 	To replace the geometry of a feature with a box
 whose values come from attributes, use the 2DBoxReplacer.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: MBR "minimum bounding rectangle" neatline "envelope oriented" "bounding box"

 BoundsExtractor

 Extracts the minimum and maximum values of the feature’s coordinates
 into new attributes.

 It determines the extreme values of the feature in each of the x and y (and optionally z) axes, and assigns these values to the resulting attribute names.

 This transformer does not change the geometry of the original feature.

 Parameters

 Minimum and Maximum X, Y, Z Attributes

 The names of the attributes to be assigned the minimum and maximum values of the feature along the X, Y, and Z axes. If the feature has only two dimensions, the Z Attributes will be set to 0. All of these parameters are optional.

 Example

 As each feature enters the transformer, it has six new attributes added to it to hold the extents of the feature.

 If a feature had the coordinates (1,10,100), (2,-20,150), then after leaving the transformer, it would have these new attributes with these values:

 	Attribute
 	Value

 	_xmin
 	1

 	_xmax
 	2

 	_ymin
 	-20

 	_ymax
 	10

 	_zmin
 	100

 	_zmax
 	150

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 Related Transformers

 	To accumulate the bounding box of a number of features, use the BoundingBoxAccumulator.

 	To replace a feature with its bounding box, use the BoundingBoxReplacer.

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.
Keywords: MBR "minimum bounding rectangle" "neatline envelope" "Topfer index"

 Bufferer

 Expands or shrinks the boundary segments in the input geometry by a specified amount, and if necessary, connects them using stroked arcs. Aggregate geometries and groups are dissolved after the buffer operation.

 Input Ports

 Input

 Only 2D geometries are accepted as input.

 Output

 Buffered

 Each point in the output curve will be the specified amount, measured in ground units, away from the input geometry. If the specified buffer amount is too small, a feature with a null geometry is output.

 Parameters

 Group By

 If any attributes were specified in this parameter, then all features with the same values for the specified Group By attributes are dissolved together after the buffering operation to create non-overlapping areas.

 Parallel Processing Level

 How parallel processing works with FME: see About Parallel Processing for detailed information.

 This parameter determines whether or not the
transformer should perform the work across parallel processes. If it is enabled, a process will be launched for each group specified by the Group
By parameter.

 Parallel Processing Levels

 	Parameter
 	Number of Processes

 	No Parallelism
 	1

 	Minimal
 	cores1 / 2

 	Moderate
 	exact number of cores

 	Aggressive
 	cores x 1.5

 	Extreme
 	cores x 2

 For example, on a quad-core machine, minimal parallelism will result in two simultaneous FME processes. Extreme parallelism on an 8-core machine would result in 16 simultaneous processes.

 You can experiment with this feature and view the information in the Windows Task Manager and the Workbench Log window.

 Buffer Amount

 If a positive (negative) buffer amount is specified, the input feature is expanded (shrunk). A buffer amount of 0 will leave the input geometry unmodified

 End Cap Style

 When buffering both sides of a line (Buffer Style = Full), there is the additional concept of end caps on both ends of a buffered line. As the diagrams below illustrate, these caps can be round or square but it is also possible for the buffered area to not contain any caps.

 Round

 [image: bufferer_round.png]

 Square

 [image: bufferer_square.png]

 None

 [image: bufferer_none.png]

 Stroking Density

 This parameter controls the smoothness of the stroked arcs in the output buffer boundaries. As this parameter increases in value, the smoothness of the arc connectors increases.

 List Name

 This parameter specifies the name of a list into which the attributes of the input features are stored. This parameter is useful when using Group By or if input features contain aggregates. Within each group or aggregate, within each dissolved region, attributes from an input feature with the largest area are stored at the head of the list, and no order is defined for the remaining elements.

 FMEpedia

 See FMEpedia for more information on this transformer.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 BulkAttributeRemover

 Removes all attributes on incoming features that match a given regular
 expression. This transformer can be used to remove large numbers of attributes
 that have common naming.

 See the StringSearcher for more information on
 regular expressions.

 Input Ports

 Input

 Features with attributes.

 Output Ports

 Output

 Features with attributes matching the specified regular expression removed.

 Parameters

 Expression to Remove

 A regular expression used to specify which attributes should be removed.

 Usage Notes

 	Use the AttributeRemover to remove selected individual attributes from a feature.

 	Use the AttributeKeeper to keep selected individual attributes on a feature.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Additional Resources

 Test regular expressions with Rubular, a Ruby-based regular expression editor.

 Transformer History

 This transformer replaces the AttributeExpressionRemover.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: AttributeExpressionRemover

 BulkAttributeRenamer

 Renames attributes by adding or removing prefixes or suffixes, or replacing text in regular expressions or character strings.

 This transformer is useful if you need to quickly rename all your attributes. If the rename results in an empty attribute name, that attribute will be removed.

 Input Ports

 Input

 Features with attributes.

 Output Ports

 Output

 Features with renamed attributes.

 Parameters

 Rename

 Whether to rename all attributes or selected attributes.

 Selected Attributes

 The specific attributes to be renamed.

 Action

 Indicates which action you want to perform:

 	Add String Prefix: The string input for the String parameter will be prepended to all attributes.

 	Add String Suffix: The string input for the String parameter will be appended to all attributes.

 	Remove Prefix String: All attributes that start with the character sequence input for String parameter will be truncated to exclude the starting string character sequence.

 	Remove Suffix String: All attributes that end with the character sequence input for String parameter will be truncated to exclude the ending string character sequence.

 	Regular Expression Replace: The regular expression input for the Text To Find parameter will be replaced in all attributes with the character sequence input for the String parameter.

 	String Replace: The character sequence input for the Text To Find parameter will be replaced in all attributes with the character sequence input for the String parameter.

 	Change Case: All attributes will have their case changed according to the Case Change Type parameter.

 Text To Find

 The regular expression or string pattern in each attribute name that should be replaced with the character sequence input for the String parameter.

 Case Sensitive

 Whether or not the comparison should be case-sensitive.

 String

 The character sequence to prepend, remove, append, or use as replacement string.

 Case Change Type

 	UPPERCASE changes attributes to uppercase characters.

 	lowercase changes attributes to lowercase characters.

 	Title case changes the first character in the string
 to its Unicode title case variant (or to uppercase if there is no title
 case variant) and the rest of the string lowercase.

 	Full Title Case converts the first letter of each
 word, rather than just the first letter in the string. Full
 Title Case will ignore parentheses if they start the string or follow
 whitespace, and will treat hyphens (-) and underscores (_) as whitespace characters.

 Usage Notes

 	Use the AttributeRenamer to rename individual attributes, with the option of supplying a default value if the original attribute was not present.

 	Use the StringCaseChanger to change the case of attribute values.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Additional Resources

 Test regular expressions with Rubular, a Ruby-based regular expression editor.

 Transformer History

 This transformer replaces the AttributePrefixer and the AttributeExpressionRenamer.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: AttributeNameCaseChanger, AttributePrefixer

 CenterLineReplacer

 Replaces an area feature with its medial axis or a straight skeleton. This transformer works best with long, narrow areas.

 Output Ports

 Centerline

 The centerline of the input feature will be output via this port.

 <Rejected>

 Features that cannot be replaced by their centerline will be output via this port. Additionally, the attribute fme_rejection_code will contain details about the failure.

 Parameters

 Mode

 Medial Axis: The geometry of
 an area feature is replaced by its medial axis. The medial axis is the subset of the straight skeleton that does not include any edges that share a vertex with the original area.

 Straight Skeleton: The geometry of
 an area feature is replaced by its straight skeleton (angular bisector network). All edges that share a vertex with the original
 area are removed.

 Note: In either of these modes, the algorithm may take a long time to run on large or complex input features.

 Usage Notes

 	Unexpected output may result if input polygons self-intersect or have duplicate vertices.

 	Because Z coordinates are not considered in either algorithm, all features processed by this function are forced to 2D.

 	If non-area features are passed to this transformer, they will not be changed, and they are logged with a warning.

 	
 Donuts that contain holes that touch will produce incorrect output.

 	If vertices are very close together unexpected output may occur.

 Example

 [image: centerlinereplacer.gif]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Related Transformers

 When combined with the Tester, this transformer enables FME to perform area generalization operations.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: abstraction simplification simplify centerline centreline

 CenterOfGravityReplacer

 Replaces the geometry of the feature with a point at the center of mass of the feature. Note that, depending on the feature’s shape, the resulting point may be far outside of the original
 feature.

 Example

 The transformer calculates the exact distribution of portions of a shape; therefore, some points can actually appear outside a feature.

 [image: centerofgravityreplacer.gif]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Related Transformers

 	To generate points guaranteed to be inside an area feature, use the
 LabelPointReplacer
 transformer.

 	To generate points at the center of the bounding box of the
 feature, use the CenterPointReplacer
 transformer.

 External References

 	Center of mass, from Wikipedia

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: CentreOfGravityReplacer MBR "minimum bounding rectangle" abstraction centroid seed simplification simplify

 CenterPointReplacer

 Replaces the geometry of the feature with a point that is in the center
 of the feature's bounding box.

 Usage Notes

 Note that, depending on the feature's shape, the resulting point may be far
 outside of the original feature.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Related Transformers

 	To generate points guaranteed to be inside an area feature, use either
 the LabelPointReplacer
 or InsidePointReplacer
 transformer.

 	To generate the center of gravity, use the CenterOfGravityReplacer.

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.
Keywords: MBR "minimum bounding rectangle" CentrePointReplacer

 ChangeDetector

 Detects changes between two sets of input features.

 This transformer is often used with multiple readers, to identify changed features in the two files. It can identify all features that two input files have in common, and those which are in one file and not the other, such as the additions and the deletions.

 Input Ports

 Original

 One set of features enters the transformer via the Original
 port.

 Revised

 Another set of features enters via the Revised
 port.

 Output Ports

 Unchanged

 An Original feature is output
 via the Unchanged port when it
 is found to have either matching geometry, matching attribute values,
 or both, with a feature in the Revised
 set.

 Added

 A Revised feature with no match
 in the Original set is output
 via the Added port.

 Deleted

 An Original feature is output
 via the Deleted port when no
 match for it can be found in the Revised
 set.

 Parameters

 Match Geometry

 This parameter controls whether
 2D or 3D (or None) geometry must be the same before a match is declared.

 FULL makes sure 3D, measures, and Geometry
 Attributes all match.

 When comparing raster geometries: 2D matches the
 properties, 3D matches the properties and values, and FULL matches the
 properties, values and geometry traits.

 When comparing surface and solid
 geometries: 2D behaves the same way as 3D, that is, z values will also
 be compared.

 Lenient Geometry Matching

 If this parameter
 is set to Yes, then the order of points in area features will be ignored.

 Composition differences between paths and lines will be ignored. For example, consider two lines, each with 10 vertices: One line is a path composed of 3
segments, and the other is just a simple line. These lines are considered to have
a different composition. Lenient geometry matching will treat all these as
matching, as long as they have the same vertices (no more and no less). Strict
geometry matching will say they do not match.

 True
 arcs and ellipses versus their stroked polygon equivalents will be ignored
 in Aggregates, Polygons, Donuts, Paths, and all other multis.

 This transformer
 does not support surfaces or solids in the input if this parameter
 is set to Yes.

 Attribute Matching Strategy

 In conjunction with Selected Attributes, this parameter controls which attributes of input features must have the same value before a match is declared.

 	Match Selected Attributes: the attributes specified in the Selected Attributes parameter will be matched.

 	Match All Except Selected Attributes: all attributes will be matched, except those specified in Selected Attributes.

 	Match All Attributes: all attributes will be matched.

 Selected Attributes

 This parameter is applicable when Attribute Matching Strategy is set to Match Selected Attributes or Match All Except Selected Attributes, and specifies which attributes to match, or exclude from the match, depending on the matching strategy chosen.

 Differentiate Empty, Missing, and Null Attributes

 If this parameter is set to No, then empty, missing, and null attributes will be treated as equivalent. If this parameter is set to Yes, then empty, missing, and null attributes will be considered as pairwise different. This parameter applies to attributes as well as geometry traits.

 Extra Vertex Tolerance

 Note: This parameter has no effect when using lenient geometry
 matching.

 When geometry is being matched, Extra
 Vertex Tolerance can allow for extra vertices along line segments.

 A value of 0 means that no such extra vertices are permitted. A nonzero
 value controls how close any extra vertices must be to the line connecting
 the adjoining matching vertices.

 For surface and solid geometries, Extra
 Vertex Tolerance is ignored and assumed to be 0.0.

 Example

 [image: changedetector.gif]

 Related Transformers

 The Matcher
 provides a more general approach, which may be more convenient for certain
 applications.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Filters

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 CharacterCodeExtractor

 Extracts the integral character code of the first character in the source
 string attribute, and adds its integer value in the character set to the
 feature as another attribute.

 This can be used to obtain the ASCII code of any character, including
 non-printable ones.

 Parameters

 Source String Attribute

 The attribute that contains the character for which you would like to find the equivalent numeric code

 Character Code Attribute

 The name of the attribute that will store the resulting integer value.

 Example

 For example, a control-A character as the first character
 of the source string attribute would result in a value of 1 being placed
 in the character code attribute.

 Usage Notes

 To obtain the character equivalent of a numeric value, use the CharacterEncoder
 transformer.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Strings

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 CharacterCodeReplacer

 Sets the result attribute to the 8-bit ASCII character whose numeric Unicode code was contained
 in the source code attribute (or the entered integer).

 This can be used when the numeric Unicode code of any character is
 available, but the actual 8-bit ASCII character is desired. For example, if
 the source attribute had the value 1, a control-A character would be placed
 in the resulting string.

 Parameters

 Source Code

 The numeric Unicode code of any character.

 Character String Result Attribute

 The name of the attribute that will store the resulting value.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Strings

 Related Transformers

 To obtain the numeric code equivalent of a character, use the CharacterCodeExtractor
 transformer.

 Transformer History

 This transformer was previously named CharacterEncoder.

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 Chopper

 Breaks input features into points, lines, or areas. Chopped features contain the same set of vertices as input features.

 This is useful when outputting to a format that has limitations on the number of coordinates in each feature. It can also be used to crudely simplify complex objects.

 All new features have the same attributes
 as the original feature had and are output via the Output port. The optional chopping indicator attribute can be used to distinguish output features which were chopped from output features which were not.

 Input Ports

 Input

 Lines and areas will be processed.

 Output Ports

 Output

 Chopped and untouched features are output to this port.

 Parameters

 Mode

 By Vertex: Breaks input features according to vertex count. Output geometries may be points, lines, or areas.

 By Length: Breaks input features according to length. Output geometries will consist of lines or areas.

 Maximum Vertices

 Each Output feature will have up to the specified number of vertices. For example, if an input line consists of 4 vertices, and a Maximum Vertices of 3 is specified, two Output lines would be output: one with 3 vertices and one with 2 vertices.

 If this parameter is less than 4, input area features are converted to linear features. If it is set to 1, all input features are broken up into point features.

 Remnant Attribute

 If the feature is a line and the final piece of the Output line feature does not have the same number of vertices as the other pieces, this attribute (if specified) will be added with a value of “yes”, otherwise this attribute will have the value “no”.

 Approximate Length

 Each Output line feature will be a line feature whose length is close to the value specified in this parameter. Whenever two input vertices may represent the endpoint of an Output line feature, FME chooses the one that results in a length closer to the value of Approximate Length.

 For example, if a horizontal line consists of two segments of length 0.8, and you specify 1 for Approximate Length, then the output is expected to be two line features each containing two vertices, and each a length of 0.8.

 For area features, the Approximate Length determines the approximate height and width of chopped areas. If vertex spacing along the line is greater than the Approximate Length, larger areas will result. By default, Add Interior Points (Areas Only) is set to Yes, meaning that new vertices may be introduced to the interior of areas.

 Add Interior Vertices (Areas Only)

 Yes: New vertices will be introduced while chopping up an input area feature whenever needed. These vertices are guaranteed to fall inside the input area.

 No: No new vertices will be introduced. This means if an input area cannot be chopped up without new vertices within the confines of Approximate Length, then it will be output unmodified. It is also possible that many of the pieces produced by chopping will be larger than the Approximate Length, since no smaller pieces can be generated without introducing interior vertices.

 Chopped Indicator Attribute

 This attribute (if specified) will be added with a value of “yes” to any output features which were chopped, and a value of “no” to any output features which were untouched by the transformer.

 Usage Notes

 Input arcs are stroked prior to chopping. If the chopping operation does not modify a stroked arc, the arc is unstroked and will be output untouched.

 Area features are chopped in such a way as to preserve the original area of the feature. That is, the original area feature is cut into smaller areas, which if dissolved together, would match the original area. New vertices may be introduced into the area feature as it is chopped.

 Example

 [image: Chopper.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 CircularityCalculator

 Calculates the "circularity" of an area feature, which indicates
 how elongated the feature is.

 A value of 1 indicates that the feature is a perfect circle, and 0 indicates that it is a line.

 Note that long, thin polygons may still have a fairly high circularity value if they curve around in a U-shape.

 Parameters

 Calculation Geometry

 If the calculation geometry used is specified as CONVEX_HULL, the
 convex hull of the feature is used for the calculation; otherwise, the
 geometry of the feature (FEATURE_BOUNDARY) is used.

 The value returned is: 4 * PI * area / (perimeter
 * perimeter)

 Circularity Attribute

 The name of the attribute that will contain the angularity calculation.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 FMEpedia

 See FMEpedia for more information on this transformer.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Clipper

 Performs a geometric clipping operation.

 This transformer takes a number of clip boundaries (clippers) and a number of features to be clipped (clippees). The output is split into two groups.

 Input Ports

 Clipper

 The features routed into the transformer via the Clipper port identify the area against which all Clippee features are processed. The Clipper can consist of any area features (polygons, donuts, or aggregate polygons/donuts). The Clipper can also be a solid or multi-solid if the Clippee input consists of solids, points, point clouds, or aggregates of these geometries. Any invalid clipping features that are encountered will be logged with a warning and discarded.

 Clippee

 Features to be clipped enter via the Clippee
 port.

 Output Ports

 Inside

 Clippee features that are completely within
 the Clipper, and Clippee features that intersect the Clipper which were broken up into pieces. Those pieces that are on the inside of the Clipper are output via this port.

 Outside

 Clippee features completely outside of the Clipper are output via the Outside port, and Clippee features that intersect the Clipper which were broken up into pieces. Those pieces that are outside the clipping area are output via the this port.

 <Rejected>

 Invalid Clipper features (that is, non-polygon features) as well as invalid Clippee features (i.e. features with no geometry) are output via the <Rejected> port.

 Parameters

 Group By

 If Group By attributes are selected, features
 with the same values in the Group By attributes are placed into the same set, and clipping occurs in each set independent of other sets.

 Parallel Processing Level

 How parallel processing works with FME: see About Parallel Processing for detailed information.

 This parameter determines whether or not the
transformer should perform the work across parallel processes. If it is enabled, a process will be launched for each group specified by the Group
By parameter.

 Parallel Processing Levels

 	Parameter
 	Number of Processes

 	No Parallelism
 	1

 	Minimal
 	cores1 / 2

 	Moderate
 	exact number of cores

 	Aggressive
 	cores x 1.5

 	Extreme
 	cores x 2

 For example, on a quad-core machine, minimal parallelism will result in two simultaneous FME processes. Extreme parallelism on an 8-core machine would result in 16 simultaneous processes.

 You can experiment with this feature and view the information in the Windows Task Manager and the Workbench Log window.

 Clipper Type

 	Single Clipper: Only a single Clipper feature will be used.

 	Multiple Clippers: All Clipper
 features will be used.

 	Clippers First: The Clipper
 assumes that all Clipper features will enter the transformer before any
 Clippee features. Any further Clipper features that arrive after the first Clippee will be logged with a warning and discarded.

 Merge Attributes, Merge Attribute Prefix

 If the Merge Attributes parameter
 is enabled, any Clippee that is clipped will receive the attributes from
 the Clipper feature. In
 such a case, the Merge Attribute Prefix parameter can be used to give the
 Clipper's attributes a prefix before they are added to the Clippee.

 Clipped Indicator Attribute

 This attribute (if specified) will be added with a value of “yes” to any features output via either the Inside or Outside port which were cut by the transformer, and a value of “no” to any output features which were not changed by the transformer.

 Clippees on Clipper Boundary

 This parameter directs what action should be taken with Clippee features that lie entirely on the boundary of the clipper.

 	Treat as Inside: These features that lie on the boundary are output via the Inside port.

 	Treat as Outside: These features that lie on the boundary are output via the Outside port.

 	Treat as Inside and Outside: Points and line segments on the boundary are duplicated and output as both Inside and Outside.

 Create Aggregates

 If the Create Aggregates parameter
 is No, then features that are clipped into multiple parts will not be
 aggregated, but rather each part will be output as a separate feature.

 Preserve Clippee Extents

 If this parameter is set to No, the Inside rasters which were clipped will be equal to the intersections of the clippers and clippees. Otherwise, the intersections will be padded by nodata so that the extents are identical to those of the input rasters.

 Usage Notes

 	This transformer works with both raster and vector
 data.

 	This transformer is unaffected by raster band and palette selection.

 	Clipped raster cells (i.e. those outside the clipper but part of an Inside raster) will be set to the nodata value. If a nodata value has not been set, clipped raster cells will be set to 0. To set a value for nodata, use the RasterBandNodataSetter transformer prior to the Clipper.

 Example

 [image: clipper.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 FMEpedia

 See FMEpedia for additional information about this transformer.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: MBR "minimum bounding rectangle" raster grid clip clipper clippee subset extent sample bound clean conflation overshoot undershoot

 1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 Cloner

 Makes the specified number of copies of the input features and outputs all copies through its
 single output port.

 Feature cloning happens automatically in Workbench whenever
 more than one connection is made from any output port of a transformer.
 This transformer can be used to make a dynamic number of copies of a particular
 feature.

 Parameters

 Number of Copies

 Specifies how many copies will be made of the input features. The number of copies may be a constant integer, or
 it can be taken from the value of an attribute on the feature by selecting
 the attribute from the pull-down list.

 If the number of copies is less than 1, then the feature will be deleted.

 If the number of copies is set to 1, then the transformer acts as a
 "null" operation and is useful to provide a place to connect
 several inputs together and join them into single stream of features to
 be routed elsewhere.

 Copy Number Attribute (optional)

 The copy number attribute (by default, _copynum) will hold the copy number of each output feature.
 For example, if 3 copies of an input feature are made, the output copies
 will have 0, 1, and 2, respectively, assigned to their copy number attribute.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 CommonLocalReprojector

 Reprojects a set of features to a local coordinate system with units of meters centered on the bounding box of the features.

 This transformer is useful if you need a number of features reprojected into the same local coordinate system.

 Parameters

 Group By

 If attributes are not specified, all features will be reprojected to the same local coordinate system. If attributes are specified, each group of features will be reprojected to a local coordinate system centered on that group.

 Projection Type

 Choose the local projection from the drop-down list based on whether preservation of distances or areas is more important. Choices are:

 	AZMED (Lambert Azimuthal Equidistant)

 	AZMEA (Lambert Azimuthal Equal Area)

 Usage Notes

 Local coordinate systems have the following limitation:

 	Z is not considered so areas or distances are best preserved for geometry at an ellipsoid height of 0 meters.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Coordinate Systems

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 CommonSegmentFinder

 Tests to see which of the Candidate features have even one line segment in common with any Base feature.

 	If a Candidate feature does share one segment with some Base feature, then it is output through the Overlap port.

 	If a Candidate does not share any segment with any Base, then it is output through the NoOverlap port.

 The Base features are consumed by the transformer and are not output.

 Parameters

 Group By

 The default behavior is to use the entire set of input features as the group. This option allows you to select attributes that define which groups to form. Each set of features that have the same value for all of these attributes will be processed as an independent group.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Collectors

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 ContourGenerator

 Constructs a Delaunay triangulation based on input points and breaklines. Contour lines are then generated from the triangulation.

 Input

 Points/Lines

 These input features may be 2D or 3D, and may reside inside a raster, a point cloud, or other aggregate structures. 2D features will be forced to 3D by adding a z value of 0. In most cases, all points extracted from this port will be found in the vertex pool of the underlying surface model. A minimum of 3 unique points are required to construct a surface model. Points with duplicate x and y values will be dropped.

 Breaklines

 These input features may be 2D or 3D, and may reside inside an aggregate structure. 2D features will be forced to 3D by adding a z value of 0. Breakline edges will be found in the edge pool of the underlying surface model. Sometimes, a breakline edge will be split up to allow an optimal triangulation of the surface model. Points with duplicate x and y values will be dropped.

 Output

 Contours

 This output port produces contour lines. Each contour is 2D or 3D depending on Output Contour Dimension, and stores its elevation in the attribute specified in Output Elevation Attribute. If contours are 3D, then their z values are equivalent to their elevation attribute values.

 Tip: The parameter Conflict Resolution can filter out a subset of input Points/Lines to ensure a well-constructed surface model.

 Parameters

 Transformer

 Group By

 This parameter allows groups to be formed by attribute values. Zero or more attributes may be specified.

 Input features with the same attribute values are placed into the same group. The transformer then operates independently on each group of input features.

 If this parameter is left blank, the transformer will treat the entire set of input features as one group.

 Parameters

 Surface Tolerance

 This parameter is used to determine which input points to add to the surface model as vertices. Specifying a value of 0 turns off vertex filtering.

 Tip: A larger value will speed up surface model construction. The larger the value, the more input points will be filtered out. For input files with millions – or even billions – of points, it becomes essential to increase this value.

 When a positive value for surface tolerance is specified, it works as follows. For each vertex that is being added to the model:

 	If the x,y location is outside the 2D convex hull of the existing surface model, it is added to the model.

 	If the x,y location is inside the 2D convex hull of the existing surface model:	The difference between the z value from the existing surface model and the z value of the vertex is calculated.
	This difference is compared to the surface model tolerance.
	The vertex is only added to the surface model if the difference is greater than the surface tolerance; otherwise, the vertex is discarded.

 Output Elevation Attribute

 This parameter specifies the name of an elevation attribute for the output ports Contours and DEMPoints, when these output ports exist on the transformer.

 Output Contour Interval

 This parameter specifies the elevation separation of the output contours.

 Output Contour Dimension

 This parameter specifies whether the output contours are 2D or 3D. 2D contours are equivalent to 3D contours, except that the z coordinates are dropped.

 Tip: When the input dataset is large enough, setting this parameter to 2D will result in a visible performance improvement.

 Conflict Resolution

 This parameter controls whether input points on the contour interval are dropped, or perturbed. Not dropping or perturbing these points would result in topologically invalid contours.

 	Perturb Input Points on Contour Interval: Contours are negatively offset in the z direction. The perturbation amount is 1% of the contour interval.

 	Remove Input Points on Contour Interval: Input points on the contour interval are not added to the underlying surface model.

 Example

 [image: contourgenerator.gif]

 FME Licensing Level

 FME Professional edition and above

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Surfaces

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 ConvexityFilter

 Determines whether areas, surfaces, and solids are convex or concave.
A polygon is simple when it is not self-intersecting and has a non-zero area. Simple polygons are convex if every internal angle is less than or equal to 180 degrees. All other polygons are considered concave.

 Input Ports

 Input

 Typically these are polygon-based geometries.

 Output Ports

 If the geometry of the feature is polygon-based (such as a polygon, a donut, or a box) all of the geometry’s composing polygons are tested for convexity. Based on the results of this testing, the appropriate output port is determined.

 Convex

 If all composing polygons for the geometry of a feature are convex, the feature is written to the Convex output port.

 Concave

 If any composing polygons for the geometry of a feature are not convex, those features are written to the Concave output port.

 Undefined

 Features with no geometry or with geometries that are not polygon-based, such as arc, raster, and text, are written to the Undefined port.

 Parameters

 There are no parameters for this transformer.

 Usage Notes

 	Lines and points are considered concave.

 	The test is limited by the precision of the geometry’s coordinates – be careful of “invisible” bends in lines, as shown here:

 [image: ConvexityFilter_SomethingToWatchFor.png]

 Example

 This diagram shows both convex and concave examples.

 [image: ConvexityFilterExample.PNG]

 FME Licensing Level

 FME Professional Edition and above

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Filters

 Related Transformers

 HullAccumulator

 HullReplacer

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: convex concave "polygon based" "internal angle"

 CoordinateConcatenator

 Retrieves the value of all the feature's coordinates into an attribute,
 separated by the delimiter characters.

 Parameters

 Coordinate Delimiter

 This parameter
 can contain either an arbitrary string or a character, which is inserted between
 each coordinate set.

 Coordinate Element
 Delimiter

 This parameter can also contain either an arbitrary string or a
 character, which is inserted between each x/y/z element of each coordinate.

 Characters can be expressed as regular characters but they can also include any number of control characters.

 Special
 character sequences (Advanced Editor only) are interpreted as shown below:

 	Sequence
 	Description

 	
 Ctrl+Shift+h (^H)

 	
 Backspace (0x08)

 	
 Ctrl+Shift+l (^L)

 	
 Form feed (0x0c)

 	
 Ctrl+Shift+j (^J)

 	
 Newline (0x0a)

 	
 Ctrl+Shift+r (^M)

 	
 Carriage return (0x0d)

 	
 Ctrl+Shift+i (^I)

 	
 Tab (0x09)

 	
 Ctrl+Shift+k (^K)

 	
 Vertical tab (0x0b)

 Defining Special Characters

 You can define special characters through the Basic or Advanced Editors. Click Open Editor from the parameter menu:

 [image: special_char1.png]

 Basic Text Editor

 Select Constant from the String Type column (or, in some transformers, the Value column) and click on the empty field in the column:

 [image: special_char2.png]

 Click the browse button to the right of the column to open an Edit Value dialog. In this editor, enter characters using the shortcut keys
from the table above.

 Advanced Text Editor

 Enter characters using the shortcuts from the table above.

 Note: To see tab characters, click the Options menu on the bottom left and select Show Spaces/Tabs.

 Coordinate Element(s) to Include

 This parameter specifies which elements in the coordinate to output. For example, if the coordinate has a value of Z, only the z coordinate will be output.

 Coordinate Attribute

 This attribute stores the value of the feature's coordinates.

 Usage Notes

 	This transformer works only for point, line, area, and donut features. Aggregate features will give invalid values.

 	If Coordinate Element(s) to Include contains Z and the features contain two-dimensional data, only the x and y coordinates will be stored.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 CoordinateCounter

 Stores the number of a feature's coordinates into an attribute.

 Parameters

 Coordinate Count Attribute

 The attribute that stores the number of coordinates. For multi-part features (aggregates), this is the sum of all coordinates
 in all parts of the feature.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 CoordinateExtractor

 Retrieves the value of the x, y, and z coordinate at the specified index
 into attributes. A
 negative index can be used to indicate the position relative to the end
 of the feature (-1 is the last coordinate, -2 the second last, and so
 on). The
 index can be entered as an integer, or may be taken from the value of
 another attribute by selecting the attribute name from the pull-down list.
 If the index is invalid, then the translation will be terminated.

 If the feature was two-dimensional, then the Z attribute will be given
 the default value specified.

 If the feature was a multi-part feature (aggregate), each part’s coordinates
 are indexed sequentially.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 Transformer History

 This transformer was renamed from CoordinateFetcher.

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 CoordinateRemover

 Removes one or more coordinates from the geometry of the feature.

 Output Port

 Output

 This port contains the attribute _num_removed, which will contain
 the number of coordinates actually removed. (This
 could be less than the number specified if the feature did not have that
 many coordinates between the specified index and the end of the feature.)

 Parameters

 Keep or Remove Coordinates

 This parameter specifies how coordinates are chosen for removal.

 	If you choose
 Remove, then, starting at the index specified, the transformer will remove
 the number of coordinates given in Number to Keep/Remove.

 	If
 you choose Keep, then all coordinates except those specified will be removed.

 Coordinate Index

 A
 negative index can be used to indicate the position of the coordinate(s)
 to be removed relative to the end of the feature (-1 is the last coordinate,
 -2 the second last, and so on). The index can be entered as an integer,
 or may be taken from the value of another attribute by selecting its name
 from the pull-down list of attributes.

 Number to Keep/Remove

 If you choose
 Remove in the Keep or Remove Coordinates parameter above, then, starting at the index specified, the transformer will remove
 the number of coordinates that you specify in this parameter.

 If
 you choose Keep in the Keep or Remove Coordinates parameter above, then all coordinates except those specified will be removed.

 Usage Notes

 If you try to use this transformer on an aggregate, solid, or surface feature, the
 translation will terminate with an error.

 If you try to use this transformer on
 an area feature that has holes, the results will not be useful.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 CoordinateRounder

 Rounds off the coordinates of the feature to the specified number of
 decimal places. Any consecutive points that become duplicates as a result
 of the rounding are thinned by removing the redundant points.

 This transformer may be used to remove superfluous decimal points in
 the coordinates when they are destined for an ASCII output file.

 Precision Values: X, Y and Z

 The precision values control the number of decimal places that the coordinates
 are rounded to. A value of 0 causes the coordinates to be rounded to the
 nearest integer. A value of 1 causes rounding to the nearest tenth of
 a unit. Negative values are allowed. A value of -1 causes rounding to
 the nearest 10.

 Each parameter may either be entered as a number, or can be taken from
 the value of a feature attribute by selecting the attribute name from
 the pull-down list.

 Example

 [image: coordinaterounder.gif]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 CoordinateSwapper

 Swaps coordinate axes of the input features.

 Parameters

 Swap Type

 X with Y: Each feature's x-coordinates will be swapped with its y-coordinates.

 X with Z: Each feature's x-coordinates will be swapped with its z-coordinates.

 Y with Z: Each feature's y-coordinates will be swapped with its z-coordinates.

 Usage Notes

 There are three common uses for this transformer:

 	The transformer was originally intended to help solve the problem of Lat/Long order, where some formats expect Latitude/Longitude, and others expected Longitude/Latitude.

 	The transformer can also be used to swap X or Y values with the Z axis to produce a cross-section view of a dataset, such as a building model elevation.

 	The transformer can also be used as a tool for quality assurance purposes, where switching the data into a different plane causes spikes in the other axes, like this:

 [image: coordinateswapper0.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.
Keywords: transform transpose transposer switch

 CoordinateSystemDescriptionConverter

 Converts coordinate systems between FME and AutoDesk WKT, EPSG, Esri WKT, MapInfo, OGC WKT, Oracle SRID, and PROJ.4 representations.

 If, for example, you are converting from Esri Shape to Oracle Spatial, in addition to converting the data, FME also converts the coordinate system metadata from the Esri representation to the Oracle representation. This transformer allows you to do this manually.

 Source Coordinate System Description Attribute

 The attribute that contains the source coordinate system.

 Coordinate System Description Conversion Direction

 	Convert from FME Representation: Set the Representation parameter to the coordinate system type that you want to
 use to format the output field.

 	Convert to FME Representation: Set the Representation parameter to select the coordinate system format to use when
 interpreting the input field.

 Representation

 	Autodesk Well Known Text (WKT)

 	EPSG number

 	Esri Well Known Text (WKT)

 	MapInfo String

 	OGC Well Known Text (WKT)

 	Oracle SRID number

 	PROJ.4 string

 Resulting Coordinate System Description Attribute

 This is attribute that will contain the results. The default name is _newcoordsys.

 Usage Notes

 You should use this transformer
 only in rare instances, much like the Reprojector. Instead, you should use the workspace Navigator
 view to set the source and destination coordinate systems
 for the translation.

 Related Transformers

 This can be used in conjunction with the CoordinateSystemFetcher
 and CoordinateSystemSetter to use externally defined
 coordinate systems with FME features within the transformation environment.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Coordinate Systems

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 CoordinateSystemExtractor

 Retrieves the coordinate system of the feature into an attribute.

 If
 the feature has no coordinate system, the attribute will be an empty string.

 Input Ports

 Input

 This transformer accepts any feature.

 Output Ports

 Output

 Features with the extracted coordinate system leave through this port.

 Parameters

 Coordinate System Attribute

 The name of the attribute that will record the coordinate system of the feature.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Coordinate Systems

 Transformer History

 This transformer was renamed from CoordinateSystemFetcher.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 CoordinateSystemRemover

 Removes the coordinate system from all input features. This transformer
 does not reproject features, or otherwise modify their geometry.

 To reproject features, either change the source and destination
 coordinate systems in the workspace tree view, or use the Reprojector
 transformer.

 To set the coordinate system without reprojecting, use the
 CoordinateSystemSetter transformer.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Coordinate Systems

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 CoordinateSystemSetter

 Tags all features with the specified coordinate system.
 It does not reproject features, or otherwise modify their geometry.

 You should use this transformer if you know the feature belongs to a certain
 coordinate system, but it is not tagged. This can happen if the feature
 is read from a format that does not store coordinate system information.

 Parameters

 Coordinate System

 Click the Browse button to choose a coordinate system from the Coordinate System Gallery.

 Usage Notes

 	To reproject features, either
 change the source and destination coordinate systems in the Navigator,
 or use the Reprojector transformer.

 	To remove the coordinate system
 from features, use the CoordinateSystemRemover transformer.

 Setting a Feature’s Coordinate System Based on an Attribute Value

 The following example shows how to set a feature’s coordinate system based on an attribute value.

 Input features should have this attribute set to the FME coordinate system
 name as shown in the Coordinate System Gallery (the example below uses
 “CH1903.LV03”). You can do this by adding an attribute, then choosing Insert > Constant to specify the coordinate system name. This example provides input features with their “cs_attr” attributes set to “CH1903.LV03”.

 [image: coordsys_attr_value1.gif]

 Click the Properties button in the CoordinateSystemSetter transformer, and enter @Value(<attribute_name>) in the Coordinate System field.

 [image: coordsys_attr_value2.gif]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Coordinate Systems

 FMEpedia

 See FMEpedia for additional information about this transformer.

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 Counter

 Adds a numeric attribute to a feature and assigns a value. Each subsequent feature passing through the transformer receives an incremented value – in other words, the Counter is counting the features.

 This transformer can be useful for assigning a unique, numeric ID number to a set of features, for counting the number of features, or for creating a basic histogram for values of a given attribute.

 Transformer Parameters

 Transformer Name

 This parameter is common to most transformers, and you do not always have to edit it to control workspace output. See the Usage Notes below for information on why you might want to edit this parameter for the Counter.

 Count Output Attribute

 The name of the attribute that will contain the results, and will appear in the list of Output port attributes.

 Counter Name

 Create separate sequences of numbers to be assigned, either
 by placing several Counter transformers with each having a different counter
 name, or by choosing an attribute whose value will be used as the counter
 name as each feature passes through. (In effect, using an attribute to
 supply the Counter name is like having a Group By option for the Counter.)

 Count Start

 Use this parameter to specify a starting value for the Counter. This is useful for applications where ranges of values have meanings in the problem domain. See Usage Notes below.

 Count Scope

 Specify
 whether the scope of this counter is Global (throughout the entire workspace)
 or Local (for this transformer only). Global counters with the
 same Counter Name will share the same counting sequence, while Local counters will each have a unique counting sequence.

 Usage Notes

 Using Multiple Counters

 Using multiple Counter transformers in a workspace can produce different results. The default behavior of FME is to name all Counters the same.

 When multiple Counters have the same name, they produce a single count. When multiple Counters have different names, each Counter produces a unique count starting at 1 (or the number determined by the Count Start parameter). You can rename any Counter by editing the Transformer Name parameter.

 For example, there are two workspaces each with two Counters. Ten features passed through each Counter would result in the following:

 Workspace 1

 Counter Name: Counter1 - features numbered 1 - 10

 Counter Name: Counter2 - features numbered 1 - 10

 Workspace 2

 Counter Name: Counter - features numbered 1 - 10

 Counter Name: Counter - features numbered 11 - 20

 You can use this feature as needed to produce different results.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 FMEpedia

 See FMEpediafor additional information about this transformer.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 CRCCalculator

 Calculates a CRC (Cyclic Redundancy Check) value for a feature and places the calculated CRC value into the attribute specified.

 Parameters

 Calculate CRC On

 The CRC can be calculated on either Coordinates and Attributes or Attributes Only.

 Coordinates refers to the coordinates of the geometries of input features.

 Include Attributes

 In either mode, you can optionally select the attributes to use in the CRC calculation.

 If no attributes are selected and Coordinates and Attributes is specified, the calculated CRC will be based only on the feature's coordinates.

 If no attributes are selected and Attributes Only is specified, the output CRC value is 0.

 CRC Output Attribute

 The attribute that will hold the results.

 Usage Notes

 You can use this CRC value to check data at a later date - to make sure it hasn't been changed, corrupted, deleted etc. It can also be used as a form of ChangeDetection (instead of using the ChangeDetector to compare geometry, use the Matcher to compare CRC values).

 The CRCCalculator guarantees that if a feature has not changed, then its CRC value will remain the same. Like all popular CRC algorithms, different features could produce the same CRC value with minimal probability.

 Example

 This FMEpedia example shows an advantage to using the CRCCalculator
 over the ChangeDetector.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Creator

 Creates features using the parameters supplied, and sends them into
 the workspace for processing.

 The Creator's interface allows you to select the desired type of geometry, then enter the coordinates and/or parameters that will create the desired object.

 Input Ports

 This transformer does not have any input ports.

 Output Ports

 Created

 All created features are output through this port.

 Parameters

 Geometry Source

 This parameter specifies how to create the geometry, using the options listed below. Your choice for this parameter determines whether other parameters are enabled or disabled.

 	Geometry Object: This option allows you to create the geometry types specified in the Geometry Object parameter below. The XML tab shows, by default, the XML representation of any object defined in the other areas of the dialog.

 	2D Coordinate List:Creates two-dimensional geometry from the space-delimited list of x y coordinates entered in the Coordinate List parameter field.

 	3D Coordinate List: Creates two-dimensional geometry with z-values from the space-delimited list of x y z coordinates entered in the Coordinate List parameter field.

 	2D Min/Max Box: Creates a bounding box from bottom
 left and top right corner, specified as minx miny maxx maxy in the Coordinate List parameter field (for
 example: 0 0 10 10).

 Geometry Object

 	Geometry Object
 	Description

 	Null
 	Creates an object without geometry. For some applications, it can be useful to have such an object available; for example, when you are using a CSV writer but you want to output a header or footer.

 	Point
 	Creates a single point at the given coordinates.

 	Text
 	Creates a single text object at the given coordinates, using the text string, height and rotation.

 	Line
 	
 Creates a single line object using the specified coordinate pairs. If you want to create an area, use the Polygon option instead. Even if you specify the first and last coordinate pairs to be the same, the type of the object generated will still be fme_line.

 	Arc
 	
 Creates an arc using the specified parameters.

 The primary axis parameter specifies the length of the primary axis, and the secondary axis parameter specifies the length of the secondary axis. The start angle parameter specifies the start angle for the arc, measured in degrees counterclockwise from horizontal. The sweep angle parameter specifies the number of degrees on the ellipse that define the arc, measured in degrees counterclockwise. The rotation parameter specifies the angle in degrees from the horizontal axis to the primary axis in a counterclockwise direction. A circle can be created by setting the primary and secondary axis to the same length and using a sweep angle of 360 degrees.

 [image: start_sweep_small.gif]

 Please note that not all transformers or output feature types work well with arcs. You may need an ArcStroker to simplify it.

 	Ellipse
 	
 Creates an ellipse using the specified parameters. In order to create a circle, make sure the primary and secondary axes have the same length.

 Please note that the ellipse generated by this is an arc feature. Not all transformers or output feature types can work with arc features, so you may need an ArcStroker to simplify it.

 	
 Box

 	
 Creates a 2D rectangle or a rectangular prism in 3D space. It is defined by a minimum corner and a maximum corner, but unlike a Rectangle Face, these two coordinates must not share identical x-, y-, or z-values.

 For a 3D box, the two corner points unambiguously represent a unique rectangular prism, in which all faces are parallel to the coordinate planes.

If the first point is the minimum point, then the surface normal points out from the box; otherwise, the box has been flipped inside-out and the surface normal points into the box.

With conjunction of a 4×4 transformation matrix, a Box can be used to represent boxes that are not parallel to the coordinate planes. This matrix can store affine transformations.

 	Polygon
 	Creates a polygon feature. Works in the same way as the line option, but it will warn you if you forget to close the polygon.

 	
 Rectangle Face

 	
 Creates an optimized rectangular face representation that lies parallel on a coordinate plane (either xy-, xz-, or yz-plane).

 This face specifies its position by using two points, the minimum corner and maximum corner. Because the face must lie parallel to a coordinate plane, the corner points share a common coordinate value. For example, if the rectangular face lies on the xy-plane, the corner points share a common z-value.

The surface normal of this rectangular face depends on the order of the specification of the first and second points, as described in the following table.

 	Plane to which rectangle is parallel
 	Order of specification of (coordinates of) the corners
 	Direction of the surface normal

 	XY
 	Min-corner, max-corner

 	Positive Z-axis

 	YZ

 	Min-corner, max-corner

 	Positive X-axis

 	XZ

 	Min-corner, max-corner

 	Positive Y-axis

 	XY
 	Max-corner, min-corner

 	Positive Z-axis

 	YZ

 	Max-corner, min-corner
 	Positive X-axis

 	XZ

 	Max-corner, min-corner
 	Positive Y-axis

 The surface normal determines the orientation of the rectangular face; that is, the direction in which the surface normal points indicates which side is the front.

With conjunction of a 4×4 transformation matrix, a Rectangle Face can be used to represent rectangular faces that are not parallel to the coordinate planes. This matrix can store affine transformations.

 	Triangle Strip
 	
 Creates a triangle strip, which is a series of connected triangular faces.

 These faces are defined by three consecutive points in a point list. The first three vertices (labelled below as v1, v2, and v3), define the first triangular face. A new triangle is formed by connecting the next point with its two immediate predecessors. That is, every additional point vi defines a new triangular face with vertices vi–2, vi–1, and vi.

For example, the second triangle is defined by v2, v3, v4, the third by v3, v4, v5, etc. The following diagram illustrates a typical Triangle Strip.

 [image: trianglestrip.png]

 The orientation of the entire triangle strip is determined by the orientation of the first triangle. If the vertices of the first triangle are ordered counterclockwise, then the front of the strip is displayed; otherwise, the back of the strip is displayed. If the triangle strip has been flipped, then the front/back of the entire strip is actually the reverse of what the first triangle indicates.

 	
 Triangle Fan

 	
 Creates a triangular fan, which is a series of connected triangular faces. The fan differs from a Triangle Strip in the way that vertices define faces.

 The first three vertices (labelled below as v1, v2, and v3), define the first triangular face. A new triangle is formed by connecting the next point with its immediate predecessor and the first point of the triangle fan. That is, every additional point vi defines a new triangular face with vertices v1, vi-1, and vi.

For example, the second triangle is defined by v1, v3, v4, the third by v1, v4, v5, etc. The following diagram illustrates a typical Triangle Fan.

 [image: trianglefan.png]

 The orientation of the entire triangle fan is determined by the order of vertices of any triangle within the fan (all the triangles are already oriented in the same direction). When they are ordered counterclockwise, the front is displayed; otherwise, the back is displayed.

 	Face
 	
 Creates a planar area in 3D space. The planar structure can be a polygon, an ellipse or a donut.

 The orientation of a Face is determined by using the following rule: if the fingers of your right hand curl along the order of the vertices, the direction that the thumb points to is the front of the face. This thumb direction also describes the surface normal of the face, a vector that points outwards perpendicular from the area.

 Curve closing method: This method controls how the curve is closed. It is applicable only if the first and last coordinates entered do not match X, Y or Z coordinate values. It ensures that the coordinates of the start and end points match so that it is a valid area.

 Average: The current start and end points are each replaced by the average of the start and end points.

 Extend: The start and end points are connected with no additional points.

 Extend or Average Based on Z: The area is closed using the Average method if – and only if – the start and end points lie on the same coordinate plane (i.e. they share the same X, Y or Z coordinates). Otherwise, the Extend method is used to close the area.

 	
 Custom

 	
 Creates an object based on an XML representation.

 Coordinate List

 Creates either 2D geometry or 2D geometry with z-values, depending on your choice in the Geometry Source parameter. Enter a space-delimited list of x y (z) coordinates.

 Coordinate System

 This parameter allows you to set the coordinate system on the specified feature. Select a coordinate system from the pull-down list, or click the Browse button to select from the Coordinate System Gallery. If you leave this parameter blank, the coordinate system will not be set on the feature(s) created
 by this transformer.

 Number to Create

 This parameter
 specifies how many features will be created. When more than one feature
 is created, the attribute specified by the Creation Instance Attribute
 parameter will hold each feature's creation number (starting from 0).

 Create at End

 Create at End determines whether the feature is created after all reader features have been processed (Yes), or whether the feature is created immediately before the first reader feature is processed (No).

 Features cannot be created in the data flow before any reader reads anything, since the data flow is driven by features arriving from the reader.

 In rare cases, you might want the Creator to specifically operate before other features are processed.

 The workspace shown here is trying to combine two paths of features through the
VariableSetter and VariableRetriever. The problem is that FME's data flow was not designed to consider multiple feature paths and so, no matter what the setting is for the Create at End parameter, the Creator always creates its feature after the reader.

 [image: creator_workspace1.png]

 However, if you specifically want the Creator to create a feature first, you can include it in the same data flow as the reader features.

 A Tester is added to both the Creator data flow and the reader data flow:

 [image: creator_workspace2_tester.png]

 In the modified workspace shown below, the feature from the Creator data flow will be discarded through the Tester's FAILED port and features from the reader data flow will continue – however, the features will now be processed either before or after the Creator, depending on the chosen setting in the Create at End parameter.

 [image: creator_workspace2.png]

 Creation Instance Attribute

 When more than one feature
 is created (see the Number to Create parameter above), this attribute will hold each feature's creation number (starting from 0).

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 CSGBuilder

 Creates Constructive Solid Geometry (CSG) from pairs of solid geometry
 features which are input through the A and B ports.

 CSG is useful for representing complex solids by specifying the Boolean
 operations between simpler solids. For example, a wall with a window can
 be represented by taking the difference of the solid wall against the
 window. The CSGBuilder can be used to create a CSG solid that is comprised
 of relationships (order of Boolean operations or a hierarchy of Boolean
 operations) between the simpler solids.

 Input Ports

 	A and B: Pairs of solid geometry features.

 Output Ports

 Each Boolean operator
 is output via its corresponding port:

 Union

 Merges two objects into one.

 Difference

 Subtracts one object from another.

 Intersection

 The portion common to both objects.

 Unused

 Any features that do not have solid geometry, or extra features that
 come after the first feature with solid geometry in each group, are output
 through the Unused port.

 Parameters

 Group By

 If any Group By attributes are
 given, then each group will be treated independently. This allows a single
 transformer to operate on multiple pairs of input features.

 Related Transformers

 CSG is the unevaluated model. The CSGEvaluator
 can be used to compute the equivalent boundary representation of the CSG
 solid.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 3D

 FME Licensing Level

 FME Professional edition and above

 Resources

 See the definition of CSG at http://en.wikipedia.org/wiki/Constructive_solid_geometry.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 CSGEvaluator

 Recursively replaces the geometry of a feature that has CSG (Constructive Solid
 Geometry) by evaluating the tree of the CSG solid, effectively removing
 the constructive aspect of the geometry.

 Input Ports

 Input

 A feature that contains CSG.

 Output Ports

 Output

 The parts of the geometry that were CSG will be replaced by either a multi-solid, a boundary representation solid, or may in some cases disappear if they evaluate to nothing.

 <Rejected>

 Features that do not contain CSG parts or that cannot be evaluated will be output via this port. Additionally, the attribute fme_rejection_code will contain details about the failure.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 3D

 FME Licensing Level

 FME Professional edition and above

 Resources

 See the definition of CSG at http://en.wikipedia.org/wiki/Constructive_solid_geometry.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 CsmapAttributeReprojector

 Reprojects attributes from one coordinate system to another using the CS-MAP library.

 Parameters

 Coordinate Systems

 Source and Destination Coordinate System

 Choose from recently accessed coordinate systems, or click the browse button to access the Coordinate System Gallery.

 Vertical

 Vertical Handling

 This parameter determines how Z values will be handled.

 	Ignore heights and leave them unchanged: The Z attribute will not be enabled.

 	Heights are relative to the ellipsoid(s) or geocentric: Z values will be treated as ellipsoid heights with the same units as the horizontal units (or meters, for geographic coordinate systems). If the source coordinate system is geocentric, coordinates will be converted to geographic+ellipsoid height before being processed. If the destination coordinate system is geocentric, coordinates will be converted to geocentric after being processed.

 	
 Geocentric or ellipsoid height -> Orthometric height: Z values will be converted from ellipsoid height to orthometric (sea level) height given the specified geoid height grid. Z units will be the same as the horizontal units (or meters, for geographic coordinate systems). If the source coordinate system is geocentric, coordinates will be converted to geographic+ellipsoid height before being processed.

 Example: [Geocentric (datum A) ->] LL + ellipsoid height (datum A) -> LL + ellipsoid height (datum B) -> LL + orthometric height (datum B)

 	
 Orthometric height -> Geocentric or ellipsoid height: Z values will be converted from orthometric (sea level) height to ellipsoid height given the specified geoid height grid. Z units will be the same as the horizontal units (or meters, for geographic coordinate systems). If the destination coordinate system is geocentric, coordinates will be converted to geocentric after being processed.

 Example: LL + orthometric height (datum A) -> LL + ellipsoid height (datum A) -> LL + ellipsoid height (datum B) [-> Geocentric (datum B)]

 	NAD27 heights in NGVD29; NAD83 heights in NAVD88. VERTCON will be used to convert between NAD27 (NGVD29) and NAD83 (NAVD88). Z values have the same units as the horizontal units (or meters, for geographic coordinate systems).

 Geoid Height Grid (orthometric vertical handling only)

 This parameter determines which geoid height grid will be applied to the Z values.

 X, Y, Z Attributes

 Choose which X, Y, and Z attributes to reproject.

 Usage Notes

 	This transformer does not change the feature's coordinates – it only changes the values of the selected X, Y, and Z attributes (if they contain coordinate values).

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Coordinate Systems

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 CsmapReprojector

 Reprojects feature coordinates from one coordinate system to another using the CS-MAP library.

 Parameters

 Coordinate Systems

 Source and Destination Coordinate System

 If the specified source coordinate system is “Read from feature” or blank, the input feature’s coordinate system is used as the source. In this case, if the input feature doesn’t have a coordinate system, this transformer only sets the coordinate system of the feature to the destination coordinate system, and the coordinates of the feature remain unchanged.

 Transformation

 This parameter specifies what geographic transformation will be used to convert points from the source datum to the destination. If set to <Auto>or left blank, FME will attempt to choose an appropriate transformation. If set to <None>, the NULL_FME transformation will be used which does not alter the value of any coordinates.

 Note: <Auto> and <None> are GUI only values. Use the alternative blank string and NULL_FME respectively when passing in as an attribute.

 Vertical

 Vertical Handling

 This parameter determines how Z values will be handled:

 	Ignore heights and leave them unchanged: Z values will not affect the reprojection and will not be changed. This is the traditional behavior of the Reprojector transformer when the selected reprojection engine is “FME”.

 	Heights are relative to the ellipsoid(s) or geocentric: Z values will be treated as ellipsoid heights with the same units as the horizontal units (or meters, for geographic coordinate systems). If the source coordinate system is geocentric, coordinates will be converted to geographic+ellipsoid height before being processed. If the destination coordinate system is geocentric, coordinates will be converted to geocentric after being processed.

 	
 Geocentric or ellipsoid height -> Orthometric height: Z values will be converted from ellipsoid height to orthometric (sea level) height given the specified geoid height grid. Z units will be the same as the horizontal units (or meters, for geographic coordinate systems). If the source coordinate system is geocentric, coordinates will be converted to geographic+ellipsoid height before being processed.

 Example: [Geocentric (datum A) ->] LL + ellipsoid height (datum A) -> LL + ellipsoid height (datum B) -> LL + orthometric height (datum B)

 	
 Orthometric height -> Geocentric or ellipsoid height: Z values will be converted from orthometric (sea level) height to ellipsoid height given the specified geoid height grid. Z units will be the same as the horizontal units (or meters, for geographic coordinate systems). If the destination coordinate system is geocentric, coordinates will be converted to geocentric after being processed.

 Example: LL + orthometric height (datum A) -> LL + ellipsoid height (datum A) -> LL + ellipsoid height (datum B) [-> Geocentric (datum B)]

 	NAD27 heights in NGVD29; NAD83 heights in NAVD88: VERTCON will be used to convert between NAD27 (NGVD29) and NAD83 (NAVD88). Z values have the same units as the horizontal units (or meters, for geographic coordinate systems).

 Note that rasters can only be reprojected in 2D (that is, with Ignore heights and leave them unchanged).

 Geoid Height Grid (Orthometric Vertical Handling Only)

 This parameter determines which geoid height grid will be applied to the Z values of coordinates.

 Raster

 Interpolation Type (Raster Only)

 The Interpolation Type affects only raster data. Cell values are interpolated in order to change the raster to the specified size.

 	Nearest Neighbor is the fastest but produces the poorest image quality.

 	Bilinear provides a reasonable balance of speed and quality.

 	Bicubic is the slowest but produces the best image quality.

 	Average 4 and Average 16 have a performance similar to Bilinear and are useful for numeric rasters such as DEMs.

 Cell Size (Raster Only)

 The Cell Size applies only to raster features.

 	Stretch Cells: The cell size of the raster will be adjusted to maintain the same number of rows and columns in the reprojected raster as there were in the input raster.

 	Square Cells: The number of rows and columns as well as the spacing will be changed to maintain approximately the same cell ground area and form square cells where the horizontal and vertical cell sizes are equal.

 	Preserve Cells: Like the Square Cells option, this option will change both the number of rows and columns and the spacing to maintain cell ground area, but will also try to preserve the original cell aspect ratio, taking into account any warping caused by the reprojection.

 Dynamic Coordinate Systems

 If the destination coordinate system is specified as "_AZMEA_" or "_AZMED_", each input feature is reprojected to either an equal area or equal distance projection appropriate for that feature, respectively. In general, this causes a new coordinate system to be defined for each input feature.

 Each feature remembers which specific equal distance or equal area coordinate system it has, and can be safely reprojected back to a normal (non-dynamic) coordinate system.

 For example:

 There is an input feature representing a point on the earth in LL-WGS84 (normal lat/long).

 	The point is reprojected to _AZMED_ via a CsmapReprojector transformer. The Source Coordinate System parameter is set to LL-WGS84 and the Destination Coordinate System parameter is set to _AZMED_.

 	The x and y coordinates of the point are extracted into x1, y1.

 	Set x2 = x1 + 1000, and y2 = y1.

 	Add a vertex to the point to make the line (x1,y1) -> (x2,y2).

 	Reproject back to LL-WGS84 via a CsmapReprojector with the Source Coordinate System parameter set to ”Read from feature” and the Destination Coordinate System parameter set to LL-WGS84.

 You have now changed the point into a line extending 1km east of the original point, in lat/long.

 Dynamic coordinate systems have the following limitation:

 	Z is not considered, so areas or distances are best preserved for geometry at an ellipsoid height of 0 meters.

 Usage Notes

 	This transformer works with raster and vector data.

 	This transformer is unaffected by raster band and palette selection.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Coordinate Systems

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Curvefitter

 Smoothes lines derived from line segments, points or raster
 data, and replaces a series of line segments with the optimal combination
 of straight lines and embedded arc segments required to create smooth
 curving lines. This process provides a truer representation of real-world
 features and can reduce file sizes by up to 80%.

 In addition to processing simple line features, Curvefitter preserves
 feature topology when smoothing boundaries of adjacent area features.

 Before the advent of enhanced geometry, FME was forced to stroke arcs into
 line sections to be able to process that data. Many other GIS packages
 that did not support arcs also ended up forcing the stroking of arcs,
 the net results being a great amount of data that could be represented
 by arcs but isn't. The Curvefitter transformer will allow a user to replace
 such stroked line segments with true mathematical arc segments. It will
 likewise permit the replacement of surveyed line features with an arc
 representation.

 Dependencies

 The Curvefitter transformer is based on linear optimization technology
 licensed from TCI
 Corp. It is
 available for purchase as an add-on to premium editions of FME. Please contact sales@safe.com.

 Parameters

 Precision

 Precision is the main transformer
 parameter that guides the curve fitting process. It sets the maximum deviation
 allowed at any point along the polyline between the original and the resulting
 polyline.

 Flattening

 Allows
 very flat curves to be represented by straight segments. Any curve that
 has a mid-ordinate less than this amount will be replaced by a straight
 segment. A typical value is 10% of the precision setting.

 Compression Weight, Smoothness Weight, Accuracy Weight

 The values of the three Weight
 parameters determine the importance of the three factors relative to each
 other. Compression is the reduction
 in the number of vertices. Smoothness is the tangency of consecutive segments
 – how
 close the end angle of a segment is to the start angle of the next segment.
 Accuracy is how closely the resulting curve overlays the original.

 Preserve Shared Boundaries

 This parameter is useful when area features that form a coverage are sent into
 the transformer. If it is set to No, then each feature is considered independent
 of all others, and if any features shared boundaries, gaps or overlaps
 may be introduced. If
 it is set to Yes, then the input data is decomposed into boundary lines,
 these are Curvefitted, and then the areas are reassembled. In this case,
 no gaps will be created. If only linear or non-adjacent area features
 are input into the transformer, No is the best choice.

 Allow Arcs at Nodes

 Note that it is possible for the Curvefitter to introduce overlaps between
 areas with shared boundaries if a very large precision value is used.
 The chances of this happening can be reduced if this parameter is set to No, which prevents the Curvefitter from
 having any arcs starting or ending at a node.

 Flag Introduced Overlaps

 If this parameter
 is set to Yes, then any overlaps between features that are introduced
 by the Curvefitting are flagged with a point output via the Overlaps port.

 Curvefitter Applications and Functionality

 Using the Curvefitter, you can:

 	Compress file sizes by 30 - 80%

 	Smooth jagged polylines

 	Process adjacent area features

 	Restore arcs in legacy data

 	Automatically process data

 Example: Parcel Data

 [image: curvefitter_new.gif]

 Procedure

 A subset 6.1 MB Esri Shape file (provided by Grays Harbor County, in
 Washington State) was extracted and converted into four different formats:
 DWG file (3.8 MB), MapGuide SDF (4.5 MB), Esri Personal Geodatabase (5.4
 MB) and ArcGIS 9.2 File Geodatabase (1.89 MB).

 Each file was then processed using the following Curvefitter settings:
 Precision 0.1 feet; Flattening 0.1; Compression Weight 1; Smoothness Weight:
 1; Accuracy Weight: 1; Preserve Shared Boundaries: Yes.

 Parcel Data Test Results

 	Data Format
 	Before Curvefitter
 	After Curvefitter
 	File Size Reduction

 	AutoCAD DWG
 	3.8 MB
 	1.6 MB
 	58%

 	MapGuide SDF3
 	1.6 MB
 	4.5 MB
 	64%

 	Esri Personal Geodatabase
 	5.4 MB
 	4.8 MB
 	11%

 	Esri ArcGIS 9.2 File Geodatabase
 	1.89 MB
 	1.07 MB
 	77%

 External References

 For more information and examples, please see:

 	How to get the most from the Curvefitter

 	FMEpedia: Curvefitter.

 	Technology brief (PDF format) on Safe Software's website.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 FME Licensing Level

 This transformer is an extra-cost add-on to FME Professional Edition and above.

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.
Keywords: smooth smoother generalize generalizer

 DatabaseDeleter

 Delete rows in a database table based on the condition specified.

 Input Ports

 Input

 This transformer accepts any feature.

 Output Ports

 This transformer has no output ports.

 Parameters

 Writer Format and Dataset

 Select the format and dataset where the table resides, including any format-specific parameters.

 Table

 Specify the table to delete rows from. Click the Browse button to select the table from a list retrieved from the database. Note that you can only select this after you have completely specified the writer format, dataset, and format-specific parameters.

 Condition

 Specify how to identify the rows to delete. This can either be done through Match Column(s) or through a WHERE Clause.

 WHERE Clause

 Use a SQL WHERE clause to identify matching records to delete.
An example clause is the following:

 id = 'roads'

 Match On

 Specify the columns and their values used to identify matching records. A record match occurs when the contents of the row for the columns listed exactly equal the corresponding value.

 In the Table Column field, click the Browse button to select from a list of all the columns in the database table. Note this only works after you have completely specified the writer format, dataset, format-specific parameters, and picked a table.

 Usage Notes

 The DatabaseDeleter uses FME Writers to perform deletes on tables. Each DatabaseDeleter may have its own database connection, potentially not shared with other writers and transformers. If it is necessary to share a single connection or to change options on the writer that are not available in the DatabaseDeleter, use a writer directly instead.

 See FME Readers and Writers (formats supported by FME 2014) > Database Writer Mode or specific writer documentation for more information on how writers will respond to deleting rows.

 Unlike FME Writers, fme_db_operation and fme_where attributes are not supported on DatabaseDeleter input features.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Database

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 DatabaseUpdater

 Update fields in a database table based on the condition specified.

 Input Ports

 Input

 This transformer accepts any feature.

 Output Ports

 This transformer has no output ports.

 Parameters

 Writer Format and Dataset

 Select the format and dataset where the table resides, including any format-specific parameters.

 Table

 Specify the table to update. Click the Browse button to select the table from a list retrieved from the database. Note that you can only select this after you have completely specified the writer format, dataset, and format-specific parameters.

 Condition

 Specify how to identify the rows to update. This can either be done through Match Column(s) or through a WHERE Clause.

 WHERE Clause

 Use a SQL WHERE clause to identify matching records to update.
An example clause is the following:

 id = 'roads'

 Match On

 Specify the columns and their values used to identify matching records. A record match occurs when the contents of the record for the columns listed exactly equal the corresponding value.

 In the Table Column field, click the Browse button to select from a list of all the columns in the database table. Note this only works after you have completely specified the writer format, dataset, format-specific parameters, and picked a table.

 Columns to Update

 Specify which columns to update and the values to update them with. Columns not listed, that are disabled, or that are set to “<Do Nothing>” will not be updated.

 This table entry widget is automatically populated after a table is selected from the Browse button in the Table parameter.

 Click the Reload button, located at the right of the table entry widget, to repopulate the table with the columns from the database table. Note reloading only works after you have completely specified the writer format, dataset, format-specific parameters, and picked a table.

 Automatic population fills the table with columns and tries to set their values with a convenient initial state. If a column had a value prior to populating, that value will be maintained after populating. Columns not already mapped will default to incoming attributes of the same name if one exists, otherwise it will default to “Do Nothing”.

 Note that when the Condition parameter is Match Column(s), columns being matched on cannot also be updated. Instead, consider using a WHERE clause for the condition.

 Usage Notes

 The DatabaseUpdater uses FME Writers to perform updates on tables. Each DatabaseUpdater may have its own database connection, potentially not shared with other writers and transformers. If it is necessary to share a single connection or to change options on the writer that are not available in the DatabaseUpdater, use a writer directly instead.

 See FME Readers and Writers (formats supported by FME 2014) > Database Writer Mode or specific writer documentation for more information on how writers will respond to updating existing rows.

 Unlike FME Writers, fme_db_operation and fme_where attributes are not supported on DatabaseUpdater input features.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Database

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 DateFormatter

 Reformats and replaces date or time strings into
 a new date format.

 The source string must be in a date and/or time format supported by the transformer. For additional information, see the Date Format parameter and the Usage Notes.

 The DateFormatter does not currently support dates earlier than 1902.

 Parameters

 Date Attributes

 Choose the attributes to reformat and replace.

 Source Date Format

 Specified the expected format of the source date. See the ‘Date Format Symbols’ section for details on how to specify the date.

 If you do not know the format, select Unknown – Automatic Detection and the system will try to interpret values as a date. It is recommended whenever possible to provide the Source Date Format to avoid unexpected results. In particular, when using ISO8601 point-in-time specifications, the output could vary depending on the local timezone, if the timezone information is not part of the data/time string.

 Destination Date Format

 The destination format that valid dates are converted to. See the ‘Date Format Symbols’ section for details on how to specify the date.

 Set Invalid Date Attributes To

 If the value of the attribute does not match the specified Source Date Format, it will be considered invalid and set to the specified value. If Do Nothing is chosen, the value of the attribute will be left ‘as is’ without being modified.

 Since the DateFormatter supports relative dates, dates that match the format but can overflow are considered to be valid. For example, if the Source Date Format is set to %Y%m%d, an attribute with value ‘20090133’ will be set to ‘20090202’. However, if the Source Date Format is %Y%m%d%H%M%S, an attribute with value ‘20090133’ will be considered an invalid date.

 Date Format Symbols

 The format specifiers determine the format for the destination and source date format parameters.

 	
 "-"

 	
 Quoted strings (%Y"-"%m"-"%d)

 	
 %%

 	
 Insert a percent symbol (%)

 	
 %a

 	
 Abbreviated weekday name (Mon, Tue, etc.).

 	
 %A

 	
 Full weekday name (Monday, Tuesday, etc.).

 	
 %b

 	
 Abbreviated month name (Jan, Feb, etc.) (same as %h).

 	
 %B

 	
 Full month name.

 	
 %c

 	
 Locale specific date and time. The format for date and time in the default
 "C" locale on UNIX/Mac is "%a %b %d %H:%M:%S %Y".
 On Windows, this value is the locale specific long date and time, as specified
 in the Regional Options control panel settings.

 	
 %C

 	
 First two digits of the four-digit year (19 or 20).

 	
 %d

 	
 Day of month (01 - 31).

 	
 %D

 	
 Date as %m/%d/%y.

 	
 %e

 	
 Day of month (1 - 31), no leading zeros.

 	
 %h

 	
 Abbreviated month name (Jan, Feb, etc.) (same as %b).

 	
 %H

 	
 Hour in 24-hour format (00 - 23).

 	
 %I

 	
 Hour in 12-hour format (01 - 12).

 	
 %j

 	
 Day of year (001 - 366).

 	
 %k

 	
 Hour in 24-hour format, without leading zeros (0 - 23).

 	
 %l

 	
 Hour in 12-hour format, without leading zeros (1 - 12).

 	
 %m

 	
 Month number (01 - 12).

 	
 %M

 	
 Minute (00 - 59).

 	
 %n

 	
 Insert a newline.

 	
 %p

 	
 AM/PM indicator.

 	
 %r

 	
 Time in a locale-specific "meridian" format. The "meridian"
 format in the default "C" locale is "%I:%M:%S %p".

 	
 %R

 	
 Time as %H:%M.

 	
 %s

 	
 Count of seconds since the epoch, expressed as a decimal integer.

 	
 %S

 	
 Seconds (00 - 59).

 	
 %t

 	
 Insert a tab.

 	
 %T

 	
 Time as %H:%M:%S.

 	
 %u

 	
 Weekday number (Monday = 1, Sunday = 7).

 	
 %U

 	
 Week of year (00 - 52), Sunday is the first day of the week.

 	
 %V

 	
 Week
 of year according to ISO-8601 rules. Week 1 of a given year is the week
 containing 4 January.

 	
 %w

 	
 Weekday number (Sunday = 0, Saturday = 6).

 	
 %W

 	
 Week of year (00 - 52), Monday is the first day of the week.

 	
 %x

 	
 Locale-specific date format. The format for a date in the default "C"
 locale for UNIX/Mac is "%m/%d/%y". On Windows, this value is
 the locale-specific short date format, as specified in the Regional Options
 control panel settings.

 	
 %X

 	
 Locale-specific 24-hour time format. The format for a 24-hour time in
 the default "C" locale for UNIX/Mac is "%H:%M:%S".
 On Windows, this value is the locale-specific time format, as specified
 in the Regional Options control panel settings.

 	
 %y

 	
 Year without century (00 - 99).

 	
 %Y

 	
 Year with century (e.g. 1990)

 	
 %Z

 	
 Time zone name.

 Automatic Detection

 Using Automatic Detection

 When using automatic detection:

 	The source date is assumed to be in a standard date and/or time string, which can include standard time zone mnemonics. If only a time is specified, the current date is assumed. If the string does not contain a time zone mnemonic, the local time zone is assumed.

 	In
 a numerical date such as 10/11/99, the first number is always interpreted
 as the month. (So the given date is October 11, not November 10.) A date
 such as 13/1/05 will therefore produce an error, because 13 is an invalid
 month. If the date is known to be of the form DD/MM/YY, the Source Date Format parameter should be used to specify the format as %d/%m/%y.

 	Each
 date is treated on a feature-by-feature basis; no attempt is made to determine
 a common format amongst all input.

 	Relative Dates: The DateFormatter can accept relative dates as an input string. For example, if today is Monday, 25-Oct-2010, it can convert next thursday to "28-Oct-2010" or three years ago to "25-Oct-2007". See the FMEpedia link below for workspace examples.

 	If the source attribute is a 14-digit number and Source Date Format is set to Unknown – Automatic Detection, its format will be interpreted as YYYYMMDDHHMMSS, as formatted by the Oracle reader.

 	The source date can consist of zero or more specifications of the following types:

 	Type
 	Description

 	Time
 	
 Time of the day. Acceptable formats are:

 hh[:mm[:ss]]
 [meridian] [zone]

 hhmm [meridian]
 [zone]

 If no meridian is specified, hh
 is interpreted on a 24-hour clock.

 Warning: An integer less than 24 will be interpreted as an
 hour, with the date assumed to be today's date. Therefore, an input of
 "0" is taken to mean "today at midnight." If zero
 values are to be considered invalid, they must be filtered using a Tester
 before reaching the DateFormatter.

 	Date
 	
 A specific month and day with optional year. The acceptable formats
 are:

 mm/dd[/yy]

 monthname
 dd [, yy]

 dd monthname [yy]

 day (e.g., Monday)

 The default year is the current year.
 If the year is less than 100, we treat the years 00-68 as 2000-2068 and
 the years 69-99 as 1969-1999.

 Note: Some older UNIX and Windows platforms cannot represent the years
 38-70, so an error may result if these years are used.

 	ISO 8601 point-in-time
 	
 An ISO 8601 point-in-time specification, such as YYYYMMDDThhmmss,
 where T is the literal T, YYYYMMDD hhmmss, or YYYYMMDDThh:mm:ss.

 Note: Output may vary depending on your local timezone if timezone information is not part of the date/time specification.

 	Relative time
 	
 A specification relative to the current time. The format is number unit. Acceptable units are year; fortnight; month; week; day; hour; minute (or min); second (or sec).

 The unit can be specified as a singular or plural, as in
 3 weeks. These modifiers may also be specified: tomorrow; yesterday; today; now; last; next; ago.

 The actual date is calculated according to the following steps. First,
 any absolute date and/or time is processed and converted. Using that time
 as the base, day-of-week specifications are added. Next, relative specifications
 are used. If a date or day is specified, and no absolute or relative time
 is given, midnight is used. Finally, a correction is applied so that the
 correct hour of the day is produced after allowing for daylight savings
 time differences and the correct date is given when going from the end
 of a long month to a short month. Daylight savings time correction is
 applied only when the relative time is specified in units of days or more,
 i.e., days, weeks, fortnights, months or years.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Deaggregator

 Decomposes an aggregate feature into its components.

 Each output feature may keep a complete, unaltered copy of the source feature's attributes.

 Output Ports

 Deaggregated

 All deaggregated features, as well as features that could not be deaggregated, will be output via this port.

 Parameters

 Mode

 Flatten One Level: this option will break an aggregate feature into child parts one level deep then output each child part as a feature. That is, nested geometries will be deaggregated at the top level.

 Flatten All Levels: this option will break a nested aggregate into child parts at all levels then output each leaf (a part that has no children) as a feature. That is, nested geometries will be deaggregated recursively and only leaf nodes are output.

 Preserve Hierarchy: this option will break a nested aggregate into child parts at all levels then output each part as a feature. That is, nested geometries will be deaggregated recursively and all child parts are output. ID information is added to each output feature to preserve the input hierarchy information.

 Split Composites

 If set to No, Composite Surfaces and Composite Solids will be treated as singleton geometries and will be output unchanged.

 If set to Yes, the individual surfaces from a Composite Surface will be output, and the individual solids from a Composite Solid will be output.

 Explode Instances

 If set to No, Geometry Instances will be treated as singleton geometries and will be output unchanged.

 If set to Yes, Geometry Instances will be exploded, or instantiated in place.

 To explode geometry instances recursively, set Mode to Flatten All Levels or Preserve Hierarchy.

 Part Number Attribute

 If Part Number Attribute is specified, then each deaggregated output feature is given an attribute containing the part's index within the original aggregate geometry.

 List Attribute To Explode

 The specified list attribute is exploded to transfer attributes to each part of the aggregate.

 When a list is exploded, it is automatically removed. To preserve an exploded list, consider cloning the list using the ListCopier.

 Geometry Name Attribute

 For geometries that have names, supplying the Geometry Name Attribute will set the attribute to the name of the deaggregated geometry part.

 ID Selection

 In Preserve Hierarchy mode, the user may decompose hierarchical geometries and attach either ID and Parent ID, ID and Child ID, or all three sets of ID information. If a hierarchical geometry were to be represented as a tree, then each tree node would have a unique ID. Each node would refer to its parent by Parent ID and its children by child IDs.

 ID Attribute

 The attribute that uniquely identifies each output node feature.

 Parent ID Attribute

 The attribute that identifies a node feature’s parent node.

 Child ID List Attribute

 The list attribute that identifies all child nodes of a node.

 Copy Attributes To

 Every Node: input attributes are copied onto every output node feature.

 Root Node Only: input attributes are copied only onto root nodes.

 Example

 Geometric Representation

 [image: deaggregator.png]

 Data Structure Representation

 [image: deaggregator2.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Collectors

 FMEpedia

 This FMEpedia example incorporates the Deaggregator to extract a particular feature from a 3D model.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Decelerator

 Slows down the flow of features through the workspace.

 Parameters

 Processing Slowdown Method

 Choose from Per Feature Delay or Limit Features Per Second.

 Delay Per Feature (Seconds)

 Each feature will be delayed by the number of seconds specified.

 Maximum Features Per Second

 The transformer will ensure that no more than that number of features are output each second (however, no guarantee is made that any pair of sequential features will have the same time gap between them).

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Web Services

 Transformer Type

 Feature-based

 Related Transformers

 This transformer is commonly used in conjunction with the HTTPFetcher to slow down web requests and avoid overwhelming the target server.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 DecimalDegreesCalculator

 Calculates a decimal degree value from separate degrees, minutes, and
 seconds (DMS) values, stored in attributes.

 Parameters

 Degrees, Minutes and Seconds Attributes

 After connecting this transformer, choose the attribute that contains each of the degrees, minutes, and seconds attributes. The minutes and seconds values must always be positive.

 If these parameters are contained in a single attribute, see Usage Notes below.

 Destination Degrees Attribute

 The name of the attribute used to store the calculated decimal degree value.

 Usage Notes

 If the degrees/minutes/seconds are together in a single attribute, they
 can be parsed apart using the StringSearcher transformer.

 For instance, if the attribute has the format:

 -DDDMMSS.SS°

 the following regular expression could be used in the StringSearcher
 to parse it into a list attribute with three elements:

 ^(-?[0-9]+)([0-9][0-9])([0-9][0-9][.][0-9]*)

 The three elements could then be exposed and used as input to this transformer.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: latitude longitude degrees minutes seconds

 DEMDistanceCalculator

 Calculates the distance between a number of input vector lines and the elevation values of a reference DEM raster, and outputs a new DEM raster per input line.

 The data contained in the resulting DEM consists of the 3D distance
 between the line being considered and the corresponding point on the reference
 DEM.

 Parameters

 Group By

 Use this parameter to organize lines into groups, with each group of lines having its own reference
 DEM.

 Usage Notes

 This transformer supports raster band and palette selection. The RasterSelector can be used to modify selection.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.
Keywords: raster band palette vector distance DEM

 DEMGenerator

 Constructs a Delaunay triangulation based on input points and breaklines. That triangulation is then uniformly sampled to produce a digital elevation model (DEM points).

 Input Ports

 Points/Lines

 These input features may be 2D or 3D, and may reside inside a raster, a point cloud, or other aggregate structures. 2D features will be forced to 3D by adding a z value of 0. In most cases, all points extracted from this port will be found in the vertex pool of the underlying surface model. A minimum of 3 unique points are required to construct a surface model. Points with duplicate x and y values will be dropped.

 Breaklines

 These input features may be 2D or 3D, and may reside inside an aggregate structure. 2D features will be forced to 3D by adding a z value of 0. Breakline edges will be found in the edge pool of the underlying surface model. Sometimes, a breakline edge will be split up to allow an optimal triangulation of the surface model. Points with duplicate x and y values will be dropped.

 Output

 DEMPoints

 This output port samples the underlying surface model according to the sampling rates specified in Output DEM X Cell Spacing, and Output DEM Y Cell Spacing, and produces a set of evenly spaced 3D points.

 Parameters

 Group By

 This parameter allows groups to be formed by attribute values. Zero or more attributes may be specified.

 Input features with the same attribute values are placed into the same group. The transformer then operates independently on each group of input features.

 If this parameter is left blank, the transformer will treat the entire set of input features as one group.

 Parallel Processing Level

 How parallel processing works with FME: see About Parallel Processing for detailed information.

 This parameter determines whether or not the
transformer should perform the work across parallel processes. If it is enabled, a process will be launched for each group specified by the Group
By parameter.

 Parallel Processing Levels

 	Parameter
 	Number of Processes

 	No Parallelism
 	1

 	Minimal
 	cores1 / 2

 	Moderate
 	exact number of cores

 	Aggressive
 	cores x 1.5

 	Extreme
 	cores x 2

 For example, on a quad-core machine, minimal parallelism will result in two simultaneous FME processes. Extreme parallelism on an 8-core machine would result in 16 simultaneous processes.

 You can experiment with this feature and view the information in the Windows Task Manager and the Workbench Log window.

 Surface Tolerance

 This parameter is used to determine which input points to add to the surface model as vertices. Specifying a value of 0 turns off vertex filtering.

 Tip: A larger value will speed up surface model construction. The larger the value, the more input points will be filtered out. For input files with millions – or even billions – of points, it becomes essential to increase this value.

 When a positive value for surface tolerance is specified, it works as follows. For each vertex that is being added to the model:

 	If the x,y location is outside the 2D convex hull of the existing surface model, it is added to the model.

 	If the x,y location is inside the 2D convex hull of the existing surface model:	The difference between the z value from the existing surface model and the z value of the vertex is calculated.
	This difference is compared to the surface model tolerance.
	The vertex is only added to the surface model if the difference is greater than the surface tolerance; otherwise, the vertex is discarded.

 Interpolation Method

 This parameter is used for the output ports DEMPoints and DEMRaster when these output ports exist on the transformer. It is also used if DrapeFeatures are input to the model.

 	AUTO: The transformer will calculate each output point automatically. The PLANAR method is used if the output point is within a surface triangle in xy and the CONSTANT method is used otherwise.

 	PLANAR: Barycentric interpolation is used to determine the z value for each output point. If an output point is outside the 2D convex hull of the surface model, the output z value will be set to NaN (Not a Number).

 	CONSTANT: The z value of each output point is set to the z value of the closest vertex in the underlying model.

 Output Elevation Attribute

 This parameter specifies the name of an elevation attribute for the output ports Contours and DEMPoints, when these output ports exist on the transformer.

 Output DEM X Cell Spacing, Output DEM Y Cell Spacing

 These parameters specify the x and y sampling intervals for the output DEMPoints.

 Usage Notes

 Use the RasterDEMGenerator if a DEM is destined to be sent to a raster format,
 or if further raster processing is required.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Surfaces

 FME Licensing Level

 FME Professional Edition and above

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.
1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 Densifier

 Adds vertices to each feature by interpolating new coordinates at fixed intervals.

 Tip: This transformer is often used to densify features before reprojection. By adding vertices to long linear segments, the densified feature may better represent the original feature in a different coordinate system.

 Parameters

 Mode

 Uniform Interval: For each input line segment, the densified segment will have newly added vertices evenly spaced apart.

 The interval may vary from segment to segment. For each segment, the uniform interval closest to the specified Interval parameter will be chosen.

 Tip: Use this mode if short line segments are undesirable in densified features

 Exact Interval: For each input line segment, new vertices are added at the specified interval.

 Interval

 This parameter defines the exact or approximate distance by which to add vertices.

 Example

 [image: densifier.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: "line thinning" weeding

 DensityCalculator

 Determines the density of a group of Candidate features.

 Density is a measurement of Candidate values per unit area. It is calculated as a numeric value; the greater the value, the more dense are the Candidate features.

 The density equation is Total Candidates/Area of Interest.

 Total Candidates is defined by either:

 	The total NUMBER of Candidate features

 	The sum LENGTH of Candidate features

 	The sum Area of Candidate features

 Area of Interest is defined by the size of the first polygon feature that enters the Area input port.

 Caution

 It’s VERY important to note that ALL Candidate features count towards the density calculation, even if they fall outside the Area feature.

 In other words, this transformer does not test whether or not candidate objects are inside the Area feature. If you wish to use only Candidate features that lie within, or overlap, the Area feature, you should pre-process the data using either a SpatialFilter or SpatialRelator transformer.

 Input Ports

 Area

 A single reference feature covering the area of interest.

 Candidate

 A series of Candidate features.

 Output Ports

 Area

 The original Area feature(s) with the Density Attribute added. Its value will be the sum of the corresponding Candidate features (their number, length, or area) divided by the area of this feature itself.

 Candidate

 The original Candidate features with the Density Attribute added. Each Candidate in a group will receive the same density value: the sum of the Candidate features in that group divided by the area of the first corresponding Area feature.

 Parameters

 Group By

 If this parameter is not specified, then ALL Candidate features form a single group, and are processed against a single Area feature. This is the default behaviour.

 When an attribute is specified for this parameter, then groups are formed where they have matching attribute values. This allows you to process multiple groups of Candidate features against multiple Area features.

 Calculate Density By

 This parameter determines how the total candidates value is calculated. Its possible values are:

 	Number of Features

 	Line Length

 	Area

 Typically, the relationship between this parameter and Candidate geometry is as follows:

 	Candidate Geometry
 	Calculate Density By

 	Points
 	Number of Features

 	Lines
 	Line Length

 	Polygon (Area)
 	Area

 When the Candidate geometry does not match what is required – for example, point features when Calculate Density By equals Area – then the features are ignored (but still output).

 Density Attribute

 This parameter defines the attribute that is to receive the calculated density value. The default is _density.

 Usage Notes

 	
 The geometry type of Candidate features may be points, lines, or polygons. However, Area features must be polygons.

 	
 If excess Area features are supplied – i.e. there is more than one Area feature for a particular group – then they are excluded from the calculation of density for Candidates. However, they will still receive their own density calculation. In other words, each Area receives the density of Candidate features for their own size; but Candidate features only receive their density in relation to the size of the first Area feature.

 	
 If you need to find the density of Candidate features against the total area of a number of polygon features, use an Aggregator to aggregate the polygons and input the resulting aggregate to the Area port of this transformer.

 Example

 There are many possible uses for this transformer, including:

 Density of disease (number of incidences per km2)

 Density of traffic network (amount of road length per km2)

 Density of land use (amount of industrial zoning per km2)

 In this example, the density of cycle route network is calculated for a particular zipcode (postal code).

 [image: densitycalculator1.png]
 [image: densitycalculator2.png]

 Area of zipcode: 195355642.75 ft2

 Total length of cycle route: 83017.28 ft

 Density: 0.000425

 In this example, the cycle routes spatially overlap with the zipcode boundaries, and are clipped to match, but the DensityCalculator does not necessarily need this to be so.

 [image: densitycalculator3.png]

 If there were multiple zipcode features to be processed, then a group-by could be used in the DensityCalculator, using the zipcode attribute as the attribute to group-by. The result would be a count of the cycle route density for each zipcode.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 Related Transformers

 SpatialRelator

 FME Licensing Level

 FME Professional edition and above

 FMEpedia

 See FMEpedia for more information on this transformer.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 DGNStyler

 Prepares features for output to Bentley Microstation Design V7/V8 by providing a convenient interface to set a variety of Bentley Microstation Design format-specific attributes.

 Parameters – Color

 Color By Level

 This parameter specifies that the pen color will be set by the color of the level specified on an FME Feature, rather than by the RGB color or Index color. (Note that this parameter is only supported by the V8 version of the Design writer.)

 Format attribute set: igds_color_set_bylevel

 Color Type

 This parameter specifies format of the color to use. This applies to both the pen color and the fill color which are together used to render the feature.

 RGB Color

 This parameter specifies the pen color that will be used to render the feature. The pen color determines the color of lines, and area boundaries. To edit this parameter, click the browse button to the right of the text field.

 Format attribute set: fme_color

 Note that when this parameter is specified, the igds_color attribute is removed from the feature and fme_color is set. This is because igds_color overrides fme_color if they are both present.

 RGB Fill Color

 This parameter specifies the fill color that will be used for the feature. The fill color determines the color used within the boundary of area features. To edit this parameter, click the browse button to the right of the text field.

 Format attribute set: fme_fill_color

 Note that when this parameter is specified, the igds_fill_color attribute is removed from the feature and fme_fill_color is set. This is because igds_fill_color overrides fme__fill_color if they are both present.

 Index Color

 This parameter specifies the index of a pen color in a table of colors. The indexed color will be used for the feature. The pen color determines the color of lines, and area boundaries. This parameter can be set to integer value between 0 and 255.

 Format attribute set: igds_color

 Index Fill Color

 This parameter specifies the index of a fill color in a table of colors. The indexed color will be used for the feature. The fill color determines the color used within the boundary of area features. This parameter can be set to integer value between 0 and 255.

 Format attribute set: igds_fill_color

 Parameters – Cells

 If this section is active, point features will be turned into cells and given a cell name, rotation, and size.

 Features with other geometry types will not be affected by settings in this section.

 Format attributes set: igds_type to igds_cell or igds_shared_cell

 Cell Library File

 This optional parameter is used to specify the name of an existing Bentley Microstation Design Cell file that will be used by the transformer as a source for cell names. It is not used by the actual Design writer – the cell library file must be specified in the writer’s parameters and should contain the same cell names as the file specified here. Most often, the same file will be used in both the transformer and the writer. Further note that if no cells are to be used, then this parameter can be left blank.

 Cell Name

 Cell Name specifies the cell that will be placed at the point location. Click the browse button to pick the name from the set of cells defined in the cell library file.

 Format attribute set: igds_cell_name

 Cell Mode

 This parameter specifies how a cell will be written. If a value of Library is specified, an igds_cell element is created which is expected to reference a cell definition in the cell library file. Otherwise, if a value of Shared (V8 Only) is specified, then an igds_shared_cell element is created in the destination which does not refer to a cell definition in the cell file definition. (Note that the Shared value for this parameter is only supported by the V8 version of the Design writer.)

 Format attribute set: igds_type to igds_cell or igds_shared_cell

 Relative Graphic Cells

 This parameter specifies if the graphic cells are to be created as relative graphic cells. Relative graphic cells map the cell members with the lowest level number to the current cell feature's level which becomes a base level for the relative graphic cell. All the subsequent cell members have their levels offset according to the base level. This does not apply to point or shared cells. (Note that this parameter is only supported by the V8 version of the Design writer.)

 Format attribute set: igds_is_graphic_cell_relative

 Cell Rotation

 Cell Rotation specifies rotation of the cell (in degrees counterclockwise from horizontal). This can be set to any floating point value between -360.0 to 360.0, or be set to a value taken from an attribute.

 Format attribute set: igds_cell_rotation

 Cell Size By

 Cell Size By indicates how the size of the cell will be specified. If master units are chosen, then the cell will be scaled so that its range in x, y, and z covers the specified amounts. If scale factor is chosen, then the amounts in x, y, and z specify the scaling which will be applied to the cell in each of the three axes.

 X

 X specifies the sizing amount for the x axis, which can be a floating point value or taken from an attribute. Its meaning is dependent on the Block Size By setting described above.

 Format attributes set: igds_cell_x_scale (if Cell Size By is Scale Factor); igds_cell_size_x (if Cell Size By is Master Units)

 Y

 Y specifies the sizing amount for the y axis, which can be a floating point value or taken from an attribute. Its meaning is dependent on the Block Size By setting described above.

 Format attributes set: igds_cell_y_scale (if Cell Size By is Scale Factor); igds_cell_size_y (if Cell Size By is Master Units)

 Z

 Z specifies the sizing amount for the z axis, which can be a floating point value or taken from an attribute. Its meaning is dependent on the Block Size By setting described above.

 Format attribute set: igds_cell_z_scale (if Cell Size By is Scale Factor)

 Parameters – Lines

 If this section is active, then linear features will be prepared for output to Bentley Microstation Design.

 Features with other geometry types will not be affected by settings in this section.

 Line Weight

 Line Weight specifies an index in the range 0 to 31 which designates the width or thickness of the lines used to render a graphic element. In addition, the line weight may be set to ByLevel, which specifies that the line weight be set by the level specified on an FME Feature. Click the browse button to pick from a visual representation of the possible values.

 Format attribute set: igds_weight and igds_weight_set_bylevel

 Line Style

 Line Style specifies an index in the range 0 to 7 which designates the style of the lines used to render a graphic element. In addition, the line style may be set to ByLevel, which specifies that the line style be set by the level specified on an FME Feature. Click the browse button to pick from a visual representation of the possible values.

 Format attribute set: igds_style and igds_style_set_bylevel

 Additional References

 For more information about DWG/DXF styling:

 	See the Bentley Microstation Design Reader/Writer > Feature Representation section in the FME Readers and Writers manual. In Workbench, select Help > FME Readers and Writers Reference.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Stylers

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 DimensionExtractor

 Returns the dimension of an attached feature as a new attribute.

 Parameters

 Dimension Attribute

 The name of the attribute. The attribute
 will hold either 2 or 3.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.
Keywords: 2D 3D two-dimensional three-dimensional elevation height coordinate

 DirectTweeter

 Sends a Twitter™ direct message from Workbench.

 Output Ports

 Message

 Upon successful completion of a direct message, the feature will be output through the Message output port, and will have several new attributes:

 _twitter_response: Contains the JSON response text from the server. The value of this attribute can be explored using the JSONFragmenter or JSONExtractor transformers.

 _twitter_message_id: Contains the integer ID of the direct message.

 Error

 If a status update could not be sent, the feature will be output through the Error output port, and will have the following new attributes:

 _twitter_response: If a response was received from the Twitter server, it will be stored in this attribute.

 _twitter_error: If the Twitter response contained an error message, it will be stored in this attribute.

 Parameters

 Message Parameters

 Message Text

 The message text, or the name of an attribute containing the message text, can be entered in the Message Text parameter.

 Message Recipient

 The message recipient, or the name of an attribute containing the recipient can be entered in the Message Recipient parameter.

 Authentication Parameters

 Twitter Username and Password

 Enter a Twitter account username and password.

 Proxy Parameters

 Proxy URL, Port, Username, Password, Authentication Method

 These optional parameters may be set for organizations that require Internet access via an HTTP proxy server.

 Related Transformers

 JSONFragmenter

 JSONExtractor

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Web Services

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Displacer

 Solves proximity conflicts between features using a variant of the Nickerson displacement algorithm. This transformer is usually used after generalization.

 Input and Output Ports

 The features routed into the transformer through the Base port are geometrically frozen (cannot move).

 The features routed in through the Candidate port are compared against the Base feature(s), displaced as necessary, and exit through the Displaced port. If no displacement occurred, they exit through the Untouched port.

 Each comparison/displacement is independent of the others.

 Base features with geometries other than point, curve or area (polygon or ellipse or donut) will exit through the InvalidBase port. Candidate features with geometries other than point, curve or simple area (polygon or ellipse) will exit through the InvalidCandidate port.

 The ExtraBase port holds extra Base features as described in the Base Type parameter below.

 Parameters

 Group By

 You can use this option to narrow down which candidate features to compare with which base features.

 Stiffness

 Specifies how much the displacement at one point in the candidate feature's geometry should affect the neighboring points. A lower value means that the candidate geometry can be deformed easily, while a higher value means that it will try its best to keep its original shape.

 Minimum Separating Distance

 The Minimum Separating Distance parameter specifies the minimum separating distance between the candidate feature's geometry and the base feature's geometry after displacement.

 Displace Endpoints

 The Displace Endpoints parameter specifies whether or not to displace the endpoints of candidate features whose geometries are unclosed lines.

 Base Type

 The Base Type parameter specifies whether only a single Base feature will be used, or whether all Base features will be used. If Bases First is selected, then the transformer assumes that all Base features will enter the transformer before any Candidate features. Any further Base features that arrive after the first Candidate will be output through the ExtraBase port. The same goes for any Base features after the first when in Single Base mode.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Related Transformers

 Generalizer

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: displacement resolve conflict generalization Nickerson generalize

 Dissolver

 Dissolves area features by removing common boundaries to create larger
 areas. Input attributes may be accumulated.

 Input Ports

 	This transformer accepts two-dimensional polygonal features, including donuts. These polygonal features are broadly referred to as polygons.

 	Aggregate input will be deaggregated by the transformer. Attributes on the aggregate feature will be propagated to its parts.

 Tip: If part-specific attributes, such as areas, need to be computed and preserved, please deaggregate before dissolving.

 Because aggregates are deaggregated inside the Dissolver, it is possible that the number of output features will exceed the number of input features.

 	Dissolved polygons are formed when shared edges and interior edges between adjacent polygons are removed.

 Output

 Area

 Dissolved polygon features with specified attributes.

 InteriorLine

 Linear features that represent the portions of the input polygons which are not part of the output dissolved polygon.

 <Rejected>

 Non-polygonal features are output via this port.

 Parameters

 Group By

 The input polygonal features may be partitioned into groups for dissolving by using the Group By parameter. If this parameter is not specified, then all input features are processed together. The Group By parameter enables a single factory to dissolve several sets of potentially overlapping polygons.

 Parallel Processing Level

 How parallel processing works with FME: see About Parallel Processing for detailed information.

 This parameter determines whether or not the
transformer should perform the work across parallel processes. If it is enabled, a process will be launched for each group specified by the Group
By parameter.

 Parallel Processing Levels

 	Parameter
 	Number of Processes

 	No Parallelism
 	1

 	Minimal
 	cores1 / 2

 	Moderate
 	exact number of cores

 	Aggressive
 	cores x 1.5

 	Extreme
 	cores x 2

 For example, on a quad-core machine, minimal parallelism will result in two simultaneous FME processes. Extreme parallelism on an 8-core machine would result in 16 simultaneous processes.

 You can experiment with this feature and view the information in the Windows Task Manager and the Workbench Log window.

 Dissolve Count Attribute

 The attribute identified by this parameter will store the number of input polygons dissolved into an output polygon.

 For example, if 3 input polygons dissolved into 1 polygon, then that 1 polygon would have this attribute set to 3.

 Keep Input Attributes

 If set to No, no attributes from input polygons will be preserved, except those specified explicitly through the transformer parameters (for example, Group By, Attributes to Sum, List Name, etc.).

 If set to Yes, all attributes from input polygons will be merged onto the resulting dissolved polygon. If there are conflicts, attributes from input polygons will be preserved in a two-step process:

 	First, attributes from one of the polygons with the largest area will be copied onto the output polygon.

 	Second, attributes from all other input polygons will be copied, without overwrite, onto the output polygon.

 List Name

 This parameter specifies the name of a list into which the attributes of the input features are stored. Attributes from a feature with the largest area are stored at the head of the list, and no order is defined for the remaining elements.

 For example, if 3 input polygons are dissolved into 1 polygon, then that 1 polygon would have a list with 3 entries, each containing a set of attributes from one of the 3 input polygons.

 Note: List Name will accumulate input attributes into the specified list regardless of the value of Accumulate Attributes from Input.

 Attributes to Sum

 Any attributes specified in this field will undergo statistical accumulation.

 For example, if two input polygons have an attribute “salary” set to 30000 and 50000, then summing them would result in a “salary” of 80000 on the aggregate output.

 Attributes to Average

 Any attributes specified in this field will undergo statistical accumulation.

 For example, if two input polygons have an attribute “salary” set to 30000 and 50000, then averaging them would result in a “salary” of 40000 on the aggregate output.

 Attributes to Average, Weighted by Area

 Any attributes specified in this field will undergo statistical accumulation.

 For example, if two input polygons have an attribute “salary” set to 30000 and 50000, and the second polygon was 3 times larger than the first polygon, then the weighted average would be 45000.

 Attributes to Average, Weighted by Area may produce non-numeric results if some input features have zero, or no area.

 Assume Input is Clean

 No: It is assumed that either input areas are not properly noded, or they have areal overlaps. Two areas that do not have an areal overlap can still be improperly noded if their boundaries overlap but do not have the same coordinates. In this case, a cleaning operation will precede the dissolve operation.

 Yes: It is assumed that input areas are properly noded and contain no areal overlaps, so the cleaning operation will not be performed. If the input areas are not clean, this transformer may produce unexpected results.

 Example

 The example below shows areas before and after a Dissolver transformer was used.

 [image: dissolver.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: aggregate aggregation "technology preview"

 1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 DMSCalculator

 Calculates degrees, minutes, and seconds (DMS) from a decimal degrees
 value stored in an attribute.

 Parameters

 Source Attribute

 Choose the source attribute that contains the decimal degrees value.

 Degrees, Minutes, Seconds Attributes

 The resulting DMS values are stored in attributes that have these names.

 If the decimal degrees value was negative, the resulting
 degrees value will be negative, but the minutes and seconds values will
 be positive.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: latitude longitude degrees minutes seconds

 DonutBridgeBuilder

 Builds connections between donut holes with the outer boundary of a
 donut, resulting in a polygon-equivalent representation of the input donut.

 A single, connected path visits the boundary and each donut hole exactly
 once and guaranteed to not cross over itself completely if the input feature is properly oriented. This action is performed on all donuts contained in an input feature.

 The transformer outputs unmodified features at the Invalid port when
 a feature contains a donut with faulty topology (such as a hole lying
 outside of an outer boundary).

 Example

 The generated polygon boundary will have shared, overlapping boundary segments where the rings connect to each other.

 [image: donutbridgebuilder.png]

 Another example shows a county in Washington, USA, consisting of several islands. The islands are cut from an expanded bounding box, and the workspace converts the remaining donut into a polygon:

 [image: donutbridgebuilder1.png]

 You can find example workspaces by searching DonutBridgeBuilder on FMEpedia.

 Parameters

 None

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 DonutBuilder

 Cuts holes in polygonal features by making polygons completely enclosed
 in other polygons into holes of the containing polygon.

 The DonutBuilder assumes that the input area features are topologically clean. Further, it is assumed that any two input polygons within a group either have a strict containment relationship, or are not overlapping.

 Aggregate features are decomposed recursively to their components and
 non-area features will be output via the Invalid port.

 Parameters

 Group By

 The default behavior is to use the entire set of input features as the group. This option allows you to select attributes that define which groups to form. Each set of features which have the same value for all of these attributes will be processed as an independent group.

 Parallel Processing Level

 How parallel processing works with FME: see About Parallel Processing for detailed information.

 This parameter determines whether or not the
transformer should perform the work across parallel processes. If it is enabled, a process will be launched for each group specified by the Group
By parameter.

 Parallel Processing Levels

 	Parameter
 	Number of Processes

 	No Parallelism
 	1

 	Minimal
 	cores1 / 2

 	Moderate
 	exact number of cores

 	Aggressive
 	cores x 1.5

 	Extreme
 	cores x 2

 For example, on a quad-core machine, minimal parallelism will result in two simultaneous FME processes. Extreme parallelism on an 8-core machine would result in 16 simultaneous processes.

 You can experiment with this feature and view the information in the Windows Task Manager and the Workbench Log window.

 Drop Holes

 The Drop Holes parameter indicates
 whether or not features used to cut holes in containing features should
 themselves be dropped or output.

 Hole Flag Attribute

 This parameter will
 be added to each output feature and will contain "yes" if that
 feature was used to cut a hole into some containing feature, and "no"
 if that feature was not used as a hole.

 Area features may be considered in groups based on the value of one
 or more attributes. Only features in the same group are then considered
 for hole nesting.

 Hole List Name

 If you specify a Hole List Name,
 a list will be created on each output donut containing an element
 for each input feature that became a hole, in the order that the holes
 appear on the donut.

 Preserve Internal Edges

 Preserve Internal Edges (for advanced FME users)
 specifies that coordinate "cycles" within a polygon are allowable
 and will be preserved. A "cycle" is a line segment that occurs twice in the same polygon's boundary (once in each direction).

 Example

 [image: donutbuilder.gif]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: island

 1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 DonutHoleExtractor

 Splits an area feature with holes into its component rings.

 Output Ports

 Outershell

 The
 outer boundary polygon is separated from the holes and output to this port. If an area had no holes, it is output untouched.

 Hole

 The individual
 holes are output as polygons.

 Each output feature has all the attributes of the original area feature.

 Parameters

 None.

 Example

 [image: donutholeextractor.gif]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 DuplicateRemover

 Detects duplicate features based on the value of a key attribute.

 Output Ports

 This transformer outputs to the Duplicate port any feature whose key attribute value
 is the same as one previously encountered. Any feature whose key value has not yet appeared is output via the Unique
 port.

 The first feature with a unique key value is output via the Unique port
 – and subsequent
 features that have the same key value are output via the Duplicate port.

 Parameters

 Key Attribute

 Choose the feature that contains the key attribute value.

 Usage Notes

 This is a more specific type of operation than that provided by the
 Matcher,
 which can match on multiple attributes as well as geometry. For such situations,
 this transformer is dramatically more efficient than the Matcher.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Filters

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 DWGStyler

 Prepares features for output to AutoCAD DWG/DXF by providing a convenient interface to set a variety of AutoCAD DWG/DXF format-specific attributes.

 Parameters – Color

 Color

 This parameter specifies the pen color that will be used to render the feature. The pen color determines the color of lines and area boundaries.

 To edit this parameter, click the browse button to the right of the text field.

 Format attribute set: fme_color

 Note that when this parameter is specified, the autocad_color attribute is removed from the feature and fme_color is set. This is because autocad_color will override fme_color if they are both present.

 Parameters – Block/Style Name Source

 DWG/DXF Template File

 This optional parameter is used to specify the name of an existing DWG or DXF file that will be used by the transformer as a source for block names, linetypes, and text shape names. It is not used by the actual DWG/DXF writer – the template file must be specified in the writer’s parameters and should contain the same block names and linetypes as the file specified here. Usually the same file will be used in both the transformer and the writer.

 If no blocks or linetypes will be used, this parameter can be left blank.

 Parameters – Blocks

 If this section is active, point features will be turned into inserts and given a block name, rotation, and size.

 Features with other geometry types are not affected by settings in this section.

 Format attributes set: autocad_entity to autocad_insert

 Block Name

 Block Name specifies the block that will be placed at the point location. Click the browse button to pick the name from the set of blocks defined in the DWG/DXF template file.

 Format attribute set: autocad_block_name

 Block Rotation

 Block Rotation specifies rotation of the block (in degrees counterclockwise from horizontal). This can be set to any floating point value between -360.0 to 360.0, or taken from an attribute.

 Format attribute set: autocad_rotation

 Block Size By

 Block Size By indicates how the size of the block will be specified. If ground units are chosen, then the block will be scaled so that its range in x, y, and z covers the specified amounts. If scale factor is chosen, then the amounts in x, y, and z specify the scaling which will be applied to the block in each of the three axes.

 X

 X specifies the sizing amount for the x axis, which can be a floating point value or taken from an attribute. Its meaning is dependent on the Block Size By setting described above.

 Format attribute set: autocad_x_scale (if Block Size By is Scale Factor); autocad_size_x (if Block Size By is Ground Units)

 Y

 Y specifies the sizing amount for the y axis, which can be a floating point value or taken from an attribute. Its meaning is dependent on the Block Size By setting described above.

 Format attribute set: autocad_y_scale (if Block Size By is Scale Factor); autocad_size_y (if Block Size By is Ground Units)

 Z

 Z specifies the sizing amount for the z axis, which can be a floating point value or taken from an attribute. Its meaning is dependent on the Block Size By setting described above.

 Format attribute set: autocad_z_scale (if Block Size By is Scale Factor); autocad_size_z (if Block Size By is Ground Units)

 Parameters – Lines

 If this section is active, linear features will be prepared for output to AutoCAD DWG/DXF.

 Features with other geometry types will not be affected by settings in this section.

 Linetype

 Linetype specifies the AutoCAD linetype that will be used to render the line. Click the browse button to pick the name from the set of blocks defined in the DWG/DXF template file.

 Format attribute set: autocad_linetype

 Linetype Generation

 Linetype Generation specifies how linetypes will be rendered at each vertex of the line. If set to Continuous, line vertices are ignored since the pattern is applied to the line when it is rendered. If set to Restart At Each Vertex, the pattern is restarted at each vertex of the line.

 Format attribute set: autocad_linetype_generation

 Line Weight

 Line Weight specifies the thickness of the line when it is rendered, measured in hundredths of a millimeter.

 Format attribute set: autocad_lineweight

 Line Scale

 Line Scale specifies the amount that the line pattern will be scaled when the line is rendered.

 Format attribute set: autocad_linetype_scale

 Line Elevation

 Line Elevation sets a single elevation value that will be applied to all the vertices of the line. This is an efficient way to set a constant elevation (z) to an otherwise two-dimensional line.

 Format attribute set: autocad_elevation

 Parameters – Areas

 If this section is active, then area features will be prepared for output to AutoCAD DWG/DXF.

 Features with other geometry types will not be affected by settings in this section.

 Area Entity Type

 Area Entity Type specifies the kind of entity and fill pattern that will be created to represent the feature when it is written to AutoCAD DWG/DXF. The choices with the corresponding AutoCAD entity type are:

 	Area Entity Type Option
 	autocad_entity

 	Hatch With Fill Pattern
 	autocad_hatch

 	Hatch With Gradient Pattern
 	autocad_hatch

 	MPolygon With Fill Pattern
 	autocad_mpolygon

 	MPolygon With Gradient Pattern
 	autocad_mpolygon

 	Polygon
 	autocad_polygon

 Fill Pattern Name

 Fill Pattern Name sets the name of the fill pattern that will be used to fill either the hatch or mpolygon. Click the browse button to pick the name from the set of fill patterns that ship with AutoCAD.

 Format attributes set: autocad_hatch_pattern_name (if Area Entity Type is set to Hatch With Fill Pattern); autocad_mpolygon_pattern_name (if Area Entity Type is set to Mpolygon With Fill Pattern)

 Pattern Scale

 Pattern Scale specifies the amount that the fill pattern will be scaled when the area is rendered.

 Format attributes set: autocad_hatch_pattern_scale (if Area Entity Type is set to Hatch With Fill Pattern); autocad_mpolygon_pattern_scale (if Area Entity Type is set to Mpolygon With Fill Pattern)

 Gradient Name

 Gradient Name sets the type of the gradient pattern (predefined as part of AutoCAD) that will be used to fill either the hatch or mpolygon.

 Format attribute set: autocad_hatch_gradient_name (if Area Entity Type is set to Hatch With Gradient Pattern); autocad_mpolygon_gradient_name (if Area Entity Type is set to Mpolygon With Gradient Pattern)

 Gradient Fill Color 1

 Gradient Fill Color 1 sets the first color to be used in the gradient pattern that will be used to fill either the hatch or mpolygon.

 Format attributes set: autocad_hatch_gradient_color1 (if Area Entity Type is set to Hatch With Gradient Pattern); autocad_mpolygon_gradient_color1 (if Area Entity Type is set to Mpolygon With Gradient Pattern)

 Gradient Fill Color 2

 Gradient Fill Color 2 sets the first color to be used in the gradient pattern that will be used to fill either the hatch or mpolygon.

 Format attributes set: autocad_hatch_gradient_color2 (if Area Entity Type is set to Hatch With Gradient Pattern); autocad_mpolygon_gradient_color2 (if Area Entity Type is set to Mpolygon With Gradient Pattern)

 Fill Angle

 Fill Angle sets the angle of the gradient pattern that will be used to fill either the hatch or mpolygon.

 Format attributes set: autocad_hatch_gradient_angle (if Area Entity Type is set to Hatch With Gradient Pattern); autocad_mpolygon_gradient_angle (if Area Entity Type is set to Mpolygon With Gradient Pattern)

 Fill Origin X

 Fill Origin X sets the x coordinate of the origin for the gradient pattern that will be used to fill either the hatch or mpolygon.

 Format attributes set: autocad_hatch_gradient_origin_point_x (if Area Entity Type is set to Hatch With Gradient Pattern); autocad_mpolygon_gradient_origin_point_x (if Area Entity Type is set to Mpolygon With Gradient Pattern)

 Fill Origin Y

 Fill Origin Y sets the y coordinate of the origin for the gradient pattern that will be used to fill either the hatch or mpolygon.

 Format attributes set: autocad_hatch_gradient_origin_point_y (if Area Entity Type is set to Hatch With Gradient Pattern); autocad_mpolygon_gradient_origin_point_y (if Area Entity Type is set to Mpolygon With Gradient Pattern)

 Parameters – Text

 If this section is active, text features will be prepared for output to AutoCAD DWG/DXF.

 Note that the text string, size, and rotation is part of the text feature and cannot be set by this transformer: use the TextPropertySetter to adjust or set these properties.

 Features with other geometry types are not affected by settings in this section.

 Text Entity Type

 Text Entity Type specifies the kind of entity that will be created to represent the feature when it is written to AutoCAD DWG/DXF. The choices with the corresponding AutoCAD entity type are:

 	Area Entity Type Option
 	autocad_entity

 	Text
 	autocad_text

 	Multi-Text
 	autocad_multi_text

 Format attribute set: autocad_entity

 TrueType Font Name

 TrueType Font Name sets the name of the font that will be used to draw the text while Multi-Text is chosen for the entity type. Click the browse button to pick the font name.

 Format attribute set: autocad_mtext_string

 Text Shape Name

 Text Shape Name sets the name of the shape that will be used to draw the text while Text is chosen for the entity type. Click the browse button to pick the shape name from those defined in the DWG/DXF Template File.

 Format attribute set: autocad_shape_name

 Text Justification

 Text Justification sets the justification for text placement.

 Format attribute set: autocad_justification

 Text Size

 Text Size sets the size of the text that is placed.

 Format attribute set: fme_text_size

 Text

 Text sets the text string that will be placed.

 Format attribute set: fme_text_string

 Additional References

 For more information about DWG/DXF styling:

 	See the Autodesk AutoCAD DWG/DXF Reader/Writer > Feature Representation section in the FME Readers and Writers manual. In Workbench, select Help > FME Readers and Writers Reference.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Stylers

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 ElevationExtractor

 Extracts the elevation of the first coordinate and assigns it to the
 named attribute.

 Parameters

 Elevation Attribute

 If the feature was two-dimensional, 0 will be assigned to the elevation
 attribute.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 EllipsePropertyExtractor

 Sets the given attributes to the properties of an ellipse geometry.

 Parameters

 Primary Radius Attribute

 Attribute name that is set to the length of the primary radius for the ellipse upon which the arc is based.

 Secondary Radius Attribute

 Attribute name that is set to the length of the secondary radius for the ellipse upon which the arc is based.

 Rotation Attribute

 Attribute name that is set to the rotation of the ellipse that defines the arc. The rotation angle specifies the angle in degrees from the horizontal axis to the primary axis in a counterclockwise direction.

 Orientation Attribute

 Attribute name that is set to the orientation of the ellipse that defines the arc. The orientation of a feature will follow the right-hand rule or the left-hand rule1.

 Center X Attribute

 Attribute name that is set to the X coordinate of the center of the ellipse. If not specified, the first coordinate of the feature is used.

 Center Y Attribute

 Attribute name that is set to the Y coordinate of the center of the ellipse. If not specified, the first coordinate of the feature is used.

 Center Z Attribute

 Attribute name that is set to the Z coordinate of the center of the ellipse. If not specified, the first coordinate of the feature is used.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 http://en.wikipedia.org/wiki/Right-hand_rule

 1http://en.wikipedia.org/wiki/Right-hand_rule

 EllipsePropertySetter

 Sets the properties of an ellipse geometry.

 This transformer can also be used to create an ellipse by using a point as an input. The point geometry will be used as the center point for the new ellipse. When using this creation mode, you must supply, at minimum, the following parameter: New Primary Axis.

 Input Ports

 Input

 Features with ellipse geometry or point geometry.

 Output Ports

 Output

 Features with the properties of the ellipse geometry modified according to the new values provided, or the newly created ellipse geometry.

 <Rejected>

 Invalid features will be output via this port.

 Parameters

 Each parameter may either be entered as a number, or
 taken from the value of a feature attribute by selecting the attribute
 name from the pull-down list. All parameters are optional. If a value is unspecified, it will be left
 unmodified on the geometry.

 New Primary Axis and New Secondary Axis

 The primary and secondary axes set the radii of the arc. Note that the
 primary axis need not be larger than the secondary, however, the rotation
 angle is always measured from the x axis to the primary axis. To make
 a circular arc, set both the primary and secondary axis to the same value.

 New Rotation

 The rotation angle is measured in degrees counterclockwise from horizontal,
 and measures the rotation of the primary axis from horizontal.

 New Orientation

 This parameter can adjust the orientation of a feature to follow the right-hand rule or the left-hand rule1.

 New Center X, New Center Y, New Center Z

 The center x, y and z parameters set the origin of the arc. If these values
 are blank, and the input features are points, the existing feature x/y/z
 values will determine the center of the arcs. If the parameter values
 are blank, and the input features are not points, the operation is undefined.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 http://en.wikipedia.org/wiki/Right-hand_rule

 1http://en.wikipedia.org/wiki/Right-hand_rule

 EnvironmentVariableFetcher

 Fetches the specified environment variable and includes it in a new attribute.

 Environment variables are convenient especially if certain standard directories and parameters need to be referenced in a workspace, but the actual locations or names can vary from computer to computer.

 The available variables will depend on which platform you are using. For example in Windows you can find a list of variables on your system by opening Control Panel > System > Advanced (or Advanced system settings link in Vista)> Environment Variables.

 Parameters

 Environment Variable

 Type the environment variable name (for example, PATH or TEMP).

 Attribute

 If the specified environment variable does not exist, an empty string is
 put into the given attribute.

 Usage Notes

 Within an FME workspace you could use the value retrieved to:

 	Define the output location of a dataset (in conjunction with Feature Type Fanout, which is described in the Workbench help files)

 	Define the location of a file for the AttributeFileWriter or AttributeFileReader

 	Define the location of a workspace to run with the WorkspaceRunner

 	Write the value to some type of metadata output

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 Transformer History

 This transformer has been renamed from EnvironmentVariableRetriever.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 EsriReprojector

 Reprojects feature coordinates from one coordinate system to another using the Esri reprojection library.

 This transformer always reprojects from the source coordinate system to the destination coordinate system, tagging the features with the destination coordinate system on output. Any coordinate system set on the input features is ignored.

 Dependencies

 To use this transformer, you must have ArcGIS installed on the same machine as FME.

 Parameters

 Source Coordinate System

 Click the Browse button to display the Esri reprojection library. You can select a coordinate system, import a coordinate system, or create a new coordinate system.

 Destination Coordinate System

 Click the Browse button to display the Esri reprojection library. You can select a coordinate system, import a coordinate system, or create a new coordinate system.

 Geographic Transformation

 A geographic transformation converts data between two geographic coordinate systems. Click here to see a PDF of valid geographic transformation names for this parameter. Names of custom (user created) geographic transformations may also be used.

 Note: The geotransformation name is case-sensitive. If you do not enter the parameter in the correct case, FME will fail and produce an error saying it cannot locate the transformation parameter.

 You can also enter GEOGTRAN Well Known Text that represents a geographic transformation.

 To use this feature, you must have an Esri CustomTransformations directory. ArcGIS Desktop installations automatically create this directory. The CustomTransformations path is specific to the ArcGIS version and type (Server, Desktop, etc.).
ArcGIS 10.0 Example:
%APPDATA%\ESRI\Server10.0\ArcToolbox\CustomTransformations
ArcGIS 9.3.1 Example:
%APPDATA%\ESRI\ArcToolbox\CustomTransformations

 Geographic Transformation Direction

 This is the geotransformation direction (either "forward" or "reverse").

 Interpolation Type (Raster)

 The Interpolation Type affects only raster data. Cell values are interpolated in order to change the raster to the specified size.

 	Nearest Neighbor is the fastest but produces the poorest image quality.

 	Bilinear provides a reasonable balance of speed and quality.

 	Bicubic is the slowest but produces the best image quality.

 	Average 4 and Average 16 have a performance similar to Bilinear and are useful for numeric rasters such as DEMs.

 Cell Size (Raster)

 The Cell Size applies only to raster features.

 	Square Cells: The number of rows and columns as well as the spacing will be changed to maintain approximately the same cell ground area and form square cells where the horizontal and vertical cell sizes are equal. Like the Square Cells option, Preserve Cells will change both the number of rows and columns and the spacing to maintain cell ground area, but will also try to preserve the original cell aspect ratio, taking into account any warping caused by the reprojection.

 	Stretch Cells: The cell size of the raster will be adjusted to maintain the same number of rows and columns in the reprojected raster as there were in the input raster.

 Usage Notes

 This transformer is not affected by raster band and palette selection.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Coordinate Systems

 Licensing Level

 This transformer is not available in FME Base Edition.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 ExpressionEvaluator

 Performs a mathematical calculation on one or more attributes. You can use the interface to set up the expressions, but you can also edit the expressions manually.

 You can also use this transformer to evaluate an arbitrary Tcl 8.5.2 expression. It returns the results in a new attribute. The operators permitted in
 the expressions to be evaluated are a subset of the operators permitted
 in C expressions. They have the same meaning and precedence as the corresponding
 C operators.

 Expressions usually yield numeric results, such as integer
 or floating-point values. For example, the expression 8.2 + 6 returns 14.2.

 It is easy to build an invalid expression, so you may have to double check that what you build makes sense. Note that the ExpressionEvaluator will fail if a non-numerical attribute value is used in an expression. However, FME will log the offending feature and record which transformer caused the failure.

 Arithmetic Editor

 For more information, see the Arithmetic Editor.

 Operands

 An expression consists of a combination of operands, operators, and
 parentheses. White space may be used between the operands, operators,
 and parentheses as it is ignored by the expression processor. Where possible,
 operands are interpreted as integer values. Integer values may be specified
 in decimal which is the normal case, in octal if the first character of
 the operand is 0, or in hexadecimal if the first two characters of the
 operand are 0x. If an operand does not have one of the integer formats
 given above, then it will be treated as a floating-point number if possible.
 Floating-point numbers may be specified in any of the ways accepted by
 an ANSI-compliant C compiler, except that "f",
 "F", "l",
 and "L" suffixes are not permitted in most installations. For
 example, all of the following are valid floating-point numbers: 2.1, 3.,
 6e4, 7.91e+16. If no numeric interpretation is possible, then an operand
 is left as a string and only a limited set of operators may be applied
 to it.

 Operands may be specified in any of the following ways:

 	As a numeric value, either integer or floating-point.

 	As a value of an FME feature attribute, using
 @Value() notation. The attribute's value is used as the operand.

 	As an FME feature function, such as @Area().
 The function is evaluated and the result used as the operand.

 	As a mathematical function whose arguments have
 any of the above forms for operands, such as @sin(1).
 See the table below for a list of defined mathematical functions.

 Operators

 The valid operators listed below are grouped in decreasing order of
 precedence:

 	Function
 	Description

 	**
 	
 Exponentiation.

 Valid for numeric operands only.

 	
 - + ~ !

 	
 Unary
 minus, unary
 plus, bit-wise NOT, logical NOT.

 None of these operands may be applied to string
 operands, and bit-wise NOT may be applied only to integers.

 	
 * / %

 	
 Multiply, divide, remainder.

 None of these operands may be applied to string
 operands, and remainder may be applied only to integers. The remainder
 always has the same sign as the divisor and an absolute value smaller
 than the divisor.

 	
 + -

 	
 Add and subtract.

 Valid for any numeric operands.

 	
 << >>

 	
 Left and right shift.

 Valid for integer operands only.

 	< > <= >=
 	
 Boolean less, greater, less than or equal,
 and greater than or equal.

 Each operator produces 1 if the condition is
 true, 0 otherwise. These operators may be applied to strings as well
 as numeric operands, in which case string comparison is used.

 	
 == !=

 	
 Boolean equal and not equal.

 Each operator produces a zero/one result. Valid
 for all operand types.

 	
 &

 	
 Bit-wise AND.

 Make sure that there is a space between the operand and the operator (e.g.,
 5 & 3 is valid; 5&3 is not valid).

 Valid for integer operands only.

 	
 ^

 	
 Bit-wise exclusive OR.

 Valid for integer operands only.

 	
 |

 	
 Bit-wise OR.

 Valid for integer operands only.

 	&&
 	
 Logical AND.

 Produces a 1 result if both operands are non-zero,
 0 otherwise. Valid for numeric operands only (integers or floating-point).

 	
 ||

 	
 Logical OR.

 Produces a 0 result if both operands are zero,
 1 otherwise. Valid for numeric operands only (integers or floating-point).

 	x?y:z
 	
 If-then-else, as in C.

 If x evaluates to non-zero, then the result
 is the value of y.
 Otherwise, the result is the value of z.
 The x operand must have a numeric value.

 See the C Manual for more details on the results produced by each operator.
 All binary operators group left-to-right within the same precedence level.
 For example, the expression:

 4*2
 < 7

 returns 0.

 Math Functions

 The ExpressionEvaluator supports the following mathematical functions
 in expressions. Each of these functions invokes the C math library function
 of the same name. Refer to the C Manual entries for the library functions
 for details on what they do.

 	Function
 	Description

 	acos(arg)
 	Returns the arc cosine of arg, in the range
 [0,pi] radians. Arg should be in the range [-1,1].

 	asin(arg)
 	Returns the arc sine of arg, in the range
 [-pi/2,pi/2] radians. Arg should be in the range [-1,1].

 	atan(arg)
 	Returns the arc tangent of arg, in the range
 [-pi/2,pi/2] radians.

 	atan2(y,x)
 	Returns the arc tangent of y/x, in the range
 [-pi,pi] radians. x and y cannot both be 0.

 	average(arg)
 	Accepts a list of numbers and finds the average.
Empty, missing, and null input values are ignored but other non-numeric data results in a
failure. If no inputs are provided, an empty string is returned.

 	ceil(arg)
 	Returns the smallest integer value not less
 than arg.

 	cos(arg)
 	Returns the cosine of arg, measured in radians.

 	cosh(arg)
 	Returns the hyperbolic cosine of arg. If
 the result would cause an overflow, an error is returned.

 	exp(arg)
 	Returns the exponential of arg, defined
 as e**arg. If the result would cause an overflow, an error is returned.

 	floor(arg)
 	Returns the largest integer value not greater
 than arg.

 	fmod(x,y)
 	Returns the floating-point remainder of
 the division of x by y. If y is 0, an error is returned.

 	hypot(x,y)
 	Computes the length of the hypotenuse of
 a right-angled triangle (x*x+y*y).

 	log(arg)
 	Returns the natural logarithm of arg. Arg
 must be a positive value.

 	log10(arg)
 	Returns the base 10 logarithm of arg. Arg
 must be a positive value.

 	max(arg)
 	Compares two numbers and returns the higher of
the two.

 	min(arg)
 	Compares two numbers and returns the lesser of
the two.

 	pow(x,y)
 	Computes the value of x raised to the power
 y. If x is negative, y must be an integer value.

 	sin(arg)
 	Returns the sine of arg, measured in radians.

 	sinh(arg)
 	Returns the hyperbolic sine of arg. If the
 result would cause an overflow, an error is returned.

 	slope(arg)
 	
 Accepts a list of x,y pairs and finds the slope
according to the algorithm used by Microsoft Excel 2003 or later. (This algorithm is documented at http://support.microsoft.com/kb/828142.) Empty, missing, and null input values for either x or y
cause that point to be ignored, but other non-numeric data results in a
failure.

 Example: @slope(1,2,3,6,4,) results in ignoring x coord 4. If less
than two points are given, an empty string is returned.

 	sqrt(arg)
 	Returns the square root of arg. Arg must
 be non-negative.

 	tan(arg)
 	Returns the tangent of arg, measured in
 radians.

 	tanh(arg)
 	Returns the hyperbolic tangent of arg.

 The ExpressionEvaluator also implements the following functions for
 conversion between integers and floating-point numbers:

 	Function
 	Description

 	
 abs(arg)

 	
 Returns the absolute value
 of arg. Arg may be either integer or floating-point, and the result is
 returned in the same form.

 	
 double(arg)

 	If arg
 is a floating value, returns arg. Otherwise
 converts arg to floating point and returns
 the converted value.

 	
 int(arg)

 	If arg is an integer value, returns arg. Otherwise converts arg to integer
 by truncation and returns the converted value.

 	
 round(arg)

 	If arg
 is an integer value, returns arg. Otherwise
 converts arg to in­teger by rounding and
 returns the converted value.

 Types, Overflows, Precision

 All internal computations involving integers are done with C-type long,
 and all internal computations involving floating-point are done with C-type
 double. When converting a string to floating-point, exponent overflow
 is detected and results in an error. For conversion to integer from string,
 detection of overflow depends on the behavior of some routines in the
 local C library, so it should be regarded as unreliable. In any case,
 integer overflow and underflow are generally not reliably detected for
 intermediate results. Floating-point overflow and underflow are detected
 to the degree supported by the hardware, which is generally reliable.

 Conversion among internal representations for integer, floating-point,
 and string operands is automatically done as needed. For arithmetical
 computations, integers are used until some floating-point number is introduced,
 after which floating-point is used. For example,

 5 / 4

 returns 1, while

 5 / 4.0

 and

 5 / (4 + 0.0)

 both return 1.25. Floating-point values are always returned with a "."
 or an "e" so that they will not look like integer values. For
 example,

 20.0/5.0

 returns “4.0”, not “4”.

 Seventeen digits of precision are always used for floating point calculations.

 Example

 FMEpedia has a good example of the ExpressionEvaluator.

 Related Transformers

 If you are setting more than one attribute, consider using the AttributeCreator, which contains the same functionality.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 Technical History

 The ExpressionEvaluator is based on the Tool Command Language (Tcl) expr
 command.1

 arithmetic

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 1Tcl and its documentation is copyrighted by the Regents of the University of California, Sun Microsystems, Inc. and other parties. However, the authors have granted permission to any party to reuse and modify the code and documentation, provided the original copyright holders are acknowledged.

 Extender

 Creates two-point extensions to linear features that extend the feature by a user-specified length.

 This transformer can also output the original feature with the first and last segments stretched by a user-specified amount. Each of the created features gets a copy of all attributes of the original feature, including the feature type. Arcs that are input are converted to lines before processing.

 Output Ports

 Beginning

 This transformer can create an extension of the first segment in the input feature. This feature's orientation is the same as the first segment of the input feature and its end point is the same as the input feature's start point. This new feature is output to the Beginning port.

 End

 This transformer can create an extension of the last segment of the input feature. This feature's orientation is the same as the last segment of the input feature and its start point is the same as the input feature's end point. The feature holding this segment is output to the End port.

 Stretched

 This transformer can create a duplicate of the input feature except that the first and last segments are extended in their respective orientation directions. The length of these extensions is also controlled by the Extension Length parameter. In this case, the end nodes of the line are moved; no new nodes are added. The feature holding this segment is output via the Stretched port.

 Parameters

 Extension Length

 The extension length parameter is measured in ground units. You can enter a number, or the value can be taken from an existing feature attribute (select the attribute name from the pull-down list).

 Segments to Average

 This parameter specifies the number of segments
 that should be considered when computing the orientation angle for the
 extension feature. By default, this is set to 1, which means the orientation of the extension feature matches the orientation of just one segment in the original feature. It can be set to any number of segments, in which case the orientation will be set to the average orientation of those segments. If the number of segments is larger than the number of segments available on the feature, then the entire feature orientation is averaged and used.

 You can enter a number, or the value can be taken from an existing feature attribute (select the attribute name from the pull-down list).

 Example

 [image: extender.gif]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Usage Notes

 This transformer can be used in combination with the Snapper
 to perform a simple form of data cleaning.

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Extruder

 Creates line, surface or solid geometries with a fixed cross-sectional profile taken from the original geometry of the feature.

 Input Ports

 Input

 	 If the geometry of the input feature was a face or an area, then the geometry is replaced with a solid.

 	If the geometry of the input feature was linear, then the result is a composite surface geometry.

 Output Ports

 Output

 The features with the extruded geometries are output through this port.

 Parameters

 Extrusion Input By

 The amount of extrusion can be set either by height (in which case the extrusion is applied in the positive direction along the z axis), or an extrusion vector (which allows for extrusion in an arbitrary direction).

 Extrusion Height

 You can enter the extrusion height, or the value can be taken from an existing feature attribute (select the attribute name from the pull-down list).

 Extrusion Vector X

 You can enter the x component of the extrusion vector, or the value can be taken from an existing feature attribute (select the attribute name from the pull-down list).

 Extrusion Vector Y

 You can enter the y component of the extrusion vector, or the value can be taken from an existing feature attribute (select the attribute name from the pull-down list).

 Extrusion Vector Z

 You can enter the z component of the extrusion vector, or the value can be taken from an existing feature attribute (select the attribute name from the pull-down list).

 Usage Notes

 This transformer has no effect on features that have a geometry other than a face, an area or a line.

 Example

 [image: extruder.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 3D

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 FaceReplacer

 Replaces the geometry of a feature from donut, raster, or polygon to face. If the donut or polygon is not already three-dimensional, a 0.0 value for Z coordinates is assumed.

 A face is a planar area in 3D space. The planar structure can be a raster, polygon or a donut.

 For a raster, the transformer will replace the geometry with a face with the same bounding box as the original raster with a textured appearance using the original raster, as applied from the top view.

 The planar area has a concept of a surface normal, a vector that points outwards perpendicular from the area. The direction of the surface normal in a face is determined by using the right-hand rule: if the fingers of your right hand curl along the order of the vertices, the direction that the thumb points to is the direction of the surface normal.

 Parameters

 Check Planarity

 If you choose No, then it does not check if the donut or polygon is planar. If you choose Yes, then you can enter either a float value or an attribute for the Planarity Tolerance Value. If the area is not planar given the specified tolerance value, then the area is output unchanged.

 Tolerance

 Enter a value or choose an attribute. The tolerance is specified in ground units, and describes the maximum “thickness” a plane can have before it is considered non-planar. A planar polygon has a thickness of 0. A non-planar polygon will have its average surface normal computed using Newell’s method, and its thickness will be determined in the direction of the normalized surface normal.

 For example, consider a single, non-planar polygon. Imagine a plane that passes through the world origin, with its normal set to the average normal of the polygon. Then, every point along the polygon boundary would be a distance D to the world plane. Relative to the world plane, we find the closest point and the farthest point along the polygon boundary. The difference between the farthest and nearest distances give us the desired thickness.

 [image: facereplacer_input.png]

 [image: facereplacer_sideview.png]

 Usage Notes

 	This transformer has no effect on features that have geometries other
 than raster, donut and polygon.

 	You can use the 3DForcer to turn 2D geometry into 3D geometry.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 3D

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 FeatureColorSetter

 Assigns colors to incoming features.

 Ports

 Input

 Input features to be colored.

 Note that features must be topologically clean if you are using the Map Coloring schemes.

 Colored

 Features with new color attributes.

 Parameters

 Mode

 Color Scheme

 Fixed: Manually set a feature's pen and fill colors using the Pen Color and Fill Color parameters.

 Random: Sets a random color for each incoming feature.

 Random (Offset): Same as Random, but with the pen color slightly different than the fill color. This gives a good visual result.

 Map Coloring: Assigns colors to areas in a coverage so that adjacent areas are output as different colors. The total number of colors used is kept as small as possible while ensuring that no two adjacent regions receive the same color.

 When using the N Color (Fast) scheme, each area is colored with the first available color. Ideally, only a few colors will be used but the total number of colors is not guaranteed.

 When using the Five Color scheme, a maximum of five colors will be used to color the regions.

 Parameters

 Pen Color

 When the Color Scheme is set to Fixed, use this parameter to set the pen color (fme_color).

 If blank, the pen color will remain unchanged and the value of fme_color will be left as is.

 The color is formatted as r,g,b, where each of r, g, and b is a number between 0 and 1.

 Fill Color

 Use this parameter to set the fill color (fme_fill_color). If blank, the fill color will remain unchanged and the value of fme_fill_color will be left as is.

 The color is formatted as r,g,b, where each of r, g, and b is a number between 0 and 1.

 Color ID Attribute

 When the Color Scheme is set to Map Coloring, this is the attribute that contains the output color code. The default is _color_id.

 Colors are output to the Color ID Attribute as integers (the first color
 is 0, the second color is 1, etc.).

 Pre-existing Area ID Attribute/Pre-existing Neighbor IDs Attribute

 These parameters are required when the Color Scheme is set to Map Coloring.

 When you provide a Pre-existing Area ID Attribute and Neighbor ID Attributes for each area, you can force the relationships to follow pre-existing mappings. For example, if your data contains aggregates and you know the area to which they belong, you can define that relationship using these parameters.

 This option is especially useful when the input data contains aggregates and you want to "map" pre-existing IDs to define the relationships.

 Note: If these
 parameters are not provided, adjacencies between areas are determined geometrically,
 and non-polygon geometries (including aggregates and ellipses) are removed.

 Area IDs must be non-negative integers, and neighbor IDs are entered
 as a comma-separated list.

 Example

 In the example below, there are unique feature counts and then IDs.

 [image: NeighborColorSetter_2.png]

 If aggregates are not important, only 3 colors are required:

 	Feature
 	Adjacent to Areas

 	2,20
 	1, 3, 6

 	8,20
 	3

 	9,20
 	4

 If, however, ID 2,20 is treated as an aggregate, then 4 colors are required and the pre-existing ID attributes must be supplied.

 	Feature
 	Adjacent to Areas

 	20
 	10, 30, 40, 60

 	Feature
 	Not Adjacent to Area

 	20
 	50

 [image: NeighborColorSetter_1.png]

 Related Transformers

 	A TopologyBuilder placed before the FeatureColorSetter can help you build a list of adjacent areas.

 	An AttributeFilter or another FeatureColorSetter can be used to manipulate the Color ID attribute.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Transformer History

 This transformer combines the features of, and replaces, these transformers: NeighborColorSetter, ColorSetter, RandomColorSetter.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: featurecoloursetter

 FeatureHolder

 Stores incoming features until they have all arrived, and then releases
 them in their original order.

 Use this transformer whenever you want to detain certain features
 until all input features have arrived. This ensures
 that no additional processing is performed until all features are released.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Collectors

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.
Keywords: featureblocker plugger

 FeatureMerger

 Moves the attributes/geometry from one feature to another feature. Features that contain the desired attributes/geometry are connected through the Supplier port, and the features that will receive the attributes/geometry are connected through the Requestor port.

 When a Requestor finds a Supplier, the attributes from the Supplier are merged with the Requestor. If the Requestor already had an attribute that the Supplier also had, the Requestor's original value for that attribute is preserved. A single Supplier may be used by many Requestors.

 Any merged geometry preserves arcs, ellipses and text.

 Requestor features are joined to
 Supplier features when the expressions specified in the Join On parameter ALL have the same value for both the requestor and supplier.

 Input Ports

 Requestor

 Receives the new attributes/geometry from the features connected to the Supplier port.

 Supplier

 The source of new attributes/geometry for features that enter
 through the Requestor port.

 Output Ports

 Merged

 Requestors that find a Supplier.

 NotMerged

 Requestors that do not
 find a Supplier.

 Referenced

 Suppliers that are found by at
 least one Requestor.

 Note: A Supplier may still be output through this port even though none of its attributes were merged. This can occur because all of the attributes were already present in the Requestor or were provided by earlier Suppliers.

 Unreferenced

 Suppliers that are not
 found by any Requestor.

 DuplicateSupplier

 Supplier features with the same Join On expression values as an earlier Supplier feature. Note that duplicate Suppliers will only be output if Process Duplicate Suppliers is set to No. If Process Duplicate Suppliers is set to Yes, then duplicate Suppliers will be output via the Referenced port.

 Parameters

 Group By

 The input features may be partitioned by the Group By parameter. If you choose any Group By attributes, then references between features will only be resolved if they share a common value for the selected attributes.

 If you do not choose any Group By attributes, all features are processed together.

 If you have more than one Reader, a typical use is to group by reader_id to ensure that references are resolved within the correct set of features.

 Suppliers First

 When this option is enabled, the transformer will assume that all Suppliers will enter the transformer before any Requestors. Once the first Requestor arrives, it will process and output Requestors as they come in. The Suppliers will be output after all the Requestors have been processed.

 Note: It is the user’s responsibility to make sure all the Suppliers arrive before the Requestors. The transformer will stop accepting Suppliers once it receives its first Requestor when this option is enabled.

 Join On

 Specify an expression from the Requestor feature to match with the Supplier feature expression. An expression can be a constant, attribute value, function or mixture. Matches are made when the values of all the Requestor expressions equal the values of their corresponding Supplier expressions.

 Normally the Suppliers all have expressions that result in a unique match with a requestor and any duplicate Suppliers are ignored by the transformer. However, if the Process Duplicate Suppliers parameter is set to Yes, then all Suppliers whose expressions match their corresponding requestor expressions will be combined onto that Requestor.

 The Comparison Mode column specifies how to perform the comparison between Requestor and Supplier attribute values. If Automatic or Numeric is specified, an attempt will be made to convert attribute values to numbers before comparing them.

 Feature Merge Type

 This parameter specifies what to merge onto the completed feature. The choices are:

 	When the Merge Type parameter is Attributes Only, then the Suppliers attributes will be joined to the attributes of the Requestor features.

 	When the Merge Type parameter is Geometry, then the Suppliers are the features that contain the geometry. Note that the Requestor will lose its former geometry.

 	When the Merge Type parameter is Attributes and Geometry, then both the geometry and attributes from the Suppliers are joined to the Requestor features. Any geometry on the Requestor will be overwritten.

 Process Duplicate Suppliers

 If more than one Supplier is found for a given Requestor, and Process Duplicate Suppliers is No, then every Supplier after the first is output
 via the DuplicateSupplier port and only the first of the Suppliers will
 be matched with a Requestor.

 If set to Yes, then the duplicate Suppliers
 are all matched with the corresponding Requestor. The Supplier attributes are merged using the specified Supplier List Name. The Supplier geometry is merged using the specified Geometry Merge Type.

 If a Supplier List Name is not specified, then the Suppliers’ attributes are merged onto the Requestor. If some of the Suppliers’ attributes are the same, the Requestor will get the attribute value from the first Supplier only.

 Geometry Merge Type

 Specifies how to merge duplicate Suppliers onto the Requestor. It is applicable only if Feature Merge Type specifies to merge geometry. The choices are:

 	Build Polygons: If the Suppliers consist exclusively of polygon and donut polygon features, any common border segments will be removed. If the Suppliers contain at least one non-donut or non-polygon feature, then the transformer will form polygons and donuts from the Suppliers and will join connected line segments of the Supplier features before setting the geometry of the Requestor feature. In this case, the geometry may be an aggregate if several disjoint geometries were created.

 	Build Aggregates: The transformer will create an aggregate of the geometries of the Supplier features. (If there is only one Supplier feature, then the Requestor geometry will be an aggregate with one element.)

 	Build Lines from Points: The transformer will connect the points of the Supplier features into lines. Note that any non-point features that are referenced will be ignored when building lines.

 Supplier List Name

 If there are duplicate Suppliers and a Supplier List Name is specified, then any Suppliers that are combined with a Requestor will have their attributes added to the specified list on the Requestor.

 Supplier Prefix

 To prevent a Supplier attribute from being ignored because the Requestor attribute already exists, you can optionally specify a prefix that will be applied to each Supplier attribute when it is added to the Requestor.

 Usage Notes

 Relationship to InlineQuerier

 The InlineQuerier is the powerful cousin of the FeatureMerger. Whereas the FeatureMerger joins two datasets and uses a simple, single attribute key to match features, the InlineQuerier allows any number of input datasets to be merged, using the full power of SQL across any number of tables and columns. Furthermore, the InlineQuerier allows its input data to be reused multiple times in a single transformer, whereas if multiple joins are to be done with a FeatureMerger, multiple FeatureMergers must be employed and copies of the features sent to each. On the other hand, there is some overhead for the InlineQuerier to load the underlying SQLite database. Using a single InlineQuerier instead of several FeatureMergers also simplifies the workspace.

 Unless only a single FeatureMerger is needed in a workflow, the InlineQuerier may be a better choice. Older workspaces with multiple cascading FeatureMergers may experience a performance improvement by replacing the FeatureMergers with a single properly configured InlineQuerier.

 Relationship to SQLCreator/SQLExecutor

 If all the data to be queried already exists in a SQL-capable data source, it is always more efficient to use the SQLCreator or SQLExecutor, because this allows the queries and filtering of the data to be executed directly by the database before it enters the FME environment.

 Relationship to Joiner

 The FeatureMerger joins two datasets and uses a simple, single attribute key to match features. You can concatenate attributes to simulate a multi-key join. The FeatureMerger is also able to perform certain geometric operations on incoming features using its Merge Type parameter. FeatureMerger does all joins in memory so it can be faster than the Joiner if you have more than one relationship on the same data. The article FME2011 Use Case: Joiner vs FeatureMerger contains a more detailed comparison of these transformers.

 Relationship to ListBasedFeatureMerger

 The ListBasedFeatureMerger is a specified use case of the FeatureMerger. It should be used if you want to join on a list attribute of the Requestor.

 Example

 [image: featuremerger.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Collectors

 Database

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: concatenated foreign key tag cross-reference "cross reference" FeatureMerger

 FeatureReader

 Performs queries against any FME-supported format. The queries can have both a spatial and a nonspatial component.

 One query is issued to the FME-supported format for each feature that enters the transformer. The results of the query are then output.

 Input Parameters

 Select the Reader format and dataset, including any reader-specific parameters

 Query Operation

 You can select feature types from the wizard parameters or from a chosen attribute.

 If you want to select an existing attribute, click Query the feature types specified in the attribute below, then select from the list. The chosen attribute can contain multiple feature types (in a colon-separated list) to be queried. Feature types that do not match a selected feature type name will be output through the <OTHER> port.

 Spatial Interaction

 	Select all features

 	Select only features that intersect with the Initiator feature's bounding box

 	Select only features that have the specified spatial relationship with the Initiator feature. Note that any spatial predicates supported natively are listed first, and will likely have better performance than the generic predicates. See Spatial Relations Defined for a description of the permitted spatial relations.

 Advanced Options

 Optional: To customize merge behavior and enable the feature cache, you can edit Advanced Options. Otherwise, click Finish to set the previous transformer parameters and close the wizard.

 The Initiator feature defines the geometry that will be used to define the spatial component of the query, unless it does not contain any geometry. In this case, only an attribute query as defined by the WHERE clause will be executed.

 Merge Behavior

 By default, this transformer outputs only result attributes and geometry – it does not transfer the attributes and geometry of Initiator features. To change this behavior, select from Attribute Handling or Geometry Handling:

 	Attribute Handling
 	

 	Keep result attributes only: The result feature attributes are based solely on the query
 results.

 	In case of conflict, keep Initiator attributes: The result feature attributes are a combination of
 both the query results and the Initiator feature's attributes. If
 there is a conflict, attribute values are taken from the query feature.

 	In case of conflict, keep result attributes: The result feature attributes are a combination of
 both the query results and Initiator feature's attributes. If
 there is a conflict, attribute values taken from the query results.

 	Geometry Handling
 	

 	Keep result geometry only: The result feature geometry is taken from the query results.

 	In case of conflict, keep Initiator geometry:
The result feature geometry is taken from the query feature.

 	In case of conflict, keep aggregate of Initiator and result geometry: The result feature geometry is an aggregate
 of the geometry from the query feature followed by the geometry from the
 query results.

 Enable Cache

 By default, this transformer will reread the original source data for each Initiator feature. To improve performance (for example, with web services, databases, or URLs), you can choose to create a preprocessed cache to improve the speed when rereading the original source data.

 The cache will expire after the specified time interval, or if the original data file is modified.

 Note that the Cache Timeout value is also a component of the preprocessed cache. This means that different values of Cache Timeout will correspond to different versions of the cached dataset. For example, if the FeatureReader is set with a Cache Timeout of 1 hour, then set a second time with the same dataset, but with a Cache Timeout of 2 hours, there will be two cached copies of this dataset.

 Example

 [image: featurereader.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Database

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: query

 FeatureTypeExtractor

 Adds an attribute containing the original feature type of a feature.

 Usage Notes

 The feature may have lost its original feature type if it was already processed through a transformer that does not preserve attributes (and you did not Group By that feature type). In this case, the attribute added will have an empty string as its value.

 Exposing the fme_feature_type attribute on the original
 source feature type may be an easier and more reliable way to work with
 feature types. Click the Properties button on the original feature type, and choose the Format Attributes tab:

 [image: featuretypeextractor.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 FeatureTypeFilter

 Routes input features to different output ports based on their original feature type. This transformer is especially useful when you have combined several input features for a particular operation (for example, a Clipper) but want to filter them afterwards in order to route them differently.

 Output Ports

 An output port is created for every connected feature type specified in the Feature Type Names parameter.

 <Blank>

 If a feature was generated dynamically by this workspace, or has gone through another transformer that caused it to lose its feature type, then it will exit through the <Blank> port.

 <Unfiltered>

 If a feature has a feature type that is not specified in the Feature Type Names parameter, then it will exit through the <Unfiltered> port.

 Parameters

 After connecting feature types to the Input port of the FeatureTypeFilter, open the transformer parameters and click the Update button at the bottom right. (You can also type names in the Feature Type Names field.) FME analyzes the workspace and determines the possible input feature types.

 The Update button is enabled only if you are in the main tab and have an input feature type attached to the FeatureTypeFilter transformer. The Update button will then read the feature types on the connected reader and automatically populate the Feature Type Names list with those values.

 [image: featuretypefilter.png]

 Click Update again and FME creates the corresponding output ports for every new connection.

 [image: featuretypefilter1.png]

 Note that when you remove a connection and update the FeatureTypeFilter, the corresponding output port is removed, as well as any connections made from that port. To avoid this, proceed with caution.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Filters

 FMEpedia

 See FMEpedia for additional information about this transformer.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 FilenamePartExtractor

 Extracts specified parts of a filename path and returns the results as string attributes.

 Parameters

 Source Attribute

 The attribute that holds the full filename and path.

 Directory Path Attribute

 If specified, this attribute will contain the full directory path of the Source Attribute, excluding the Full Filename.

 Full Filename Attribute

 If specified, this attribute will contain the full filename (including extension) of the Source Attribute.

 Root Filename Attribute

 If specified, this attribute will contain the root filename (without extension) of the Source Attribute.

 Filename Extension Attribute

 If specified, this attribute will contain the extension of the file specified in the Source Attribute.

 Directory Name Attribute

 If specified, this attribute will contain the directory name of the file specified in the Source Attribute.

 Usage Notes

 When parsing the path, both backslashes and forward slashes are handled as separators, regardless of operating system.

 Example

 For example, the path

 C:\WINNT\Profiles\user\Desktop\roads.shp

 would be extracted as follows:

 	Directory Path
 	C:\WINNT\Profiles\user\Desktop\

 	Full Filename
 	roads.shp

 	Filename Root
 	roads

 	Filename Extension
 	shp

 	Directory Name
 	Desktop

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 FMEFunctionCaller

 Calls the specified FME function, optionally putting the resulting value
 in the Result Attribute. This
 is a safe way to run FME functions in Workbench, as they are used in mapping files.

 See the FME Factories and Functions documentation page for more information about
 FME functions.

 Parameters

 FME Function

 Specifies the FME function (@FunctionName) to be called, as well as any parameters it can take.

 Result Attribute (optional)

 The value returned by the FME function called can be specified in this result attribute.

 Configuration Line (optional)

 Can be specified if the underlying FME function requires it.

 Example

 The @Reformat function requires a configuration line. To employ it within a workspace, the function would be called like this:

 @Reformat(DestDecodeSrcEncode,BinaryKey,Company_Id)

 and the configuration line which defines the "BinaryKey" binary structure would be specified as:

 Reformat STRUCT_DEF BinaryKey_Part1 BigEndianInt(4,1) _Part2 BigEndianInt(4,5)

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 FMEServerJobSubmitter

 Submits FME Spatial ETL jobs to be run on an FME Server. A job consists
 of a workspace (housed within a repository on an FME Server) together
 with values for each of its published parameters. This transformer submits
 one job per feature which enters it. Any published parameters of the server
 workspace will be given values as specified in the transformer, or taken
 from attributes of the feature which enters it.

 Dependencies

 This transformer requires an FME Server connection.

 Output Ports

 Succeeded

 Features that successfully submitted the requests to the server.

 Failed

 Features that failed to submit the requests to the server.

 Wizard Panes

 Connect to an FME Server

 Connection Type

 Direct Connection: The server Host and Port
 number identify the server that will be used to execute the job.

 Web Connection: You can also enter a URL to access FME Server using the REST API. Note that when you enter a URL, the Port field will disappear. You may need to contact your System Administrator for information on host names or URLs.

 Credentials

 Username and Password: These are optional, but, depending on your configuration, you may need them in order to
 access the server.

 Note: You can click the Test... button at the bottom of the dialog to ensure that the FME Server connection has been successfully established.

 Select Workspace

 Choose a repository, the select the workspace that will be run for each feature that enters the transformer.

 Edit Job Parameters

 Edit parameters to enable the current workspace to submit jobs to the FME Server

 Wait for Server Job to Complete

 If this
 parameter is set to Yes, then the transformer will wait until the job
 is completely processed by the server before proceeding. In this case,
 the initiating feature is output via the Succeeded port if the job successfully
 ran to completion, and will have these attributes added to it:

 _job_id: the integer id the server assigned to
 this job

 _NumFeaturesOutput: the number features that were
 output by the job

 _timeFinished: the time the job finished

 _timeRequested: the time the server received the
 job request

 _timeStarted: the time the server started processing
 the job

 All times are in YYYYMMDDhhmmss format.

 The feature will be output via the Failed port if the job either did
 not run to completion, or the server could not be contacted, and will
 have these attributes added to it:

 _job_failure_type: holds one of "Connection
 or Server Problem" or "Translation Failed". If the latter,
 then the following attributes will also have values; otherwise, they are
 empty

 _job_id: the integer ID the server assigned to
 this job

 _StatusMessage: the error message returned from
 the server explaining why the request failed

 _StatusNumber: an error number corresponding to
 the above message

 _timeFinished: the time the job finished

 _timeRequested: the time the server received the
 job request

 _timeStarted: the time the server started processing
 the job

 If this parameter is set to No, the transformer will output the initiating feature as soon
 as the job is submitted to the server. In this case, the initiating feature
 is output via the Succeeded port if the request was successfully submitted,
 and only the _job_id attribute will be added to it. If
 the server could not be contacted or the job submission otherwise failed,
 then the feature is output via the Failed port, and the _job_failure_type
 attribute will hold the "Connection or Server Problem" value.

 Job Priority

 Job Priority defines the order
 in which the job will be executed on the server. The default is 100, the lowest priority possible.

 Job Tag

 Job Tag, if supplied, defines the tag associated with this workspace for use with FME Server’s Job Routing. No default value is specified.

 Buttons

 	Test
 	This button appears on the first wizard pane. Click it to confirm that the FME Server connection has been successfully established.

 	Help
 	Displays the help text for this transformer.

 	Back
 	Displays the previous pane.

 	Finish
 	Sets the transformer parameters. The transformer will use these parameters when you run the workspace.

 	Cancel
 	Closes the wizard pane and resets the parameters if they have not yet been saved.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Workflow

 FME Licensing Level

 FME Professional edition and above

 Transformer History

 This transformer was previously named the ServerJobSubmitter.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 FMEServerJobWaiter

 Waits until submitted FME Spatial ETL jobs are completely processed by an FME Server. The list of jobs to wait for is identified by the job IDs of the input features. When a job that the transformer is waiting for is completed, it outputs the corresponding feature immediately.

 Dependencies

 This transformer requires an FME Server connection.

 Output Ports

 The initiating feature is output via the Succeeded port if the job successfully ran to completion, and will have these attributes added to it:

 	_job_id: the integer ID the server assigned to this job

 	_LogFileLocation: the location of the logfile of the job

 	_result: the translation result of the job

 	_requestKeyword: the subsection keyword of the job

 	_request: the string request of the job that was submitted to the server

 	_StatusMessage: the successful message returned from the server

 		_StatusNumber: a success number corresponding to the message above

 	_NumFeaturesOutput: the number features that were output by the job

 	_timeFinished: the time the job finished

 	_timeRequested: the time the server received the job request

 	_timeStarted: the time the server started processing the job

 All times are in YYYYMMDDhhmmss format.

 The feature will be output via the Failed port if the job either did not run to completion, or the server could not be contacted, and will have these attributes added to it:

 	_job_failure_type: holds one of "Incomplete Parameters", "Connection or Server Problem" or "Translation Failed". If the latter, then the following attributes also will have values; otherwise, they are empty

 	_result: the translation result of the job

 	_requestKeyword: the subsection keyword of the job

 	_request: the string request of the job that was submitted to the server

 	_job_id: the integer ID the server assigned to this job

 	_StatusMessage: the error message returned from the server explaining why the request failed

 	_StatusNumber: an error number corresponding to the above message

 	_timeFinished: the time the job finished

 	_timeRequested: the time the server received the job request

 	_timeStarted: the time the server started processing the job

 Parameters

 Server Name and Port Number

 These parameters identify the server that will be used to execute the job.

 Username and Password

 These are optional, but, depending on your configuration, you may need them in order to
 access the server.

 Job ID

 The list of jobs to wait for is identified by the job IDs of the input features. When a job that it is waiting for is completed, it outputs the corresponding feature immediately.

 Polling Interval

 The time interval for this transformer to wait between inquiries into the status of each job is specified by the Polling Interval. This is measured in seconds and can be entered as an integer value or an integer attribute.

 Note: You should use as large value as possible for this parameter. If it is set too small, it not only impacts the resources on the client, but also on the FME Server responding to each query. For example, if the job is expected to take about 20 minutes, then it is not efficient to set the Polling Interval to a few seconds.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Workflow

 FME Licensing Level

 FME Professional edition and above

 Transformer History

 This transformer was previously named the ServerJobWaiter.

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 FMEServerLogFileRetriever

 Accesses the translation log for a specified FME Server-run translation. The translation log to access is identified by the job ID input parameter.

 Dependencies

 This transformer requires an FME Server connection.

 Output Ports

 The initiating feature is output via the Succeeded port if the translation log was successfully retrieved for the specified job ID, and will have these attributes added to it:

 	_log_attr: the contents of the translation log for the specified job

 The feature will be output via the Failed port if the translation log was not successfully retrieved for the specified job ID, and will have these attributes added to it:

 	_job_failure_type: contains the reason for the translation log retrieval failure

 	_log_attr: the contents of the translation log for the specified job, obtained before an error occurred

 Parameters

 Server Name and Port Number

 These parameters identify the server that will be used to connect to the FME Server that contains a translation log of interest.

 Username and Password

 These parameters are credentials used to verify your level of access to the FME Server. Depending on your FME Server configuration, these parameters may be optional.

 Job ID

 This parameter is the job ID of the translation log that is to be requested.

 Output Log Attribute

 This parameter is the output feature attribute that the translation log is to be written to. By default, the value is _log_attr.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Workflow

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 FMEServerNotifier

 Sends a notification to a specified FME Server. The notification may be used for a variety of actions, such as triggering a downstream workspace, or sending an e-mail message to subscribed clients.

 Dependencies

 This transformer requires an FME Server connection.

 Output Ports

 	_headers{}: Name/value pairs contained in the response header

 	_http_status_code: HTTP response code (such as 200 or 404)

 	_url_contents: HTTP response body

 Failure to successfully send a notification will not halt the translation

 Performance Considerations

 Windows systems may experience slow performance in situations where a high volume of notifications are sent. Performance may improve by disabling automatic proxy detection:

 	Click the Start menu,

 	In the 'Search programs and files' textbox, type 'proxy' and select 'Configure proxy server'.

 	In the Internet Properties dialog, Connections tab, click LAN settings.

 	Uncheck Automatically detect settings.

 	Click OK.

 Parameters

 Connect to an FME Server

 Web Connection URL

 This parameter identifies the server that will be used to connect to the FME Server that will be receiving the notification.

 Username/Password

 These parameters are credentials used to verify your level of access to the FME Server. Depending on your FME Server configuration, these parameters may be optional.

 Topic

 This parameter is the notification topic. Different FME Server notification subscriptions respond to different topics, so this topic eventually determines which actions are triggered.

 Content

 This parameter specifies the attribute containing the notification content.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Workflow

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 FMEServerWorkspaceRunner

 Submits FME Spatial ETL jobs to be run on an FME Server, and downloads the resulting data to a specified location. You can optionally upload files used for the job, and download results locally when the FME Server job is complete.

 This transformer uses FME Server’s REST (Representational State Transfer) capabilities.

 Usage Notes

 	Please ensure that the Data Download Service is enabled on the target FME Server.

 	If files are to be uploaded, please ensure that the Data Upload Service is enabled on the target FME Server.

 	In the Navigator pane, you can specify the following transformer parameters through feature attributes: Server Host, Server Port, Username, Repository, Workspace, and Workspace Parameters.

 	If you are publishing a workspace to FME Server that includes this transformer, do not select the Download results option.

 [image: fmeserverworkspacerunner1.png]

 	When you run a workspace on FME Server that contains this transformer, and the workspace sends a job
to the same FME Server that is running the original workspace: depending on the availability of FME Engines, the original
workspace may never finish.

 Dependencies

 This transformer requires an FME Server connection.

 Output Ports

 Succeeded

 Features that successfully submitted the requests to the server.

 Failed

 Features that failed to submit the requests to the server.

 Wizard Panes

 Connect to an FME Server

 Connection Type

 Direct Connection: The server Host and Port
 number identify the server that will be used to execute the job.

 Web Connection: You can also enter a URL to access FME Server using the REST API. Note that when you enter a URL, the Port field will disappear. You may need to contact your System Administrator for information on host names or URLs.

 Credentials

 Username and Password: These are optional, but, depending on your configuration, you may need them in order to
 access the server.

 Note: You can click the Test... button at the bottom of the dialog to ensure that the FME Server connection has been successfully established.

 Select Repository Item

 Once connected to the server, you must choose a repository and select
 a workspace from the list. This workspace defines the job that will be executed on the
 server.

 Select Data to Upload

 If you need to upload files to be used in this job, this transformer can use FME Server’s Data Upload Service to upload the files to the FME Server. To use this feature, please ensure that the Data Upload Service is enabled on the target FME Server.

 If desired, select files (or attributes that contain file paths) to upload.

 [image: fmeserverjobsubmitter_add.png]

 You can change the order in which the files will be processed by the transformer.

 Edit Published Parameters

 This page will appear if the server workspace contains any configurable parameters.

 Any published parameters associated with the server workspace must be given values.
 These values can be taken from attributes of the feature that triggered
 the job to be submitted, or can be typed in (in which case they will be
 the same for each job that is sent via the transformer).

 Note: If any of the parameters are filenames, those filenames
 must be valid paths on the server which will execute the job.

 Specify Job Settings and Result Processing

 Job Settings

 Job Priority: Defines the order
 in which the job will be executed on the server.

 Result Processing

 These parameters determine how the transformer will respond after a job is submitted.

 Do not download results: The transformer will run without waiting for the job to complete, and will perform no additional tasks after the job is submitted.

 Download results: If the selected FME workspace contains file path parameters, input files may be specified to be uploaded, and when the job is complete, the transformer will download the results to the path specified in the Target folder field.

 E-mail Result link when job is complete: Optionally, the transformer may be configured to work asynchronous to the FME Server job. In this case, e-mail address(es) can be provided to notify the user when the job is complete, or taken from the value of an attribute.

 Buttons

 	Test
 	This button appears on the first wizard pane. Click it to confirm that the FME Server connection has been successfully established.

 	Help
 	Displays the help text for this transformer.

 	Back
 	Displays the previous pane.

 	Finish
 	Sets the transformer parameters. The transformer will use these parameters when you run the workspace.

 	Cancel
 	Closes the wizard pane and resets the parameters if they have not yet been saved.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Workflow

 FME Licensing Level

 FME Professional edition and above

 Related Transformers

 There is also a WorkspaceRunner that is used to run local workspaces.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Generalizer

 There are four types of algorithms:

 	Generalizing algorithms reduce the density of coordinates by removing vertices.

 	Smoothing algorithms determine a new location for each vertex.

 	Measuring algorithms calculate the location of points, and return a list of these points (for example, to measure the sinuosity of a feature).

 	Fitting algorithms replace the original geometry completely, with a new feature fitted to a specified line (for example, to minimize the orthogonal distance to the original).

 The algorithm that you choose determines which transformer parameters are enabled in the transformer dialog.

 Generalizing Algorithms

 Douglas

 The Douglas algorithm will remove vertices which cause a deviation of less than the Generalization Tolerance, but the location of remaining vertices are not altered.

 Corresponding parameters:

 	Preserve Shared Boundaries

 	Generalization Tolerance

 Thin

 The Thin algorithm will remove vertices that are less than the Generalization Tolerance distance away from an adjacent vertex. The begin and end points are never moved, unless the entire length of the feature being thinned is less than the tolerance, in which case the feature is replaced by a point feature holding the final coordinate.

 Corresponding parameters:

 	Preserve Shared Boundaries

 	Generalization Tolerance

 ThinNoPoint

 The ThinNoPoint algorithm will remove vertices that are less than the Generalization Tolerance distance away from an adjacent vertex. The begin and end points are never moved, even when the entire length of the feature being thinned is less than the tolerance, in which case the feature is replaced by a linear feature connecting the first point to the last point.

 Corresponding parameters:

 	Preserve Shared Boundaries

 	Generalization Tolerance

 Deveau

 The Deveau algorithm removes vertices which contribute less to the overall shape of the feature, and may introduce new vertices at positions not originally in the feature as it works. The inherent behavior of the algorithm is such that it invalidates the z coordinate of the vertices, and any measures. Therefore the output features will always be 2D, and have no measures on them. It requires the Smoothness Factor parameter and the Sharpness Angle parameter to be specified.

 Corresponding parameters:

 	Preserve Shared Boundaries

 	Generalization Tolerance

 	Smoothness Factor

 	Sharpness Angle

 Wang

 The Wang algorithm will iteratively combine, eliminate and exaggerate bends until the input line feature has no bend that is smaller than the given tolerance value.

 Corresponding parameters:

 	Preserve Shared Boundaries

 	Generalization Tolerance

 Smoothing Algorithms

 McMaster

 The McMaster algorithm calculates a new location for each point by first taking the average value of the x and y coordinates of the point and a number of neighboring points. It then slides the averaged point towards the original point according to a specified displacement value. The overall effect is that each point will be pulled towards its neighboring points.

 Corresponding parameters:

 	Preserve Shared Boundaries

 	Number of Neighbors

 	Displacement Percentage

 McMaster Weighted Distance

 The McMaster Weighted Distance algorithm performs the same operations as the McMaster algorithm only it uses inverse distance weighting to take into account the distance from each neighbor to the point being moved. The overall effect is that points further away will have less "pull" than points close by.

 The Weighting Power parameter is used by the McMaster Weighted Distance algorithm only. It is used to determine the weight of each neighboring point.

 Note: For lines, the McMaster algorithms do not change the first and last N points (where N is the number of neighbors), because they don't have enough neighbors for the averaging calculations to work with. For polygons, a wrap-around is used so each point in a polygon will be changed. In the case of adjacent polygons and the Preserve Shared Boundaries option, collinear portions of their boundaries will be smoothed together. The remaining parts of their boundaries will be smoothed as lines. This means that no wrap-around will be used for adjacent polygons.

 Corresponding parameters:

 	Preserve Shared Boundaries

 	Number of Neighbors

 	Displacement Percentage

 	Weighting Power

 NURBfit

 The NURBfit algorithm will fit lines using B-Spline curves of given polynomial degree. The resulting lines will follow these curves with given segment length. The higher the degree, the smoother the line. An example of usage is smoothing contour lines in order to remove sparks and simulate the work of a cartographic craftsman.

 Corresponding parameters:

 	Preserve Shared Boundaries

 	Degree of Basis Polynomial

 	Segment Length

 Measuring Algorithms

 Inflection Points

 The Inflection algorithm will calculate the location of the inflection points along a line and return the list of these points. Inflection points are measures of the sinuosity of a line.

 Corresponding parameters:

 	Number of Neighbors

 Fitting Algorithms

 Orthogonal Distance Regression

 This algorithm replaces the feature's geometry with a line that minimizes the orthogonal distance between it and the original geometry's points. Orthogonal distance means the shortest (perpendicular) distance between a point and a line.

 Corresponding parameters:

 	None

 Parameters

 Each numeric parameter may be entered as a number or taken from the value of a feature attribute by selecting the attribute name from the pull-down list.

 Preserve Shared Boundaries

 No: Each feature will be treated and generalized individually without regard to its neighboring features. If the area features originally formed a coverage, there will be gaps and overlaps in the coverage. If you want the coverage to be maintained while doing area boundary generalization, choose Yes.

 Yes: Coverage topology will be maintained while doing area boundary generalization. The entire coverage of area features must not overlap. If the area features overlap, then you should choose No, or use the AreaOnAreaOverlayer first to create a coverage. In some situations, you can also use the Snapper in VERTEX mode either before, after, or instead of this transformer.

 This transformer computes topology for the coverage, generalizes the individual arcs, and then recreates the area features. This option will take longer for areas because it computes the arc/node topology, generalizes the individual arcs, and then recreates the areas.

 Generalization Tolerance

 This parameter is used by all four generalizing algorithms. It is measured in ground units (units of measure of the feature coordinates).

 Note that this value is driven by the coordinate system of the features passing through the transformer.

 Smoothness Factor

 This parameter is used by the Deveau algorithm only. It controls the number of simultaneous wedges considered when floating bands around the points in the set. The larger this value is, the more aggressive the generalization.

 Sharpness Angle

 This parameter is used by the Deveau algorithm only. It sets the tolerance for spikes that will be blunted. Vertex points at angles less than the value given from the previous two points are not moved. The angle is measured in degrees.

 Number of Neighbors

 This parameter specifies the number of neighbors to consider for each point. For example, a value of 2 specifies that the 2 points to the left of each point, the point itself, and the 2 points to the right will be considered. For the Inflection Points algorithm, this parameter specifies the number of neighboring points on either side that will affect the inflection calculation. A higher number has the effect of smoothing the line and may result in fewer inflection points. A value of 0 means no filtering.

 Displacement Percentage

 This parameter specifies the location between the original and average points to move the point. For example, a value of 50 will place the point at the halfway point between the averaged point and the point's original location.

 Weighting Power

 This parameter is used by the McMaster Weighted Distance algorithm only. It is used to determine the weight of each neighboring point.

 Degree of Basis Polynomial

 This parameter specifies the degree of the polynomial used to approximate the curve.

 Segment Length

 This parameter specifies the length of the output segments. If this is set to 0, then the output curve will have 10x the number of points in the input.

 Usage Notes

 To maintain topologies that involve other features while generalizing, consider using the SherbendGeneralizer transformer.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 FME Licensing Level

 FME Professional edition and above

 Transformer History

 This transformer replaces the AreaGeneralizer, AreaSmoother, LineGeneralizer and LineSmoother.

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.
Keywords: abstraction "line thinning" "line thin"simplification simplify spike weeding NURBfit Want Measure fit regression

 GeographicBufferer

 Expands or shrinks the boundary segments in the input geometry by a specified amount, and if necessary, connects them using stroked arcs.

 This transformer works much the same way as the standard Bufferer, but is designed for use with features in Geographic coordinates. The transformer reprojects the features into the Dynamic Equal Distance projection, buffers them, then reprojects back into the original Geographic coordinates.

 Input Ports

 Input

 Only 2D geometries are accepted as input.

 Output Ports

 Output

 Each point in the output curve will be the specified amount, measured in the specified units, away from the input geometry. If the specified buffer amount is too small, a feature with a null geometry is output.

 Parameters

 Buffer Distance Unit

 This parameter specifies the measurement units used by the Buffer Distance parameter.

 Buffer Distance

 If a positive (negative) buffer amount is specified, the input feature is expanded (shrunk). A buffer amount of 0 will leave the input geometry unmodified.

 End Cap Style

 When buffering a line, there is the additional concept of end caps on both ends of a buffered line. As the diagrams below illustrate, these caps can be round or square but it is also possible for the buffered area to not contain any caps.

 Round

 [image: bufferer_round.png]

 Square

 [image: bufferer_square.png]

 None

 [image: bufferer_none.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 GeometryCoercer

 Resets the geometry type of the feature. Depending on the feature’s
 actual coordinates, the transformer may have no effect. This transformer is sometimes used to have area features treated as
 though they were linear features, either because some later processing
 requires lines, or the destination format represents lines different than
 polygons and the linear representation is desired.

 Parameters

 Geometry Type

 If you try to set the feature’s geometry type to fme_point
 and the feature has more than one coordinate, then the feature’s geometry
 type is unchanged. The feature will also be cleaned up if there are duplicate
 points. An exception is made for point clouds, where the fme_point option will produce a single multi-point feature containing all points in the point cloud.

 If you try to set the feature’s geometry type to fme_polygon
 and the feature has more than one coordinate, then the first coordinate
 and the last coordinate must be the same or the feature’s geometry type
 will be unchanged.

 If you try to set the feature’s geometry type to fme_line
 or fme_polygon and the feature had only one coordinate, then the feature’s
 geometry type is unchanged.

 If you try to set the feature's geometry type to fme_arc or fme_ellipse and the feature had a center point, the existing center point will be used. If no center point existed, the first coordinate on the feature will be used for the center point.

 If you try to set the feature's geometry type to fme_text, the existing geometry will be used as the text location. An exception to this occurs when the existing geometry is already of type fme_text, in which case the text location will be unchanged.

 If you try to set the feature's geometry to fme_composite_surface and the geometry of the feature is not a multi-surface or brep solid, or extrusion or box or csg solid, then the feature's geometry will be unchanged. An exception for this option is when the source feature contains a mesh, in which case this option will produce a multi-surface.

 If you try to set the feature's geometry to fme_brep_solid and the geometry of the feature is not a composite surface or multi-surface or extrusion or box or csg solid, then the feature's geometry will be unchanged.

 If you try to set the feature's geometry to fme_point_cloud and the geometry of the feature is not a raster, multi-point or a simple aggregate made up only of points, then the feature's geometry will be unchanged.

 If you try to set the feature’s geometry to fme_aggregate and the geometry of the feature is not a multi, then the feature’s geometry will be unchanged.

 If you try to set the feature’s geometry to fme_multi and the geometry of the feature is not an aggregate, then the feature’s geometry will be unchanged.

 Compare Z values for duplicates
 removal

 If Compare Z values for duplicates
 removal is set to Yes, then two coordinates are considered as duplicates
 if their coordinates are equal in X, Y and Z values. Otherwise, only X
 and Y values are considered. If the geometry is a surface or a solid, then the geometry of the feature is turned into a polygon or a collection of polygons. In these cases, this parameter is ignored.

 fme_geometry and fme_type

 See fme_geometry and fme_type for more information.

 Usage Notes

 	When setting a feature's geometry type to fme_arc, fme_ellipse, or fme_text, an error will occur if the input feature does not have the attributes required to define the new geometry. If an input feature does not have all of the attributes it requires, an AttributeCreator can be used to add them.

 	Coercing into an arc requires fme_primary_axis, fme_start_angle, and fme_sweep_angle, and optionally fme_secondary_axis and fme_rotation.

 	Coercing into an ellipse requires fme_primary_axis, and optionally fme_secondary_axis and fme_rotation.

 	Coercing into text requires fme_text_string, fme_text_size, and optionally fme_rotation.

 	If the feature was a donut polygon or an aggregate, this transformer
 will have no effect on it.

 	You can't directly use the GeometryCoercer to convert donut polygons to lines. If you need to do this, extract the donut parts first using the DonutHoleExtractor.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 FMEpedia

 See FMEpedia for additional information about this transformer.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: geometry coerce "point cloud" pointcloud" "fme geometry" "reset geometry" LiDAR sonar

 GeometryColorSetter

 Sets colors, via appearances, on geometries (such as surfaces) that support appearances, and match a Geometry XQuery.

 For ease of reference, these geometries are called matching geometries. Existing appearances are removed from these matching geometries before new appearances are added.

 When Color Generation is set to Random, this transformer creates uniformly spaced, random colors. The randomized colors are the same each time you run the workspace, facilitating visualization and demo creation.

 Ports

 Input

 This transformer accepts all features.

 Colored

 All input features that contain matching geometries will be output here. These features will gain new appearances.

 <Rejected>

 All input features that are not output to the Colored port are output unmodified here.

 Parameters

 Geometry Part Selection

 Geometry XQuery

 Use this parameter if you want to isolate only a portion of the geometry passed in to the transformer. If no criteria are specified, the action will apply to the entire geometry at all levels.

 Selection can be based on structural location, geometry name, type, appearance information, or traits. The syntax used is a restricted set of XQuery, where the return clause is fixed.

 The basic Geometry XQuery dialog allows you to construct simple selection queries by automatically writing the necessary query based on specified test clauses. Clicking the Switch to Advanced button opens the Advanced Editor, which allows you to type a query free-form, for more expressive queries.

 Note that once you switch to Advanced mode, you will have to clear all parameters before you can return to Basic mode.

 A hierarchical geometry is represented as nodes of type geometry, with attributes containing information about traits, type, and name for each geometry.

 Mode

 Color Generation

 Fixed: Sets all matching geometries to a single color and a single alpha value.

 Random: Sets all matching geometries to random colors and a single alpha value, subject to the Randomize By Trait parameter. The randomization algorithm is deterministic, so the set of output colors will be the same each time you run the workspace.

 Side(s) To Color

 For a matching geometry, this parameter specifies which side(s) of the geometry to color.

 Parameters

 Fill Color

 When Color Generation is set to Fixed, use this parameter to set a single color for all matching geometries.

 Alpha

 Specifies the transparency level of the appearance to be added: 0.0 is completely transparent and 1.0 is completely opaque.

 Randomize By Trait

 When Color Generation is set to Random, this parameter controls the scope of randomization. If this parameter is left blank, every matching geometry will receive a different color.

 If a trait name is specified, all geometries with the same trait value will be given the same color, and geometries with different trait values will be given different colors.

 Example

 Input

 [image: geometrycolorsetter1.png]

 Output: Random

 [image: geometrycolorsetter2.png]

 Output: Randomize by Trait

 [image: geometrycolorsetter3.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Surfaces

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 GeometryExtractor

 Extracts the geometry of a feature according to the setting
 of the geometry encoding parameter.

 The
 resulting encoded geometry is added to the feature in an attribute. This
 attribute can later be restored as the feature's geometry via the GeometryReplacer transformer.

 This transformer is often used to make a copy of the feature's geometry
 into an attribute before some temporary geometry change is made, so that
 it can later be restored. Alternately,
 the geometry may be extracted to be stored in a database or other file
 format that cannot handle geometry, but can handle large attributes as
 blobs or text strings. Later,
 FME can read this data back and restore the geometry via the GeometryReplacer transformer.

 Parameters

 Geometry Encoding

 This parameter can be set to Encoded Polyline, Esri JSON, FME Binary, FME XML, Geo (microformat), Geohash, GeoJSON, GeoRSS Simple Encoding, Geotagging GeoSMS (RFC 5870), GML, hexadecimal-encoded FME Binary, hexadecimal-encoded OGC Well Known Binary (wkbhex), KML, OGC Open GeoSMS, OGC Well Known Binary (wkb) or OGC Well Known Text (wkt).

 The most efficient and truest representation of the geometry is FME
 Binary, and this should be used in most cases.
 All the FME representations can accommodate all aspects of FME Enhanced Geometry,
 including measures and paths consisting of multiple linear segments;
 however, both the FME XML and Hex Encoded FME Binary representations impose
 some overhead in translating between the internal binary representation
 and the ASCII-encoded representation.

 The OGC variants are useful if interaction with other OGC supporting systems is required. However, some characteristics of geometries may be lost in these modes; for instance, any path will be flattened into a single linestring.

 Because OGC provides no WKT or WKB representation for null
 geometries, the resulting attribute value in these modes for a feature
 with no geometry will be the empty string ("").

 The GeoJSON, Esri JSON, and GeoRSS Simple encodings may not preserve all geometry characteristics. For example, arcs will be stroked to lines, and ellipses stroked to polygons. These encodings also do not support measures.

 The Geohash encoding will not preserve any geometry characteristics. Instead, they will be converted to a point represented by a geohash.

 The OGC Open GeoSMS, Geotagging GeoSMS, and Geo encodings will not preserve any geometry characteristics. For example: arcs, polygons, ellipses, etc., will be converted into a point at the center of their bounding box and will then be encoded to their respective formats. If the geometry has a coordinate system other than LL-WGS84, a temporary copy will be created and reprojected; however, the source geometry will not be modified.

 The Encoded Polyline encodings are useful if working with the Google Maps API and can be used to represent points, lines and polygons.

 Destination Geometry Attribute

 The name of the attribute that will hold the encoded geometry.

 OGC Version (WKT/WKB Geometry Encoding only)

 You can choose between versions 1.1 and 1.2.

 Version 1.2 contains two key improvements: support for measures and z-values. Note that the only measure considered when producing an OGC representation is the "default" (unnamed) measure.

 Omit XML Namespace Declarations (GeoRSS/KML/GML Geometry Encoding only)

 For XML output formats (except FME XML), this parameter controls whether or not the output contains XML namespace declarations. All well-formed XML output must contain namespace declarations. However, if you are manually inserting the transformer output into a larger XML document, you may want to omit the namespace declarations.

 Precision/Length of Geohash (Geohash Geometry Encoding only)

 You can chose the length in characters of the resulting geohash; this also shows the approximate precision. Please note that the precision of a geohash is limited by the precision of the source geometry.

 Open GeoSMS URL Prefix (OGC Open GeoSMS Geometry Encoding only)

 This parameter allows you to choose the URL of the mapping service to be used by the OGC Open GeoSMS. The default value is Google Maps.

 Destination Polyline Levels Attribute (Encoded Polyline Geometry Encoding only)

 The name of the attribute that will hold the encoded levels of a polyline.

 Usage Notes

 To carry out a similar operation on raster data, please use the RasterExtractor transformer. For point cloud data, please use the PointCloudExtractor.

 Be sure to position this transformer as close as possible to where the geometry attribute is being used. Positioning the transformer too early can cause unnecessary use of system resources.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Related Transformers

 GeometryReplacer

 RasterExtractor

 RasterReplacer

 PointCloudExtractor

 PointCloudReplacer

 FME Licensing Level

 FME Professional edition and above

 Transformer History

 This transformer contains the functionality of the
 now-deprecated OGCGeometryExtractor and XMLGeometryExtractor.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 GeometryFilter

 Routes a feature based on its geometry type.

 Each feature that enters the transformer is output via the port corresponding to its
 fme type. Each output feature has a complete, unaltered copy of the source
 feature's attributes and geometry.

 Output Ports

 Each output port corresponds to standard fme_type attributes.

 Parameters

 Homogenize Collections

 If Homogenize Collections is set to Yes, then any heterogeneous aggregate geometries will be split into homogeneous aggregates, where each aggregate consists only of parts having the same geometry type.

 Example

 View results by routing a feature type through a GeometryFilter to an Inspector.

 If you route a feature type that contains point geometry through the GeometryFilter Point output port to an Inspector, you will see only the fme_point geometry:

 [image: geometryfilter0.png]

 The Information pane in the Universal Viewer shows the fme_geometry and fme_type:

 [image: geometryfilter1.png]

 Usage Notes

 FME will sometimes automatically insert a GeometryFilter into a new workspace. Some destination formats only permit features of a specific geometry type to be written to a single feature type. For example, a Personal Geodatabase Feature Type (Esri Feature Class) can hold polygons or polylines, but not both.

 When you read from a source dataset that permits multiple geometry types in a feature class, but write to a destination dataset that is restricted to a single geometry type per class, FME automatically creates a destination feature type for each geometry type and inserts a GeometryFilter to divide up the features on the basis of geometry. This ensures that no destination feature type receives features that it is not permitted to write.

 Related Transformers

 Aggregate features are not handled specifically by this transformer,
 as several geometries may be structured as aggregates. To filter aggregates,
 use the AggregateFilter.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Filters

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 GeometryInstantiator

 Instantiates a geometry instance into a specific concrete instantiation of geometry definition.

 The geometry instance's insert location and placement matrix are applied to the geometry definition for this instantiation.

 Output Ports

 Instantiated

 Each output feature will contain a copy of the source feature's attributes. If the feature passed in does not contain any geometry instances, this transformer will output the feature untouched.

 Untouched

 Features that were not modified by the transformer.

 Parameters

 Geometry XQuery

 Use this parameter if you want to isolate only a portion of the geometry passed in to the transformer. If no criteria are specified, the action will apply to the entire geometry at all levels.

 Selection can be based on structural location, geometry name, type, appearance information, or traits. The syntax used is a restricted set of XQuery, where the return clause is fixed.

 The basic Geometry XQuery dialog allows you to construct simple selection queries by automatically writing the necessary query based on specified test clauses. Clicking the Switch to Advanced button opens the Advanced Editor, which allows you to type a query free-form, for more expressive queries.

 Note that once you switch to Advanced mode, you will have to clear all parameters before you can return to Basic mode.

 A hierarchical geometry is represented as nodes of type geometry, with attributes containing information about traits, type, and name for each geometry.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: CAD

 GeometryPartExtractor

 Extracts or removes selected geometry parts based on a Geometry XQuery.

 Input Port

 Input

 Features with geometries.

 Output Ports

 Processed

 Features with newly extracted geometry parts in EXTRACT mode or original feature with selected parts removed in REMOVE mode.

 Untouched

 Features that were not modified by the transformer.

 Parameters

 Geometry Part Selection

 Geometry XQuery

 Use this parameter if you want to isolate only a portion of the geometry passed in to the transformer. If no criteria are specified, the action will apply to the entire geometry at all levels.

 Selection can be based on structural location, geometry name, type, appearance information, or traits. The syntax used is a restricted set of XQuery, where the return clause is fixed.

 The basic Geometry XQuery dialog allows you to construct simple selection queries by automatically writing the necessary query based on specified test clauses. Clicking the Switch to Advanced button opens the Advanced Editor, which allows you to type a query free-form, for more expressive queries.

 Note that once you switch to Advanced mode, you will have to clear all parameters before you can return to Basic mode.

 A hierarchical geometry is represented as nodes of type geometry, with attributes containing information about traits, type, and name for each geometry.

 Note: Unlike other transformers that contain the Geometry XQuery parameter, this transformer requires that you specify a Geometry XQuery. If
		you want to extract every single part, one method is to use an XQuery that matches the "Hierarchy Position" to "Leaf Node". Alternatively, you can use a Deaggregator in hierarchy mode, which may produce more useful output.

 Parameters

 Action

 	Extract: Extract selected geometry parts into new features

 	Remove: Remove selected geometry parts from original feature and return pruned result

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 GeometryPropertyRenamer

 Renames geometry names or traits.

 Input Ports

 Input

 Features with geometries.

 Output Ports

 Renamed

 Features with selectively renamed traits or geometry names.

 Untouched

 Features that were not modified by the transformer.

 Parameters

 Geometry Part Selection

 Geometry XQuery

 Use this parameter if you want to isolate only a portion of the geometry passed in to the transformer. If no criteria are specified, the action will apply to the entire geometry at all levels.

 Selection can be based on structural location, geometry name, type, appearance information, or traits. The syntax used is a restricted set of XQuery, where the return clause is fixed.

 The basic Geometry XQuery dialog allows you to construct simple selection queries by automatically writing the necessary query based on specified test clauses. Clicking the Switch to Advanced button opens the Advanced Editor, which allows you to type a query free-form, for more expressive queries.

 Note that once you switch to Advanced mode, you will have to clear all parameters before you can return to Basic mode.

 A hierarchical geometry is represented as nodes of type geometry, with attributes containing information about traits, type, and name for each geometry.

 Parameters

 Property to Rename

 Traits: Rename traits with selected names

 Geometry Name: Rename geometries based on name pairs

 Names

 Specify the exact name pairs to rename: the old name of the trait or geometry and the new name that should be set on those geometries that match the old name or trait. You can enter the names as a comma-separated list (Window,Door) or use the dialog that displays when you click the browse button.

 For example, if the old name is “Window”, the new name is “Door”, and you select Traits under Property to Rename, a trait that had the name "Window" would be renamed "Door". The new "Door" trait will retain the original value.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Related Transformers

 GeometryPropertyExtractor

 GeometryPropertySetter

 GeometryPropertyRemover

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 GeometryPropertyRemover

 Removes selected geometry names or traits.

 Input Ports

 Input

 Features with geometries.

 Output Ports

 Removed

 Features with selectively removed traits or geometry names.

 Untouched

 Features that were not modified by the transformer.

 Parameters

 Geometry Part Selection

 Geometry XQuery

 Use this parameter if you want to isolate only a portion of the geometry passed in to the transformer. If no criteria are specified, the action will apply to the entire geometry at all levels.

 Selection can be based on structural location, geometry name, type, appearance information, or traits. The syntax used is a restricted set of XQuery, where the return clause is fixed.

 The basic Geometry XQuery dialog allows you to construct simple selection queries by automatically writing the necessary query based on specified test clauses. Clicking the Switch to Advanced button opens the Advanced Editor, which allows you to type a query free-form, for more expressive queries.

 Note that once you switch to Advanced mode, you will have to clear all parameters before you can return to Basic mode.

 A hierarchical geometry is represented as nodes of type geometry, with attributes containing information about traits, type, and name for each geometry.

 Parameters

 Property to Remove

 	Geometry Name: Remove the geometry name.

 	Traits: Remove all traits.

 Remove All

 If set to Yes, all candidates will be removed. If set to No, the Filter parameter will determine which candidates will be removed.

 Filter (regex)

 If the Remove All parameter is set to No, the filter will be applied to the candidates for removal, and those that match the regular expression will be removed.

 For example, if Filter is set to ^sketchup_ and traits are being removed, only traits with the prefix sketchup_ will be removed from the selected geometries.

 Related Transformers

 GeometryPropertyExtractor

 GeometryPropertyRenamer

 GeometryPropertySetter

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 GeometryPropertyExtractor

 Extracts selected geometry names or traits to feature attributes.

 Input Ports

 Input

 Features with geometries.

 Output Ports

 Extracted

 Features with newly set attributes based on geometry name or traits.

 Untouched

 Features that were not modified by the transformer.

 Parameters

 Geometry Part Selection

 Geometry XQuery

 Use this parameter if you want to isolate only a portion of the geometry passed in to the transformer. If no criteria are specified, the action will apply to the entire geometry at all levels.

 Selection can be based on structural location, geometry name, type, appearance information, or traits. The syntax used is a restricted set of XQuery, where the return clause is fixed.

 The basic Geometry XQuery dialog allows you to construct simple selection queries by automatically writing the necessary query based on specified test clauses. Clicking the Switch to Advanced button opens the Advanced Editor, which allows you to type a query free-form, for more expressive queries.

 Note that once you switch to Advanced mode, you will have to clear all parameters before you can return to Basic mode.

 A hierarchical geometry is represented as nodes of type geometry, with attributes containing information about traits, type, and name for each geometry.

 Parameters

 Property to Extract

 	Traits: Extract the selected traits to attributes of the same name.

 	Geometry Name: Extract the geometry name to the specified attribute

 Geometry Name Attribute

 This parameter is valid when the Property to Extract is set to Geometry Name.

 It defines the name of the attribute to which the geometry name will be extracted. If a hierarchical geometry is present, multiple geometry names will be extracted onto a list attribute of the same name. The default value for the Geometry Name Attribute is _geometry_name.

 Traits to Extract

 The names of traits to extract from the geometry. If the same trait is present on multiple parts of the geometry, it will be pushed up as a list attribute of the same name. If no traits are specified, all traits on selected geometries will be pushed up as attributes.

 Prefix Extracted Trait with Geometry Name

 Setting this parameter to Yes will prefix the extracted traits with the respective geometry’s name. If traits with the same name exist on multiple geometries, using this option will allow these traits to exist independently.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Related Transformers

 GeometryPropertyRemover

 GeometryPropertyRenamer

 GeometryPropertySetter

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 GeometryPropertySetter

 Sets selected geometry names or traits from feature attributes or constants.

 Input Ports

 Input

 Features with geometries.

 Output Ports

 Set

 Features with newly set traits or geometry names.

 Untouched

 Features that were not modified by the transformer.

 Parameters

 Geometry Part Selection

 Geometry XQuery

 Use this parameter if you want to isolate only a portion of the geometry passed in to the transformer. If no criteria are specified, the action will apply to the entire geometry at all levels.

 Selection can be based on structural location, geometry name, type, appearance information, or traits. The syntax used is a restricted set of XQuery, where the return clause is fixed.

 The basic Geometry XQuery dialog allows you to construct simple selection queries by automatically writing the necessary query based on specified test clauses. Clicking the Switch to Advanced button opens the Advanced Editor, which allows you to type a query free-form, for more expressive queries.

 Note that once you switch to Advanced mode, you will have to clear all parameters before you can return to Basic mode.

 A hierarchical geometry is represented as nodes of type geometry, with attributes containing information about traits, type, and name for each geometry.

 General Parameters

 Property to Set

 	Traits From Attributes: Set traits from specified attributes.

 	Traits From Counter: Set traits from an incremental counter.

 	Geometry Name: Set the geometry name from specified attribute value or text.

 Overwrite Existing Properties

 If a property is already present and this parameter is set to No, the geometry will not be modified.

 For example, if the geometry name is already set to House, then renaming as Residential will not apply if this parameter is set to No.

 Traits from Attributes Parameters

 Source Attributes

 Select the attributes from which to add new traits to the geometry. In particular, the name and value of the trait will match the name and value of the specified attribute.

 This parameter is only valid if the Property to Set parameter is Traits From Attributes.

 Trait Counter Parameters

 Count Output Trait

 Enter the name of the trait that will contain the results, and will appear on all the geometry parts that are selected by the Geometry XQuery.

 This parameter is only valid if the Property to Set parameter is Traits From Counter.

 Counter Name

 Create separate sequences of numbers to be assigned, either by placing several GeometryPropertySetter transformers with each having a different counter name, or by choosing an attribute whose value will be used as the counter name as each feature passes through. (In effect, using an attribute to supply the GeometryPropertySetter name is like having a Group By option for the GeometryPropertySetter.)

 This parameter is only valid if the Property to Set parameter is Traits From Counter.

 Count Start

 Specify a starting value for the counter. This is useful for applications where ranges of values have meanings in the problem domain. See Usage Notes in the Counter transformer for more tips.

 This parameter is only valid if the Property to Set parameter is Traits From Counter.

 Count Scope

 Specify the scope of this counter:

 	Global (throughout the entire workspace): Global counters with the same Counter Name will share the same counting sequence.

 	Local (for this transformer only): Local counters will each have a unique counting sequence for all features going through the same Transformer.

 	Feature (for every separate feature): Feature counters will have a unique counting sequence for every single feature.

 This parameter is only valid if the Property to Set parameter is Traits From Counter.

 Geometry Name Parameters

 Geometry Name

 The text name or attribute containing the value for the name to be set on the geometry.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Related Transformers

 Counter

 GeometryPropertyExtractor

 GeometryPropertyRemover

 GeometryPropertyRenamer

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 GeometryRefiner

 Performs the following "refinements" on features' geometry:

 	Any homogeneous IFMEAggregate will become a multi
 (IFMEMultiCurve, IFMEMultiArea, IFMEMultiPoint, or IFMEMultiText).

 	Any IFMEAggregate or multi with only one member
 will be replaced by its single part.

 	Any IFMEDonut with no holes will become an IFMEPolygon
 or IFMEEllipse.

 	Any IFMEPath with only one segment will be replaced
 by that segment.

 	Consecutive IFMELine segments within an IFMEPath
 will be combined.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 GeometryRemover

 Completely removes the geometry of the feature, for example, if you want to turn spatial data into non-spatial data.

 You can use the VertexCreator
 transformer afterwards to add vertices to the resulting feature.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 GeometryReplacer

 Replaces the geometry of a feature according to the setting
 of the geometry encoding parameter. This transformer is typically used to restore geometry previously extracted into an attribute by the GeometryExtractor.

 Parameters

 Geometry Encoding

 This parameter can be set to Encoded Polyline, Esri JSON, FME Binary, FME XML, Geo (Microformat), Geohash, GeoJSON, GeoRSS Simple Encoding, Geotagging GeoSMS (RFC 5870), GML, hexadecimal-encoded FME Binary, hexadecimal-encoded OGC Well Known Binary (wkbhex), KML, OGC Open GeoSMS, OGC Well Known Binary (wkb), OGC Well Known Text (wkt) or Parseable Encoded FME XML.

 The most efficient and truest representation of the geometry is FME
 Binary, and this should be used in most cases.
 All the FME representations can accommodate all aspects of FME Enhanced Geometry,
 including measures and paths consisting of multiple linear segments;
 however, both the FME XML and Hex Encoded FME Binary representations impose
 some overhead in translating between the internal binary representation
 and the ASCII-encoded representation.

 The OGC variants are useful if interaction with other OGC supporting systems is required. However, some characteristics of geometries may have been lost in these modes; for instance, any path will be flattened into a single linestring. For OGC Well Known Text and OGC Well Known Binary, if measures are specified in the source, they will be saved as the "default" (unnamed) measure on the generated geometry.

 When converting from WKT or WKB, if the specified attribute has a blank
 value, the feature's geometry will be left untouched and a warning will
 be output. This
 is important to remember if a GeometryExtractor was used to generate an attribute which was used in this transformer, because that transformer produces
 an empty value whenever it encounters a feature with no geometry.

 The Parseable Encoded
 FME XML option is used to take
 the geometry representation used by the Creator transformer and set the
 geometry from that.

 The GeoJSON, Esri JSON and GeoRSS encodings may not preserve all geometry characteristics. For example, arcs will be stroked to lines, and ellipses stroked to polygons. GeoJSON does not support measures.

 The GML encoding option is used to de-serialize GML geometries. If more than one geometry is found in the source geometry, then an aggregate of the geometries is returned. The optional GML SRS Axis Order parameter may also be used to force interpretation of the <gml:pos> and <gml:posList> into a particular axis order.

 The Geohash encoding option stores the geometry as a string of characters that can be decoded as either a point or a rectangular area.

 The OGC Open GeoSMS, Geotagging GeoSMS and Geo (Microformat) encoding options will extract a point from the given format.

 The Encoded Polyline encodings are useful if working with the Google Maps API and can be used to represent points, lines and polygons.

 Geometry Source

 The encoded representation of the geometry to assign to the feature. An attribute can be selected if one contains this value, or text may be entered directly or fetched from a workspace parameter.

 Decode Geohashes as (Geohash only)

 You can choose to decode a geohash as either a point or a rectangular area. If decoded as a point, the area information is stored as attributes.

 Remove Attribute

 If this parameter is set to Yes, the attribute specified in Geometry Source will be removed from the resulting feature. This parameter has no effect if an attribute was not specified.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Related Transformers

 GeometryExtractor

 RasterExtractor

 RasterReplacer

 PointCloudExtractor

 PointCloudReplacer

 FME Licensing Level

 FME Professional edition and above

 Transformer History

 This transformer contains the functionality of the
 now-deprecated OGCGeometryReplacer and XMLGeometryReplacer.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 GeometryValidator

 Detects selected issues in input features, and optionally repairs detected issues. Each input feature is processed individually.

 The GeometryValidator is a very powerful transformer, suitable for advanced users. The help topic consists of a number of reference sections:

 	Input Ports

 	Output Ports

 	Top-Level Parameters

 	Table Overview

 	Issues

 Input Dependencies for Issues

 Output Dependencies for Issues, Assuming Input Dependencies Respected

 	Information About Issues Reports

 Input Ports

 Input

 All input geometries are accepted but not all of them are subject to issue detection. Some geometries are only superficially supported (for example, point and lines will always pass detection on surface and solid issues).

 Some geometries are not currently supported. If a feature consists solely of currently unsupported geometries, it will be output onto the Passed port. If a feature contains a geometry that is not currently supported, a once-per-session warning message will be printed in the log.

 Tip: If you discover a Passed feature that is clearly invalid, check the log first to see whether that feature might contain a geometry that is not currently supported.

 Output Ports

 Passed

 When a feature is output through the Passed port, it has passed issue detection.

 Failed

 If a feature is output through the Failed port, it has failed issue detection. Features are output from this port for three reasons:

 	When Attempt Repair is set to No, this port contains features in which selected issues are detected.

 	When Attempt Repair is set to Yes, this port contains features that could not be fully repaired. Whether a feature is fully repaired can be determined by observing the repair state attribute associated with reported issues. If any detected issue is reported as Not Fully Repaired, then the feature will, as a whole, be considered not fully repaired, and is output via the Failed port.

 	When Attempt Repair is set to Yes, this port can contain Remnant features. For example, repairing a self-intersecting donut could produce a repaired area and a number of remnant areas from holes that extend beyond the outer shell.

 To distinguish between the above situations, ensure that you specify a Detected Issue List Name.

 Repaired

 This port is used only when Attempt Repair is set to Yes. If a feature is output onto the Repaired port, at least one issue has been detected, and all detected issues have been repaired.

 Parameters

 Note: To fully understand the choices and information in these parameters, please refer to other sections of this help topic.

 Set of Issues to Detect

 This is a dropdown list of preset issues: Custom, All, and OGC. When you select one of the issues from the list, all issues in the Issue column will be de-selected, and replaced by the issues related to your selection.

 Tip: Use this parameter to quickly select multiple related issues.

 Detected Issue List Name

 Detected issues will be reported within attribute lists and trait lists. These lists will have the same name, which is the value of this parameter. If this list name is left empty, no detected issues will be reported.

 Four pieces of information are reported:

 	.issue_found (required): reports the issue detected.

 	
 .repair_state (optional): distinguishes between Remnant and Not Fully Repaired features and geometries. If a feature or geometry passes issue detection or becomes fully repaired, then this attribute or trait is not set, as setting it in these cases would provide duplicate information that unnecessarily clutters reporting

 	.location_sample (optional): reports a location where the issue was detected.

 	.supplementary_info (optional): reports additional information, such as additional locations where issues were detected.

 Issue locations are reported as local coordinates, as opposed to world coordinates.

 Issue attributes and traits do not accumulate through multiple GeometryValidators. In fact, the first operation GeometryValidator performs is to remove existing issue attributes and traits that collide with the specified Detected Issue List Name. This removal takes place even if no issues are selected.

 Tip: to preserve existing issue attributes and traits reported by an upstream GeometryValidator, modify Detected Issue List Name

 Attempt Repair

 If this parameter is set to Yes, detected issues will either be fully repaired, in which case the feature would be output to the Repaired port, or not fully repaired, in which case the feature would gain at least one .repair_state of Not Fully Repaired and be output to the Failed port.

 If a single issue is selected for repair, it can be expected that the primary (as opposed to remnant) output feature will either have all occurrences of the selected issue repaired, or gain a .repair_state of Not Fully Repaired. For example, if Self-Intersection in 2D is selected with Attempt Repair set to Yes, the primary output feature can be expected to be free of self-intersections.

 If this parameter is set to No, detected issues will not be repaired, and features with detected issues will be output via the Failed port.

 Tip: You may preview issue repair (e.g., detect issues) by setting Attempt Repair to No. However, this preview will only align with the actual repair if you select exactly one issue to detect, or if you select a set of independent issues.

 When Attempt Repair is set to Yes, it is possible for a geometry part to become incompatible with its container geometry after repair. In some cases, these geometry parts are removed or output as remnants. In other cases, these geometry parts are kept, and their container geometries change geometry types, so that the parts and the container become compatible again.

 Here is a list of container geometries whose incompatible parts are removed or output as remnants:

 	IFMEDonut

 	IFMEBRepSolid

 	IFMEPath

 	IFMEMesh

 	IFMECompositeSurface

 	IFMECompositeSolid

 Here is a list of container geometries that will change types to accommodate its incompatible parts:

 	IFMEMultiArea

 	IFMEMultiCurve

 	IFMEMultiPoint

 	IFMEMultiSurface

 	IFMEMultiSolid

 	IFMEMultiText

 	IFMETriangleStrip

 	IFMETriangleFan

 	IFMEMesh

 There is an exception to the first list of container geometries when Degenerate or Corrupt is selected and Repair is set to Yes. In such cases, if a container geometry becomes empty after all degeneracies and corruptions have been removed, then one of the incompatibly repaired parts will be output as the Repaired maybe feature.

 See FME 3D Support for more information on geometry types.

 Table Overview

 	Table Column Name
 	Description

 	Issue
 	 Select the issues to detect or repair.

 	Parameters
 	 Specify parameters specific to each selected issue.

 	Repairable
 	Describes whether or not a selected issue can be repaired.

 Selected issues are detected in the order shown in the Issue column. Issue detection ordering can be changed by highlighting an issue and then clicking the small up/down arrows just outside the issues table.

 Issue detection only occurs within geometries, including geometric properties such as text rotation and arc sweep angle. That means attributes, traits, geometry names, and other non-geometric properties are not processed.

 In general, input geometry types are preserved unless they cannot be.

 For example, an arc that degenerates into a point cannot remain an arc and at the same time be non-degenerate. So, when the issue Degenerate and Corrupt Geometries is selected, and Attempt Repair is set to Yes, the arc should be repaired into a point.

 As another example, a donut that contains a non-degenerate outer shell, a degenerate hole, and a non-degenerate hole can remain a donut after degeneracy repair. The donut simply drops the degenerate hole, and remains a donut.

 If an input geometry contains multiple issues, but only a subset of them is being detected and repaired, expect undefined behavior. For example, if an arc containing a NaN (Not a Number) is being repaired only for degeneracy and corruption, the number of NaNs in that arc could increase. As another example, if you attempt to repair self-intersections in a degenerate geometry, it may come out with a different geometry type and lose its coordinates.

 In general, the detection and repair of some issues depends on the absence of other issues. Further, during the repair of a particular issue, other issues may be created. In some cases, it may be necessary to use multiple GeometryValidator transformers to remove all issues of interest. If input issue dependencies are respected, it should be expected that the output of an issue repair operation should no longer contain that issue.

 Information about the Issues Table Reports

 This section contains a comprehensive list of the possible information reported for each issue in the issues table.

 Issues

 Input Dependencies for Issues

 The detection and repair of the following issues depends on the absence of other issues:

 	Degenerate or Corrupt Geometries
 	no NaNs or infinities in input

 	
 Self-Intersections in 2D

 Tip: To avoid undefined behavior, select Degenerate or Corrupt Geometries and Contains NaN (Not a Number) or Infinity before selecting Self-Intersections in 2D.

 	no NaNs, infinities, degeneracies, or corruptions in input

 	Non-Planar Surfaces

 	no NaNs or infinities in input

 	Invalid Solid Boundaries or Invalid Solid Voids
 	no NaNs or infinities, duplicate consecutive coordinates, degeneracies or corruptions, or self intersections within individual faces in input

 	Invalid Solid Voids

 	no invalid solid boundaries

 Output Dependencies for Issues, Assuming Input Dependencies Respected

 Repairing the following issues can produce other issues:

 	Contains NaN (Not a Number) or Infinity

 	can produce degenerate output

 	Degenerate or Corrupt Geometries

 	can produce self-intersecting output

 	Contains Null Geometry Parts

 	can produce degenerate output

 	Duplicate Consecutive Points

 	can produce degenerate output

 	Invalid Solid Boundaries

 	can produce degenerate faces in the boundary

 The recommended ordering of issues to detect is built into the Issue column. If a different ordering is desired, highlight an issue, then click the up and down arrows on the right side of the issues table.

 Tip: Different orderings of issues to detect and repair may cause output geometries to change.

 Contains NaN (Not a Number) or Infinity

 If Attempt Repair is set to No, NaNs and infinities will be detected.

 If Attempt Repair is set to Yes, one of two operations will take place:

 	If there is redundant information, such as in the case of arcs with end points, the redundant information will be used to compute replacement values for NaNs.

 	If there is no redundant information, NaNs will be removed, which could trigger the removal of a coordinate or the conversion of the geometry to IFMENull.

 For example, when Attempt Repair is set to Yes, an arc containing a NaN rotation will be replaced with an IFMENull because there is no redundant information to recalcuate the rotation. As another example, an arc that has NaNs in the end points can have its end points recalculated based on the center point and the arc properties.

 Contains Null Geometry Parts

 If Attempt Repair is set to No, IFMENull parts will be detected. Note that an IFMENull by itself is not considered a “part”. Only IFMENulls that are the children of some aggregate will be considered “parts”.

 If Attempt Repair is set to Yes, IFMENull parts will be removed.

 Duplicate Consecutive Points

 If Attempt Repair is set to No, consecutive duplicate points are detected.

 If Attempt Repair is set to Yes, consecutive duplicate points are removed.

 If Check Z Values is set to No, duplicate detection is performed in 2D.

 If Check Z Values is set to Yes, duplicate detection is performed in 3D.

 Degenerate or Corrupt Geometries

 If Attempt Repair is set to No, degeneracies and corruptions will be detected. A degenerate geometry is one whose geometry type can be simplified. For example, a polygon that has 0 area is degenerate, and can be simplified to a line, point, or IFMENull. A corrupt geometry in contrast contains conflicts in the geometry definition, such as an arc whose angles and endpoints disagree.

 If Attempt Repair is set to Yes, degeneracies and corruptions are repaired in combination. It would not be helpful to separate this issue into two. If a degenerate geometry is repaired into a corrupt geometry, or vice versa, the output could be in worse shape than the input.

 As an example, a donut that contains a degenerate hole will become corrupt after the degenerate hole is repaired into a point in place. If you do not repair this point-hole corruption in the donut definition, the result would be a donut that is “sicker” than the input. The correct action is to remove the point-hole from the donut.

 In the case of meshes, parts containing invalid indices will be detected. In the case of corrupt vertex normal or texture coordinate indices, only that information will removed from the corrupt part upon repair. If the vertex indices are corrupt, the invalid part will be deleted from the repaired mesh.

 As a second example, a corrupt arc whose angles and endpoints mismatch may be repaired into a degenerate arc that is equivalent to a point. If you stopped there and output the degenerate arc, you could end up with more downstream issues than not repairing the arc at all. The correct action is to convert the arc into a point.

 Expect that arcs with 0 curvature will be replaced by, or stroked into, a line
or point. Arcs with endpoints may be subject to precision limitations that
cause a drift between the explicit endpoints, and the implicit arc definition.
The parameters below may be used to control the amount of endpoint drift that
is tolerated before an arc is flagged as corrupt.

 Arc Endpoints Accuracy Mode

 If set to Auto, a tolerance value will be automatically calculated for each geometry part, based on the properties of the geometry part. If set to Custom, the user may specify an attribute or a fixed value for the tolerance.

 Tolerance

 The Tolerance parameter describes the maximum difference, in ground units,
permitted between the explicit and implicit end points of an arc. If the
difference exceeds this tolerance, an arc is flagged as corrupt. If the difference exceeds the tolerance but is as accurate as possible within the limits of numerical precision, an arc will not be considered corrupt.

 Self-Intersections in 2D

 If Attempt Repair is set to No, self-intersection points are detected.

 If Attempt Repair is set to Yes, an input geometry with self-intersections will be divided into a collection of geometry parts that do not contain self-intersections. For example, a figure-8 polygon that has a “waist size” of 0 will be repaired into an IFMEMultiArea of two polygons. As another example, meshes, triangle strips and triangle fans will be repaired into composite surfaces.

 Expect self-intersections to be detected in x and y only.

 Duplicate coordinates (duplicate in x and y) are considered self-intersections and are reported as such. Duplicate consecutive coordinates are reported as a single self-intersection point.

 Faces are rotated onto the x-y plane, self-intersected in x and y, and then un-rotated.

 Composite surfaces, meshes, triangle strips, and triangle fans are tested for self-intersection on a per-part (or per-face) basis, but the parts are not self-intersected against each other. For example, if a composite surface has a face that self-intersects, it will be output via the Failed port. If a composite surface has two faces that intersect each other but do not self-intersect on their own, the composite surface will be output via the Passed port.

 Self-intersections are reported via .location traits. When self-intersections are detected, but no self-intersection points are available for reporting, the transformer reports a nearby location.

 Check Self-Touching Polygon

 If set to Yes and if Attempt Repair is set to Yes, then donuts that have a hole touching the outer boundary will have the hole added to the outer boundary. This will convert the outer boundary to a pinch polygon. This option will only affect donut holes touching the original outer boundary.

 Non-Planar Surfaces

 If Attempt Repair is set to No, non-planar faces and surface parts, such as mesh parts or parts of a composite surface, will be detected. A non-planar face or surface part does not have all of its vertices on the same plane in 3D space.

 If Attempt Repair is set to Yes, non-planar faces and surface parts will be triangulated.

 Mode

 If set to Auto, a tolerance value will be automatically calculated for each geometry part, based on the extents of the geometry part. If set to Custom, the user may specify an attribute or a fixed value for the tolerance.

 Tolerance

 The Tolerance parameter describes the maximum “thickness” a plane can have before it is considered non-planar. See PlanarityFilter.

 Invalid Solid Boundaries

 The following family of issues can be detected:

 	Surface Projection Invalid

 	Not a Valid 2-Manifold

 	Surface Not Closed

 	Dangling Faces

 	Face Orientation, Incorrect Edge Usage

 	Free Faces

 	Surface Self-Intersects

 	Vertices Not Used

 	Surface Normals, Bad Orientation

 If no issues are detected, a solid geometry will be output via the Passed port. Informally, a Passed solid boundary is water-tight, non-self-intersecting and properly oriented.

 If Attempt Repair is set to No, the above family of issues will be detected within solid geometries.

 If Attempt Repair is set to Yes, solid geometries with unclosed boundaries or free faces will be repaired. A boundary with free faces will be repaired by removing the faces which do not connect to the largest connecting set of faces. Unclosed solid boundaries will be repaired by filling the disconnected regions in the boundary with triangles. All input solids will first be triangulated.

 Invalid Solid Voids

 A void is a cavity, or an empty region within a solid, and is defined by an inner boundary. A solid is defined by an outer boundary and a number of inner boundaries.

 The following family of issues can be detected:

 	Shells Face Adjacent

 	Shell Interiors Intersect

 	Inner Shell Outside Outer Shell

 	Interior of Shell Not Connected

 If no issues are detected, the solid geometry will be output via the Passed port. Informally, a Passed solid is a solid with inner boundaries that reside completely within the outer boundary and none of the boundaries intersect each other.

 Tip: Self-intersections in boundaries are not detected. To detect and repair self-intersections in the boundaries, select Invalid Solid Boundaries.

 If Attempt Repair is set to No, the above family of issues will be detected within solid geometries.

 If Attempt Repair is set to Yes, a solid geometry with these issues will be repaired by subtracting the voids from the outer boundary. If the repaired solid is the empty set, the original solid will be output onto the Failed port and gain a .repair_state of Not Fully Repaired.

 Fails OGC Simple/Valid

 The input geometry will be evaluated according to OGC standards.

 See http://www.opengeospatial.org/standards/sfa for more information.

 If a geometry is determined to be OGC simple/valid, it will be output via the Passed port. Otherwise it will be output via the Failed port.

 Missing Texture Coordinates

 Some geometries, such as meshes and faces, support appearances. These geometries may form part of complex surfaces and solids. In some cases, these appearances may have raster-based textures associated with them. If this is the case, then it is also necessary for the corresponding geometries to have texture coordinates. Without texture coordinates, there is not enough information on how to render the texture on the geometry when visualizing it, for example.

 Missing texture coordinates are detected and reported in bulk. That is, regardless of the number of vertices with missing texture coordinates, only one such vertex is reported per geometry.

 If Attempt Repair is set to No, missing texture coordinates are detected.

 If Attempt Repair is set to Yes, every geometry that has at least one missing
texture coordinate will have all of its texture coordinates re-computed.
Geometries with no missing texture coordinates are left unmodified. For
example, if a solid has 6 faces, one of which is missing texture coordinates, then
5 of the 6 faces will not be modified, and 1 of the 6 will have its texture
coordinates re-computed. When computing missing texture coordinates, the entire
texture is draped onto the geometry, and the texture is draped in the direction
of the surface normal of the geometry.

 Missing Vertex Normals

 Vertices without normals are detected and reported in bulk. That is, regardless of the number of vertices with missing normals, only one such vertex is reported per geometry.

 If Attempt Repair is set to No, missing vertex normals are detected.

 If Attempt Repair is set to Yes, every geometry that has at least one normal missing will have all its normals re-computed. Each computed vertex normal is equivalent to the normal of the face that the vertex belongs to. For meshes, newly computed normals will be stored inside their normal pools. For other surfaces, the measures named fme_vertex_normal_x, fme_vertex_normal_y, and fme_vertex_normal_z, will be used to store the vertex normals. Rectangle faces will be repaired into faces. Triangle strips and triangle fans will be repaired into composite faces.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 FME Licensing Level

 FME Desktop edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: GeometryRepairer GeometryCleaner Mender Fixer NaNRemover InfinityRemover NullRemover IFMENullRemover GeometryTypeRepairer DegenerateGeometryRepairer CorruptGeometryRepairer MeshNormalRepairer FeatureValidator FeatureRepairer FeatureCleaner OGC-simple OGC-valid Duplicated Corrupted self intersected damaged erroneous error data repair fix bad data

 GeometryValidator Issues Table

 Here is a listing of the possible information reported for each issue in the GeometryValidator issues table. If an attribute or trait name can have several values, the values are listed next to the same attribute or trait name.

 Contains NaN (Not a Number) or Infinity

 Attributes

 	_issues{0}.issue_found
 	Contains NaN (Not a Number) or Infinity

 Traits

 	_issues{0}.issue_found
 	Contains NaN (Not a Number) or Infinity

 	_issues{0}.supplementary_info 		
 	Some part(s) will be removed on repair

 Contains Null Geometry Parts

 Attributes

 	_issues{0}.issue_found
 	Contains Null Geometry Parts

 Traits

 	_issues{0}.issue_found
 	Contains Null Geometry Parts

 	_issues{0}.count 		
 	2

 Duplicate Consecutive Points

 Attributes

 	_issues{0}.issue_found
 	
 Duplicate Consecutive Points in 2D

 Duplicate Consecutive Points in 3D

 	_issues{0}.location_sample.x
 	0

 	_issues{0}.location_sample.y
 	15

 	_issues{0}.location_sample.z
 	1

 Traits

 Note that .count is a count of the total number of identical, consecutive coordinates. The minimum reported .count value is therefore 2.

 	issues{0}.issue_found
 	
 Duplicate Consecutive Points in 2D

 Duplicate Consecutive Points in 3D

 	issues{0}.location_sample.x
 	 		0

 	_issues{0}.location_sample.y 		
 	 15

 	_issues{0}.location_sample.z
 	 		1

 	_issues{0}.supplementary_info{0}.count
 	 		2

 	_issues{0}.supplementary_info{0}.location.x 	
 	0

 	_issues{0}.supplementary_info{0}.location.y 	
 	15

 	_issues{0}.supplementary_info{0}.location.z
 	 	1

 	_issues{0}.supplementary_info{1}.count
 	 		3

 	_issues{0}.supplementary_info{1}.location.x
 	 	5

 	_issues{0}.supplementary_info{1}.location.y 	
 	 5

 	_issues{0}.supplementary_info{1}.location.z
 	 	5

 	_issues{0}.supplementary_info{2}.count
 	 		2

 	_issues{0}.supplementary_info{2}.location.x
 	 	1

 	_issues{0}.supplementary_info{2}.location.y 	
 	 2

 	_issues{0}.supplementary_info{2}.location.z
 	 	2

 	_issues{0}.supplementary_info{3}.count 		
 	 2

 	_issues{0}.supplementary_info{3}.location.x
 	 	0

 	_issues{0}.supplementary_info{3}.location.y 	
 	 15

 	_issues{0}.supplementary_info{3}.location.z
 	 	1

 	issues{0}.location_sample.x
 	 		0

 Degenerate or Corrupt Geometries

 Attributes

 	_issues{0}.issue_found 			
 	 Degenerate or Corrupt Geometries

 	_issues{0}.location_sample.x 		
 	 0

 	_issues{0}.location_sample.y 		
 	 15

 Traits for Arcs by Center Point With Ends

 	_issues{0}.issue_found
 	 			Degenerate or Corrupt Geometries

 	_issues{0}.location_sample.x
 	 			0

 	_issues{0}.location_sample.y
 	15 		

 	_issues{0}.supplementary_info
 	Explicit end point locations are too far
from the parameter-defined arc 		

 Traits for Empty Container Geometries

 Examples of empty container geometries include donuts without holes and multi’s without parts.

 	_issues{0}.issue_found
 	 			Degenerate or Corrupt Geometries

 	_issues{0}.supplementary_info
 	 		Container geometry has no parts

 Traits for Other Geometries:

 	_issues{0}.issue_found
 	 			Degenerate or Corrupt Geometries

 	_issues{0}.location_sample.x
 	 		0

 	_issues{0}.location_sample.y
 	 		15

 	_issues{0}.supplementary_info
 	 		Some part(s) will be removed on repair

 Self-Intersections in 2D

 Attributes for Self-Intersected Geometries

 	_issues{0}.issue_found 		
 	 Self-Intersections in 2D

 	_issues{0}.location_sample.x 		
 	 	0

 	_issues{0}.location_sample.y 	 		
 	 15

 	_issues{0}.location_sample.z 	 		
 	 1

 Attributes for Remnants

 	_issues{0}.issue_found 		 		
 	 Self-Intersections in 2D

 	_issues{0}.repair_state 		
 	 		Remnant

 Traits for Self-Intersected Geometries

 	_issues{0}.issue_found 		
 	 		Self-Intersections in 2D

 	_issues{0}.location_sample.x 		
 	 	0

 	_issues{0}.location_sample.y 	 		
 	 15

 	_issues{0}.location_sample.z 	 		
 	 1

 	_issues{0}.supplementary_info 	 		
 	 Some part(s) will be removed on repair

 	_issues{0}.supplementary_info{0}.location.x 		
 	 	0

 	_issues{0}.supplementary_info{0}.location.y 	 		
 	 15

 	_issues{0}.supplementary_info{0}.location.z 	 		
 	 1

 	_issues{0}.supplementary_info{1}.location.x 		
 	 	5

 	_issues{0}.supplementary_info{1}.location.y 		
 	 	5

 	_issues{0}.supplementary_info{1}.location.z 	 		
 	 2

 	_issues{0}.supplementary_info{2}.location.x 	 		
 	 1

 	_issues{0}.supplementary_info{2}.location.y 		
 	 	2

 	_issues{0}.supplementary_info{2}.location.z 	 		
 	1

 	_issues{0}.supplementary_info{3}.location.x 		
 	 	0

 	_issues{0}.supplementary_info{3}.location.y 	 		
 	 15

 	_issues{0}.supplementary_info{3}.location.z 	 		
 	 0

 Traits for Remnants

 	_issues{0}.issue_found 		
 	 Self-Intersections in 2D

 	_issues{0}.repair_state 		
 	 Remnant

 Non-Planar Surfaces

 Attributes

 	_issues{0}.issue_found 			
 	 Non-Planar Surfaces

 	_issues{0}.repair_state 			 			
 	 Not Fully Repaired

 Traits

 	_issues{0}.issue_found 			
 	 			Non-Planar Surfaces

 	_issues{0}.repair_state 			 			
 	 Not Fully Repaired

 	_issues{0}.supplementary_info 		 			
 	 Some part(s) will be removed on repair

 Invalid Solid Boundaries

 Attributes

 	_issues{0}.issue_found 			
 	 			Invalid Solid Boundaries

 	_issues{0}.repair_state 			
 	 			Not Fully Repaired

 Traits for Container Geometries:

 	_issues{0}.issue_found
 	Invalid Solid Boundaries

 	_issues{0}.repair_state
 	Not Fully Repaired

 	_issues{0}.supplementary_info
 	Some part(s) will be removed on repair

 Traits for Other Geometries:

 	_issues{0}.issue_found
 	Invalid Solid Boundaries

 	_issues{0}.repair_state 			
 	 			Not Fully Repaired

 	_issues{0}.supplementary_info
 	
 Surface Projection Invalid

 Not Valid 2 Manifold

 Surface Not Closed

 Dangling Faces

 Face Orientation Incorrect Edge Usage

 Free Faces

 Surface Self Intersects

 Vertices Not Used

 Surface Normals Bad Orientation

 Invalid Solid Voids

 Attributes

 	_issues{0}.issue_found
 	 			Invalid Solid Voids

 	_issues{0}.repair_state
 	Not Fully Repaired

 Traits for Container Geometries

 	_issues{0}.issue_found
 	Invalid Solid Voids

 	_issues{0}.repair_state 			
 	Not Fully Repaired

 	_issues{0}.supplementary_info 		
 	Some part(s) will be removed on repair

 Traits for Other Geometries

 	_issues{0}.issue_found
 	 			Invalid Solid Boundaries

 	_issues{0}.repair_state 			
 	Not Fully Repaired

 	_issues{0}.supplementary_info
 	
 		Invalid Solid Boundaries

 Shells Face Adjacent

 Shell Interior Intersect

 Inner Shell Outside Outer

 Interior Of Shell Not Connected

 Fails OGC Simple

 Attributes

 	_issues{0}.issue_found 			
 	 Fails OGC Simple

 	_issues{0}.location_sample.x 			
 	 0

 	_issues{0}.location_sample.y 			
 	 15

 	_issues{0}.repair_state 			
 	 Not Fully Repaired

 Traits

 	_issues{0}.issue_found 			
 	 			Fails OGC Simple

 	_issues{0}.location_sample.x 			
 	 		0

 	_issues{0}.location_sample.y 			
 	 15

 	_issues{0}.repair_state 			
 	 			Not Fully Repaired

 	_issues{0}.supplementary_info 			
 	
 Self Intersection

 Repeated Point

 Unparsable Geometry

 Fails OGC Valid

 Attributes

 	_issues{0}.issue_found
 	 Fails OGC Valid

 	_issues{0}.location_sample.x
 	 0

 	_issues{0}.location_sample.y
 	 		15

 	_issues{0}.repair_state
 	 Not Fully Repaired

 Traits

 	_issues{0}.issue_found
 	 			Fails OGC Valid

 	_issues{0}.location_sample.x
 	 0

 	_issues{0}.location_sample.y
 	 		15

 	_issues{0}.repair_state
 	 			Not Fully Repaired

 	_issues{0}.supplementary_info
 	
 		Self Intersection

 Hole Outside Shell

 Nested Holes

 Disconnected Interior

 Ring Self Intersection

 Nested Shells

 Duplicated Rings

 Too Few Points

 Invalid Coordinate

 Ring Not Closed

 Undetermined Error

 Unparsable Geometry

 Missing Texture Coordinates

 Attributes

 	_issues{0}.issue_found
 	 Missing Texture Coordinates

 	_issues{0}.location_sample.x
 	 		0

 	_issues{0}.location_sample.y
 	 		15

 	_issues{0}.location_sample.z
 	 		0

 Traits

 	_issues{0}.issue_found
 	 Missing Texture Coordinates

 	_issues{0}.location_sample.x
 	 		0

 	_issues{0}.location_sample.y
 	 15

 	_issues{0}.location_sample.z
 	 0

 Missing Vertex Normals

 Attributes

 	_issues{0}.issue_found 			
 	 Missing Vertex Normals

 	_issues{0}.location_sample.x 			
 	 		0

 	_issues{0}.location_sample.y 			
 	 		15

 	_issues{0}.location_sample.z 			
 	 		0

 Traits

 	_issues{0}.issue_found 			 			
 	 Missing Vertex Normals

 	_issues{0}.location.x 			 			
 	 0

 	_issues{0}.location.y 			
 	 			15

 	_issues{0}.location.z 			
 	 			0

 GeometryValidator Issues Table

 Here is a listing of the possible information reported for each issue in the GeometryValidator issues table. If an attribute or trait name can have several values, the values are listed next to the same attribute or trait name.

 Contains NaN (Not a Number) or Infinity

 Attributes

 	_issues{0}.issue_found
 	Contains NaN (Not a Number) or Infinity

 Traits

 	_issues{0}.issue_found
 	Contains NaN (Not a Number) or Infinity

 	_issues{0}.supplementary_info 		
 	Some part(s) will be removed on repair

 Contains Null Geometry Parts

 Attributes

 	_issues{0}.issue_found
 	Contains Null Geometry Parts

 Traits

 	_issues{0}.issue_found
 	Contains Null Geometry Parts

 	_issues{0}.count 		
 	2

 Duplicate Consecutive Points

 Attributes

 	_issues{0}.issue_found
 	
 Duplicate Consecutive Points in 2D

 Duplicate Consecutive Points in 3D

 	_issues{0}.location_sample.x
 	0

 	_issues{0}.location_sample.y
 	15

 	_issues{0}.location_sample.z
 	1

 Traits

 Note that .count is a count of the total number of identical, consecutive coordinates. The minimum reported .count value is therefore 2.

 	issues{0}.issue_found
 	
 Duplicate Consecutive Points in 2D

 Duplicate Consecutive Points in 3D

 	issues{0}.location_sample.x
 	 		0

 	_issues{0}.location_sample.y 		
 	 15

 	_issues{0}.location_sample.z
 	 		1

 	_issues{0}.supplementary_info{0}.count
 	 		2

 	_issues{0}.supplementary_info{0}.location.x 	
 	0

 	_issues{0}.supplementary_info{0}.location.y 	
 	15

 	_issues{0}.supplementary_info{0}.location.z
 	 	1

 	_issues{0}.supplementary_info{1}.count
 	 		3

 	_issues{0}.supplementary_info{1}.location.x
 	 	5

 	_issues{0}.supplementary_info{1}.location.y 	
 	 5

 	_issues{0}.supplementary_info{1}.location.z
 	 	5

 	_issues{0}.supplementary_info{2}.count
 	 		2

 	_issues{0}.supplementary_info{2}.location.x
 	 	1

 	_issues{0}.supplementary_info{2}.location.y 	
 	 2

 	_issues{0}.supplementary_info{2}.location.z
 	 	2

 	_issues{0}.supplementary_info{3}.count 		
 	 2

 	_issues{0}.supplementary_info{3}.location.x
 	 	0

 	_issues{0}.supplementary_info{3}.location.y 	
 	 15

 	_issues{0}.supplementary_info{3}.location.z
 	 	1

 	issues{0}.location_sample.x
 	 		0

 Degenerate or Corrupt Geometries

 Attributes

 	_issues{0}.issue_found 			
 	 Degenerate or Corrupt Geometries

 	_issues{0}.location_sample.x 		
 	 0

 	_issues{0}.location_sample.y 		
 	 15

 Traits for Arcs by Center Point With Ends

 	_issues{0}.issue_found
 	 			Degenerate or Corrupt Geometries

 	_issues{0}.location_sample.x
 	 			0

 	_issues{0}.location_sample.y
 	15 		

 	_issues{0}.supplementary_info
 	Explicit end point locations are too far
from the parameter-defined arc 		

 Traits for Empty Container Geometries

 Examples of empty container geometries include donuts without holes and multi’s without parts.

 	_issues{0}.issue_found
 	 			Degenerate or Corrupt Geometries

 	_issues{0}.supplementary_info
 	 		Container geometry has no parts

 Traits for Other Geometries:

 	_issues{0}.issue_found
 	 			Degenerate or Corrupt Geometries

 	_issues{0}.location_sample.x
 	 		0

 	_issues{0}.location_sample.y
 	 		15

 	_issues{0}.supplementary_info
 	 		Some part(s) will be removed on repair

 Self-Intersections in 2D

 Attributes for Self-Intersected Geometries

 	_issues{0}.issue_found 		
 	 Self-Intersections in 2D

 	_issues{0}.location_sample.x 		
 	 	0

 	_issues{0}.location_sample.y 	 		
 	 15

 	_issues{0}.location_sample.z 	 		
 	 1

 Attributes for Remnants

 	_issues{0}.issue_found 		 		
 	 Self-Intersections in 2D

 	_issues{0}.repair_state 		
 	 		Remnant

 Traits for Self-Intersected Geometries

 	_issues{0}.issue_found 		
 	 		Self-Intersections in 2D

 	_issues{0}.location_sample.x 		
 	 	0

 	_issues{0}.location_sample.y 	 		
 	 15

 	_issues{0}.location_sample.z 	 		
 	 1

 	_issues{0}.supplementary_info 	 		
 	 Some part(s) will be removed on repair

 	_issues{0}.supplementary_info{0}.location.x 		
 	 	0

 	_issues{0}.supplementary_info{0}.location.y 	 		
 	 15

 	_issues{0}.supplementary_info{0}.location.z 	 		
 	 1

 	_issues{0}.supplementary_info{1}.location.x 		
 	 	5

 	_issues{0}.supplementary_info{1}.location.y 		
 	 	5

 	_issues{0}.supplementary_info{1}.location.z 	 		
 	 2

 	_issues{0}.supplementary_info{2}.location.x 	 		
 	 1

 	_issues{0}.supplementary_info{2}.location.y 		
 	 	2

 	_issues{0}.supplementary_info{2}.location.z 	 		
 	1

 	_issues{0}.supplementary_info{3}.location.x 		
 	 	0

 	_issues{0}.supplementary_info{3}.location.y 	 		
 	 15

 	_issues{0}.supplementary_info{3}.location.z 	 		
 	 0

 Traits for Remnants

 	_issues{0}.issue_found 		
 	 Self-Intersections in 2D

 	_issues{0}.repair_state 		
 	 Remnant

 Non-Planar Surfaces

 Attributes

 	_issues{0}.issue_found 			
 	 Non-Planar Surfaces

 	_issues{0}.repair_state 			 			
 	 Not Fully Repaired

 Traits

 	_issues{0}.issue_found 			
 	 			Non-Planar Surfaces

 	_issues{0}.repair_state 			 			
 	 Not Fully Repaired

 	_issues{0}.supplementary_info 		 			
 	 Some part(s) will be removed on repair

 Invalid Solid Boundaries

 Attributes

 	_issues{0}.issue_found 			
 	 			Invalid Solid Boundaries

 	_issues{0}.repair_state 			
 	 			Not Fully Repaired

 Traits for Container Geometries:

 	_issues{0}.issue_found
 	Invalid Solid Boundaries

 	_issues{0}.repair_state
 	Not Fully Repaired

 	_issues{0}.supplementary_info
 	Some part(s) will be removed on repair

 Traits for Other Geometries:

 	_issues{0}.issue_found
 	Invalid Solid Boundaries

 	_issues{0}.repair_state 			
 	 			Not Fully Repaired

 	_issues{0}.supplementary_info
 	
 Surface Projection Invalid

 Not Valid 2 Manifold

 Surface Not Closed

 Dangling Faces

 Face Orientation Incorrect Edge Usage

 Free Faces

 Surface Self Intersects

 Vertices Not Used

 Surface Normals Bad Orientation

 Invalid Solid Voids

 Attributes

 	_issues{0}.issue_found
 	 			Invalid Solid Voids

 	_issues{0}.repair_state
 	Not Fully Repaired

 Traits for Container Geometries

 	_issues{0}.issue_found
 	Invalid Solid Voids

 	_issues{0}.repair_state 			
 	Not Fully Repaired

 	_issues{0}.supplementary_info 		
 	Some part(s) will be removed on repair

 Traits for Other Geometries

 	_issues{0}.issue_found
 	 			Invalid Solid Boundaries

 	_issues{0}.repair_state 			
 	Not Fully Repaired

 	_issues{0}.supplementary_info
 	
 		Invalid Solid Boundaries

 Shells Face Adjacent

 Shell Interior Intersect

 Inner Shell Outside Outer

 Interior Of Shell Not Connected

 Fails OGC Simple

 Attributes

 	_issues{0}.issue_found 			
 	 Fails OGC Simple

 	_issues{0}.location_sample.x 			
 	 0

 	_issues{0}.location_sample.y 			
 	 15

 	_issues{0}.repair_state 			
 	 Not Fully Repaired

 Traits

 	_issues{0}.issue_found 			
 	 			Fails OGC Simple

 	_issues{0}.location_sample.x 			
 	 		0

 	_issues{0}.location_sample.y 			
 	 15

 	_issues{0}.repair_state 			
 	 			Not Fully Repaired

 	_issues{0}.supplementary_info 			
 	
 Self Intersection

 Repeated Point

 Unparsable Geometry

 Fails OGC Valid

 Attributes

 	_issues{0}.issue_found
 	 Fails OGC Valid

 	_issues{0}.location_sample.x
 	 0

 	_issues{0}.location_sample.y
 	 		15

 	_issues{0}.repair_state
 	 Not Fully Repaired

 Traits

 	_issues{0}.issue_found
 	 			Fails OGC Valid

 	_issues{0}.location_sample.x
 	 0

 	_issues{0}.location_sample.y
 	 		15

 	_issues{0}.repair_state
 	 			Not Fully Repaired

 	_issues{0}.supplementary_info
 	
 		Self Intersection

 Hole Outside Shell

 Nested Holes

 Disconnected Interior

 Ring Self Intersection

 Nested Shells

 Duplicated Rings

 Too Few Points

 Invalid Coordinate

 Ring Not Closed

 Undetermined Error

 Unparsable Geometry

 Missing Texture Coordinates

 Attributes

 	_issues{0}.issue_found
 	 Missing Texture Coordinates

 	_issues{0}.location_sample.x
 	 		0

 	_issues{0}.location_sample.y
 	 		15

 	_issues{0}.location_sample.z
 	 		0

 Traits

 	_issues{0}.issue_found
 	 Missing Texture Coordinates

 	_issues{0}.location_sample.x
 	 		0

 	_issues{0}.location_sample.y
 	 15

 	_issues{0}.location_sample.z
 	 0

 Missing Vertex Normals

 Attributes

 	_issues{0}.issue_found 			
 	 Missing Vertex Normals

 	_issues{0}.location_sample.x 			
 	 		0

 	_issues{0}.location_sample.y 			
 	 		15

 	_issues{0}.location_sample.z 			
 	 		0

 Traits

 	_issues{0}.issue_found 			 			
 	 Missing Vertex Normals

 	_issues{0}.location.x 			 			
 	 0

 	_issues{0}.location.y 			
 	 			15

 	_issues{0}.location.z 			
 	 			0

 GeoRSSFeatureExtractor

 Constructs GeoRSS documents from the input features
 and stores them in the specified attribute for the features that are output
 by the GeoRSS port. The constructed GeoRSS document will be created according to the specified
 Geometry Format and Output Format, in the character set specified by the
 Output Character Set parameter.

 Input Ports

 Feed

 For any given GeoRSS document, the metadata for the feed.

 Entry

 The entry features from the input GeoRSS document/feed.

 Output Ports

 Georss

 The features containing the GeoRSS document in the attribute specified by the GeoRSS Attribute parameter.

 Parameters

 Flush Attribute

 The GeoRSS document that is being constructed accumulates features until
 the value specified for the feature Flush
 Attribute. When this occurs, the newly received input feature is
 not part of the flushed document, but rather is part of the next document
 to be constructed.

 GeoRSS Attribute

 This attribute contains the GeoRSS document.

 Output Format

 Choose the format of the XML feed that the GeoRSS
 writer will produce:

 	Atom: the writer will produce an Atom 1.0 feed.

 	RSS: the writer will produce an RSS 2.0 feed.

 Geometry Format

 Choose the format of the output feed’s geometry extensions: GML, W3C, or Simple.

 Escape HTML Content

 This parameter determines how the writer handles HTML content. Select
 Yes to ensure that the writer will escape HTML content before outputting
 it. Select No to ensure that the writer will output the content unchanged.

 Output Character Set

 The character set encoding in which the output XML feed should be written.
 If no character
 set is specified, the feed will be written in the UTF-8 character set.
 If an invalid character set is specified, the translation will fail.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Web Services

 FME Licensing Level

 FME Professional edition and above

 FMEpedia

 See FMEpedia for additional information about GeoRSS and FME.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 GeoRSSFeatureReplacer

 Constructs features out of GeoRSS documents/URLs that
 are stored in a specified attribute of the input features. The features from the GeoRSS document/URL are output with the
 attributes from the original feature and are merged, if desired.

 Output Ports

 Feed

 	This port will output one feature per GeoRSS document that
 is read, and which will contain the feed metadata (as per the GeoRSS Reader).

 Entry

 One feature will be output for each GeoRSS entry in the
 GeoRSS document.

 InvalidGeorss

 Features whose GeoRSS attribute does not contain valid
 GeoRSS.

 Parameters

 GeoRSS Settings

 GeoRSS Attribute

 The attribute to read from.

 GeoRSS Reader Mode

 The GeoRSS reader can be run in two modes:

 	In NORMAL mode, the reader will always return a feature for every feed entry that it processes.

 	In UPDATE mode, the reader will only return entry features if they are new or updated.

 Fail On Invalid GeoRSS

 If this parameter is No, features whose GeoRSS attribute does not contain valid
 GeoRSS will be ouput via the InvalidGeorss port.

 Merge Attributes

 The specification of the optional Merge Attributes and associated prefix
 results in the copying of attributes from the Input feature into the constructed
 GeoRSS features. If a merge prefix is specified, then the string prefix
 is added at the start of each attribute from the original feature.

 Feature Number Attribute

 Since
 a GeoRSS document may contain several features, the transformer allows
 the sequence of GeoRSS features from a particular GeoRSS document to be
 numbered.

 Feature Identifier

 Furthermore, each GeoRSS feature
 can also be tagged by a unique sequence number that identifies it as coming
 from the same GeoRSS document; the optional Feature Identifier parameter
 can be used to specify the name for this attribute.

 Additional URL Parameters

 The
 value of this parameter is only used if the reader is accessing a dataset
 which is a URL. The
 value should be a space-separated list of space-separated
 name-value pairs. The
 name value pairs will be added to the dataset URL. A
 value must be provided for each parameter name. An
 empty string (““) can be used to provide an empty parameter value.

 Max Feedstore Entry Age

 Specifies
 the age in days at which entries will be deleted from a feed’s database.
 When the reader is run in UPDATE mode, the reader will delete any entries
 from the database for this feed which are older than the specified value.
 This ensures the feed database does not become arbitrarily large. If
 the value of this directive is not specified, or is 0, no entries will
 be deleted.

 Feed Database Location

 Specifies
 the filesystem directory which contains the databases that store information
 about the feeds that the GeoRSS reader has processed. This parameter is
 only read from the transformer if the reader is running in UPDATE mode.
 If no value is set, the FME temp directory will be used.

 Proxy Settings

 Http Proxy URL

 Specifies a
 proxy server that the reader will use when accessing a URL dataset.
 The port number of the proxy server can be set in the URL, or by using
 the Http Proxy Port parameter.

 Http Proxy Port

 Specifies the
 port number of the proxy server indicated by the Http Proxy URL parameter.
 This parameter should only be used if the port number was not indicated
 in the Http Proxy URL parameter. This
 parameter is ignored if the Http Proxy URL parameter has no value.

 Http Proxy Username

 Specifies
 the username to use when accessing a password-protected proxy server.
 This parameter is ignored if any of the Http Proxy URL, Http Proxy Password, or Http Proxy Authentication Method
 parameters have no value.

 Http Proxy Password

 Specifies
 the password to use when accessing a password-protected proxy server.
 This parameter is ignored if any of the Http Proxy URL, Http Proxy Username, or Http Proxy Authentication Method
 parameters have no value.

 Http Proxy Authentication Method

 Specifies the authentication method to use when accessing a password-protected
 proxy server. This parameter is ignored if any of the Http Proxy URL, Http Proxy Username,
 or Http Proxy Password parameters have no value.

 Usage Notes

 This transformer works in conjunction with the GeoRSS Reader/Writer. For technical information on the GeoRSS Reader/Writer, choose FME Readers and Writers Reference from the Workbench help menu.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Web Services

 FME Licensing Level

 FME Professional edition and above

 FMEpedia

 See FMEpedia for additional information about GeoRSS and FME.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 GMLFeatureExtractor

 Constructs GML2 documents from the input features and
 stores them in the specified attribute for the features that are output
 by the GML2 port. The GML2 documents written under
 the attribute conform to the GML SAFE schema.

 Output Ports

 Gml2

 The features that contain the GML2 document in the attribute specified by GML Attribute.

 Parameters

 Flush Attribute

 The GML document that is being constructed is accumulated until the
 value specified for the Flush Attribute. When this occurs, the
 newly received input feature is not part of the flushed feature, but rather
 is part of the next feature to be constructed. Values of selected attributes are transferred to the output features.

 GML Attribute

 The attribute of the feature containing the GML document.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 GMLFeatureReplacer

 Constructs features out of GML documents that are stored
 in an attribute of the input features. The features from the GML2 document are output with the attributes
 from the original feature, and merged if desired.

 Output Ports

 GML2

 The features extracted from the GML2 document.

 INVALID_GML

 The features that triggered an error when extracting features from a GML2 document.

 Parameters

 GML Attribute

 The GML attribute to read from.

 Fail On Invalid GML

 If this parameter
 is set to No, features whose GML2 attribute do not contain valid GML2 will
 be output via the InvalidGml port.

 Merge Attributes and Merge Attribute Prefix

 The Merge
 Attributes parameter copies attributes
 from the input feature into the constructed GML features. If a merge
 prefix is specified, then the string prefix is added to the start of each
 attribute from the original feature.

 GML XFMAP

 The optional GML XFMAP parameter specifies the xfMaps document to used.
 If this is not specified, then the transformer assumes that the GML document
 contains features stored with the GML SAFE schema.

 Feature Type Attribute

 The name of the output GML feature type.

 Feature Number Attribute

 Since a GML2 document may contain several features, the transformer
 allows the sequence of GML features from a particular GML document to
 be numbered. This parameter can be used to specify the name of this attribute.

 Feature Identifier

 Furthermore, each GML feature can also be tagged by a unique sequence
 number that identifies it as coming from the same GML document. This parameter can
 be used to specify the name for this attribute.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 GOIDGenerator

 Calculates a GOID (Geographic Object IDentifier) for each incoming feature,
 and adds it as a new attribute.

 The GOID is a unique 128-bit number that
 incorporates the position of a feature with other numbers. The result
 is a unique value that may be used to distinguish features from each other. The 128-bit GOID is composed of 32 hex digits in an ASCII string. The
 first 16 characters correspond to the position, the next 10 to the time,
 the next 4 to the sequence number.

 Parameters

 New GOID Attribute

 The attribute that contains the calculated GOID.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Strings

 Related Transformers

 This transformer is similar to the UUIDGenerator,
 which generates a completely unique ID unrelated to location for each
 feature.

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 GridInQuestReprojector

 Reprojects feature coordinates from one coordinate system to another using the Grid InQuest reprojection library. This library allows you to use the GridInQuestReprojector to transform coordinates between ETRS89 (WGS84) and the national coordinate systems of Great Britain, Northern Ireland and the Republic of Ireland.

 This transformer always reprojects from the source coordinate system to the destination coordinate system, tagging the features with the destination coordinate system on output. Any coordinate system set on the input features is ignored.

 Parameters

 Source Coordinate System

 The name of the source coordinate system

 Source Vertical Datum

 Choose a vertical datum from the list.

 Destination Coordinate System

 Choose the destination coordinate system.

 Destination Vertical Datum

 Choose a vertical datum from the list.

 Interpolation Type (Raster Only)

 The Interpolation Type will only have an affect on raster data. Cell values are interpolated in order to change the raster to the specified size; you have the choice of Nearest Neighbor, Bilinear or Bicubic interpolation methods. Nearest Neighbor is the fastest but produces the poorest image quality. Bilinear provides a reasonable balance of speed and quality. Bicubic is the slowest but produces the best image quality. Average 4 and Average 16 have a performance similar to Bilinear and are useful for numeric rasters such as DEMs.

 Cell Size (Raster Only)

 The Cell Size applies only to raster features. If Cell Size is set to Stretch Cells, the cell size of the raster will be adjusted to maintain the same number of rows and columns in the reprojected raster as there were in the input raster. If Cell Size is set to Square Cells, then the number of rows and columns as well as the spacing will be changed to maintain approximately the same cell ground area and form square cells where the horizontal and vertical cell sizes are equal. Like the Square Cells option, Preserve Cells will change both the number of rows and columns and the spacing to maintain cell ground area, but will also try to preserve the original cell aspect ratio, taking into account any warping caused by the reprojection.

 Usage Notes

 This transformer is unaffected by raster band and palette selection.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Coordinate Systems

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.
Keywords: reproject resample upsample downsample raster grid band channel "nearest neighbor" "nearest neighbour" bilinear bicubic average interpolate cell pixel "coordinate system" coordsys "spatial reference" srid georeference

 GtransAttributeReprojector

 Reprojects attributes holding coordinate values from one coordinate
 system to another using the Gtrans reprojection library (from the National Land Survey of Sweden), and the specified
 translation file.

 Dependencies

 This transformer relies on Gtrans translation software which is only available on 32-bit installations of FME on Windows platforms.

 Parameters

 X and Y Attribute

 The name of the attributes containing the x and y coordinate values.

 Translation File

 Browse to the path containing the translation file.

 The feature's coordinates are not altered by this transformer: only
 the values of the named X and Y attributes are changed.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Coordinate Systems

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 GtransReprojector

 Reprojects features to and from SWEREF99 using the Gtrans reprojection library (from the National Land Survey of Sweden) and the specified
 translation file.

 Dependencies

 This transformer relies on Gtrans translation software which is only available on 32-bit installations of FME on Windows platforms.

 Parameters

 Translation File

 This is the translation file path.

 Reverse Translation File (Raster)

 If raster reprojection is required, a reverse translation file must
 also be supplied. This parameter defines the inverse translation file path.

 Interpolation Type (Raster)

 The Interpolation Type affects only raster data. Cell values are interpolated in order to change the raster to the specified size.

 	Nearest Neighbor is the fastest but produces the poorest image quality.

 	Bilinear provides a reasonable balance of speed and quality.

 	Bicubic is the slowest but produces the best image quality.

 	Average 4 and Average 16 have a performance similar to Bilinear and are useful for numeric rasters such as DEMs.

 Cell Size (Raster)

 The Cell Size applies only to raster features.

 	Square Cells: The number of rows and columns as well as the spacing will be changed to maintain approximately the same cell ground area and form square cells where the horizontal and vertical cell sizes are equal. Like the Square Cells option, Preserve Cells will change both the number of rows and columns and the spacing to maintain cell ground area, but will also try to preserve the original cell aspect ratio, taking into account any warping caused by the reprojection.

 	Stretch Cells: The cell size of the raster will be adjusted to maintain the same number of rows and columns in the reprojected raster as there were in the input raster.

 Usage Notes

 This transformer ignores the coordinate system set on input features, and does not tag output features with a coordinate system. If you want to take the output of the GtransReprojector transformer and write it to an output format that includes coordinate system metadata, you will need to specify which coordinate system to write, either by using a CoordinateSystemSetter transformer, or by setting the writer's Coordinate System parameter in the Workbench Navigator.

 This transformer is unaffected by raster band and palette selection.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Coordinate Systems

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: SWEREF99 "National Land Survey of Sweden" Sweden

 HoleCounter

 Adds a new attribute whose value is the number of holes in the feature.
 If the feature is not a polygonal feature, 0 will be returned.

 Input Ports

 Input

 Polygonal features enter through this port.

 Output Ports

 Output

 Features with the calculated number of holes leave through this port.

 Parameters

 Hole Count Attribute

 The name of the attribute that will record the number of holes in the feature.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 HTMLToXHTMLConverter

 Converts HTML document into valid XHTML document. There are different ways to specify how the HTML input source will be converted:

 	enter the HTML text in the HTML Text field,

 	specify the attribute that contains the HTML text in the Attribute with HTML Text parameter,

 	specify the attribute that contains the path to HTML File, or

 	pick the HTML file in the HTML Filename parameter.

 Note: HTML 5 tags are not yet supported.

 Parameters

 HTML Input

 HTML Input

 The choice in the HTML Input parameter enables its corresponding parameter:

 	Attribute with HTML Text: Choose the attribute that contains HTML Text.

 	HTML Filename or URL: Browse to the HTML file or enter a valid URL or choose the attribute that contains path to HTML file.

 	HTML Text: Click to open an editor.

 Input Encoding

 This parameter defines the encoding/character set used in the HTML input file/text.

 XHTML Output

 XHTML Output

 The choice that you make in this field enables its corresponding parameter:

 	Attribute to Contain XHTML Text: This choice enables the Output Attribute and Output Encoding parameters.

 	XHTML Output File: This choice enables the XHTML Filename and Output Encoding parameters.

 Output Attribute

 This attribute name will hold the XHTML Output.

 XHTML Filename

 This parameter defines the path and filename of the output XHTML file.

 Output Encoding

 This parameter defines the encoding/character set used in the HTML output.

 Error Handling

 Error and Warning List Name

 Features with at least one error will be output through the Failed port with a new list attribute specified in Error and Warning List Name added to the features. If the default _html_error is the list name, the elements of the list attribute contain the following:

 	Elements of List Attribute
 	Description

 	_ html_error{}.type
 	WARNING or ERROR

 	_ html_error{}.file
 	the file where the warning or error or occurs

 	_ html_error{}.line
 	the line where the warning or error occurs

 	_ html_error{}.col
 	the column where the warning or error occurs

 	_ html_error{}.desc
 	the details about the warning or error

 Ignore Warnings

 If set to Yes, errors are only reported in the list name during the conversion process.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 XML

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 HTTPDeleter

 Accesses a URL by performing an HTTP DELETE operation. The results of the request will be stored in the specified target attribute.

 This transformer is useful when accessing a REST API. While HTTP GET, POST and PUT operations are used to retrieve and update remote resources, an HTTP DELETE operation is often used to remove a resource.

 Output

 The body of the server response will be stored in the attribute identified by the Target Attribute parameter. The encoding of this attribute will depend on the value of the Use Encoding from HTTP Response Headers parameter.

 The HTTP Response status code will be stored in the _http_status_code attribute. In addition, the HTTP response headers will be saved in the list attribute specified by the List Attribute for Response Headers parameter.

 The HTTP status code and HTTP response headers will be logged with each request.

 For more information on HTTP Status Codes, please refer to http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html. For a list of common HTTP response headers, please refer to http://en.wikipedia.org/wiki/List_of_HTTP_header_fields.

 If an error occurs while accessing the URL, the translation will continue, and the feature will be output via the <Rejected> port.

 The HTTP status code and HTTP response headers will be logged with each request.

 Parameters

 HTTP Request

 Target URL

 Depending on the HTTP transformer, this parameter is either URL that will be accessed by the transformer, or the URL that identifies where data will be uploaded.

 HTTP Request Headers

 This parameter can be used to provide custom headers for the HTTP Request. Each header should be entered as plain text, on a single line. For example:

 User-Agent: FME/Workbench (http://www.safe.com)

 Accept-Language: en-US

 Expect: 100-continue

 Use Cookies

 If this parameter is set to Yes, any saved cookies that correspond to the URL being accessed will be sent with the request. In addition, any cookies contained in the response will be saved for use with subsequent HTTP requests.

 Saved cookies will persist for the duration of the translation – they cannot be used in subsequent translations.

 Saving cookies is useful when a web service keeps a "session". Then the following sequence of operations might be used:

 	An HTTPFetcher or HTTPUploader is used to log in to the web service and a session cookie is saved.

 	Another HTTP transformer is used to access the web service, utilizing the saved session cookie.

 	Another HTTPFetcher or HTTPUploader is used to log out of the web service, which invalidates the saved cookie.

 Follow Redirects

 If this parameter is set to Yes, the transformer will follow any URL redirects it encounters.

 Verify SSL Certificates

 If this parameter is set to Yes, the transformer will verify SSL certificates. This is done in two stages:

 	Ensure that the certificate is for the host we are trying to connect to.

 	Ensure that the certificate is valid.

 HTTP Response

 Target Attribute

 This parameter names the attribute in which the HTTP response body will be saved. The default attribute name is _url_contents.

 Target Attribute Encoding

 This parameter is used to indicate the character encoding of the target attribute. If an encoding name is selected, the target attribute will be tagged with that encoding. If “Auto Detect from HTTP Headers” is selected, the HTTP response headers will be examined for encoding information. If the headers contain an encoding, it will be used; otherwise the fme-binary encoding will be used. If no value is given for this parameter, the target attribute will be tagged with the system default encoding. When fetching binary data, the parameter should be set to “Binary”, or “Auto Detect from HTTP Headers”.

 List Attribute for Response Headers

 This parameter is optional. If it is set to a list attribute name, then HTTP headers returned by the server will be stored in the list attribute. The headers will be split into names and values. For example:
`_headers{0}.name' has value `X-XSS-Protection'
`_headers{0}.value' has value `1; mode=block'
`_headers{1}.name' has value `Date'
`_headers{1}.value' has value `Wed, 25 May 2011 17:20:20 GMT'
`_headers{2}.name' has value `Transfer-Encoding'
`_headers{2}.value' has value `chunked'
`_headers{3}.name' has value `Content-Type'
`_headers{3}.value' has value `text/html; charset=ISO-8859-1'
`_headers{4}.name' has value `Cache-Control'
`_headers{4}.value' has value `private, max-age=0'

 Status Code Attribute

 This parameter is optional. If it is set to an attribute name, then the HTTP response code returned by the server will be stored in the attribute.

 Error Attribute

 This parameter is optional. If it is set to an attribute name, any error messages produced while processing a feature will be stored in the attribute.

 HTTP Authentication Parameters

 HTTP Authentication Parameters

 The optional HTTP Authentication Username,
 HTTP Authentication Password and
 HTTP Authentication Method parameters
 may be set for accessing a password-protected HTTP server. Basic, Digest, and NTLM access authentication methods are supported:

 	Basic (HTTP Basic authentication): This is the default choice, and the only method in widespread use and supported virtually everywhere. This sends the username and password over the network in plain text, easily captured by others.

 	Digest (HTTP Digest authentication): Digest authentication is more secure over public networks than the Basic method.

 	NTLM (HTTP NTLM authentication): NTLM is a proprietary protocol invented and used by Microsoft. It uses a challenge-response and hash concept similar to Digest to prevent the password from being eavesdropped.

 Note
 that although the HTTP Basic access authentication is a mechanism designed
 to allow a client to provide credentials to a server on the assumption
 that the connection between them is trusted and secure, be aware that
 any credentials passed from client to server can be easily intercepted
 through an insecure connection.

 You can also use this transformer to access the contents of an FTP URL. If required, an FTP username and password can be specified in the HTTP Authentication Username and HTTP Authentication Password parameters. The contents of the file (or the filename if the Save File parameter is set to Yes) will be stored in the specified target attribute. When accessing an FTP URL, the _http_status_code attribute will not be populated.

 Proxy Parameters

 Proxy Parameters

 The optional Proxy URL, Proxy Port,
 Proxy Username, Proxy Password, and Proxy
 Authentication Method parameters may be set for organizations that
 require Internet access via an HTTP proxy server.

 Basic, Digest, and NTLM access authentication methods are supported:

 	Basic (HTTP Basic authentication): This is the default choice, and the only method in widespread use and supported virtually everywhere. This sends the username and password over the network in plain text, easily captured by others.

 	Digest (HTTP Digest authentication): Digest authentication is more secure over public networks than the Basic method.

 	NTLM (HTTP NTLM authentication): NTLM is a proprietary protocol invented and used by Microsoft. It uses a challenge-response and hash concept similar to Digest to prevent the password from being eavesdropped.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Web Services

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 HTTPFetcher

 Accesses a URL by performing an HTTP GET operation. The results of the request will be stored in the specified target attribute.

 If an error occurs while accessing the URL, the translation will stop, unless the Continue on Error parameter is set to Yes.

 This transformer is useful for retrieving and updating remote resources.

 Output

 The body of the server response will be stored in the attribute identified by the Target Attribute parameter. The encoding of this attribute will depend on the value of the Use Encoding from HTTP Response Headers parameter.

 The HTTP Response status code will be stored in the _http_status_code attribute. In addition, the HTTP response headers will be saved in the list attribute specified by the List Attribute for Response Headers parameter.

 The HTTP status code and HTTP response headers will be logged with each request.

 For more information on HTTP Status Codes, please refer to http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html. For a list of common HTTP response headers, please refer to http://en.wikipedia.org/wiki/List_of_HTTP_header_fields.

 If an error occurs while accessing the URL, the translation will continue, and the feature will be output via the <Rejected> port.

 Parameters

 HTTP Request

 Target URL

 Depending on the HTTP transformer, this parameter is either URL that will be accessed by the transformer, or the URL that identifies where data will be uploaded.

 HTTP Request Headers

 This parameter can be used to provide custom headers for the HTTP Request. Each header should be entered as plain text, on a single line. For example:

 User-Agent: FME/Workbench (http://www.safe.com)

 Accept-Language: en-US

 Expect: 100-continue

 Use Cookies

 If this parameter is set to Yes, any saved cookies that correspond to the URL being accessed will be sent with the request. In addition, any cookies contained in the response will be saved for use with subsequent HTTP requests.

 Saved cookies will persist for the duration of the translation – they cannot be used in subsequent translations.

 Saving cookies is useful when a web service keeps a "session". Then the following sequence of operations might be used:

 	An HTTPFetcher or HTTPUploader is used to log in to the web service and a session cookie is saved.

 	Another HTTP transformer is used to access the web service, utilizing the saved session cookie.

 	Another HTTPFetcher or HTTPUploader is used to log out of the web service, which invalidates the saved cookie.

 Follow Redirects

 If this parameter is set to Yes, the transformer will follow any URL redirects it encounters.

 Verify SSL Certificates

 If this parameter is set to Yes, the transformer will verify SSL certificates. This is done in two stages:

 	Ensure that the certificate is for the host we are trying to connect to.

 	Ensure that the certificate is valid.

 HTTP Response

 Target Attribute

 This parameter names the attribute in which the HTTP response body will be saved. The default attribute name is _url_contents.

 Save File

 If this parameter is set to Yes, then the HTTP response body will be output to a temporary file and the Target Attribute will be populated with the file name (instead of the contents of the file).

 Note: If you are downloading a large file with the HTTPFetcher, it is recommended that you set this parameter to Yes. This avoids creating a large attribute on the feature.

 Target Attribute Encoding

 This parameter is used to indicate the character encoding of the target attribute. If an encoding name is selected, the target attribute will be tagged with that encoding. If “Auto Detect from HTTP Headers” is selected, the HTTP response headers will be examined for encoding information. If the headers contain an encoding, it will be used; otherwise the fme-binary encoding will be used. If no value is given for this parameter, the target attribute will be tagged with the system default encoding. When fetching binary data, the parameter should be set to “Binary”, or “Auto Detect from HTTP Headers”.

 List Attribute for Response Headers

 This parameter is optional. If it is set to a list attribute name, then HTTP headers returned by the server will be stored in the list attribute. The headers will be split into names and values. For example:
`_headers{0}.name' has value `X-XSS-Protection'
`_headers{0}.value' has value `1; mode=block'
`_headers{1}.name' has value `Date'
`_headers{1}.value' has value `Wed, 25 May 2011 17:20:20 GMT'
`_headers{2}.name' has value `Transfer-Encoding'
`_headers{2}.value' has value `chunked'
`_headers{3}.name' has value `Content-Type'
`_headers{3}.value' has value `text/html; charset=ISO-8859-1'
`_headers{4}.name' has value `Cache-Control'
`_headers{4}.value' has value `private, max-age=0'

 Status Code Attribute

 This parameter is optional. If it is set to an attribute name, then the HTTP response code returned by the server will be stored in the attribute.

 HTTP Authentication Parameters

 HTTP Authentication Parameters

 The optional HTTP Authentication Username,
 HTTP Authentication Password and
 HTTP Authentication Method parameters
 may be set for accessing a password-protected HTTP server. Basic, Digest, and NTLM access authentication methods are supported:

 	Basic (HTTP Basic authentication): This is the default choice, and the only method in widespread use and supported virtually everywhere. This sends the username and password over the network in plain text, easily captured by others.

 	Digest (HTTP Digest authentication): Digest authentication is more secure over public networks than the Basic method.

 	NTLM (HTTP NTLM authentication): NTLM is a proprietary protocol invented and used by Microsoft. It uses a challenge-response and hash concept similar to Digest to prevent the password from being eavesdropped.

 Note
 that although the HTTP Basic access authentication is a mechanism designed
 to allow a client to provide credentials to a server on the assumption
 that the connection between them is trusted and secure, be aware that
 any credentials passed from client to server can be easily intercepted
 through an insecure connection.

 You can also use this transformer to access the contents of an FTP URL. If required, an FTP username and password can be specified in the HTTP Authentication Username and HTTP Authentication Password parameters. The contents of the file (or the filename if the Save File parameter is set to Yes) will be stored in the specified target attribute. When accessing an FTP URL, the _http_status_code attribute will not be populated.

 Proxy Parameters

 Proxy Parameters

 The optional Proxy URL, Proxy Port,
 Proxy Username, Proxy Password, and Proxy
 Authentication Method parameters may be set for organizations that
 require Internet access via an HTTP proxy server.

 Basic, Digest, and NTLM access authentication methods are supported:

 	Basic (HTTP Basic authentication): This is the default choice, and the only method in widespread use and supported virtually everywhere. This sends the username and password over the network in plain text, easily captured by others.

 	Digest (HTTP Digest authentication): Digest authentication is more secure over public networks than the Basic method.

 	NTLM (HTTP NTLM authentication): NTLM is a proprietary protocol invented and used by Microsoft. It uses a challenge-response and hash concept similar to Digest to prevent the password from being eavesdropped.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Web Services

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 HTTPFileUploader

 Uploads the contents of a file to a URL using an HTTP PUT or POST operation. The result of the upload will be stored in the specified target attribute.

 If an error occurs while uploading the data, the translation will stop, unless the Continue on Error parameter is set to Yes.

 Output

 The body of the server response will be stored in the attribute identified by the Target Attribute parameter. The encoding of this attribute will depend on the value of the Use Encoding from HTTP Response Headers parameter.

 The HTTP Response status code will be stored in the _http_status_code attribute. In addition, the HTTP response headers will be saved in the list attribute specified by the List Attribute for Response Headers parameter.

 The HTTP status code and HTTP response headers will be logged with each request.

 For more information on HTTP Status Codes, please refer to http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html. For a list of common HTTP response headers, please refer to http://en.wikipedia.org/wiki/List_of_HTTP_header_fields.

 If an error occurs while accessing the URL, the translation will continue, and the feature will be output via the <Rejected> port.

 Parameters

 HTTP Request

 Target URL

 Depending on the HTTP transformer, this parameter is either URL that will be accessed by the transformer, or the URL that identifies where data will be uploaded.

 Upload Method

 The upload method can be PUT or POST.

 The difference between PUT and POST is described in http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html as:

 The fundamental difference between the POST and PUT requests is
 reflected in the different meaning of the Request-URI. The URI in a
 POST request identifies the resource that will handle the enclosed
 entity. That resource might be a data-accepting process, a gateway to
 some other protocol, or a separate entity that accepts annotations.
 In contrast, the URI in a PUT request identifies the entity enclosed
 with the request – the user agent knows what URI is intended and the
 server MUST NOT attempt to apply the request to some other resource.

 Upload File Path

 This parameter
 specifies the file whose contents will become the body
 of the HTTP request sent to the server. Select the attribute that contains the file path.

 Upload Content Type

 This parameter allows you to specify the value of the Content-Type header in the HTTP Request.

 Note that this parameter takes precedence over the Content-Type provided
 in the HTTP Request Headers parameter,
 if one is provided.

 HTTP Request Headers

 This parameter can be used to provide custom headers for the HTTP Request. Each header should be entered as plain text, on a single line. For example:

 User-Agent: FME/Workbench (http://www.safe.com)

 Accept-Language: en-US

 Expect: 100-continue

 Use Cookies

 If this parameter is set to Yes, any saved cookies that correspond to the URL being accessed will be sent with the request. In addition, any cookies contained in the response will be saved for use with subsequent HTTP requests.

 Saved cookies will persist for the duration of the translation – they cannot be used in subsequent translations.

 Saving cookies is useful when a web service keeps a "session". Then the following sequence of operations might be used:

 	An HTTPFetcher or HTTPUploader is used to log in to the web service and a session cookie is saved.

 	Another HTTP transformer is used to access the web service, utilizing the saved session cookie.

 	Another HTTPFetcher or HTTPUploader is used to log out of the web service, which invalidates the saved cookie.

 Follow Redirects

 If this parameter is set to Yes, the transformer will follow any URL redirects it encounters.

 Verify SSL Certificates

 If this parameter is set to Yes, the transformer will verify SSL certificates. This is done in two stages:

 	Ensure that the certificate is for the host we are trying to connect to.

 	Ensure that the certificate is valid.

 HTTP Response

 Target Attribute

 This parameter names the attribute in which the HTTP response body will be saved. The default attribute name is _url_contents.

 Target Attribute Encoding

 This parameter is used to indicate the character encoding of the target attribute. If an encoding name is selected, the target attribute will be tagged with that encoding. If “Auto Detect from HTTP Headers” is selected, the HTTP response headers will be examined for encoding information. If the headers contain an encoding, it will be used; otherwise the fme-binary encoding will be used. If no value is given for this parameter, the target attribute will be tagged with the system default encoding. When fetching binary data, the parameter should be set to “Binary”, or “Auto Detect from HTTP Headers”.

 List Attribute for Response Headers

 This parameter is optional. If it is set to a list attribute name, then HTTP headers returned by the server will be stored in the list attribute. The headers will be split into names and values. For example:
`_headers{0}.name' has value `X-XSS-Protection'
`_headers{0}.value' has value `1; mode=block'
`_headers{1}.name' has value `Date'
`_headers{1}.value' has value `Wed, 25 May 2011 17:20:20 GMT'
`_headers{2}.name' has value `Transfer-Encoding'
`_headers{2}.value' has value `chunked'
`_headers{3}.name' has value `Content-Type'
`_headers{3}.value' has value `text/html; charset=ISO-8859-1'
`_headers{4}.name' has value `Cache-Control'
`_headers{4}.value' has value `private, max-age=0'

 Status Code Attribute

 This parameter is optional. If it is set to an attribute name, then the HTTP response code returned by the server will be stored in the attribute.

 Error Attribute

 This parameter is optional. If it is set to an attribute name, any error messages produced while processing a feature will be stored in the attribute.

 HTTP Authentication Parameters

 HTTP Authentication Parameters

 The optional HTTP Authentication Username,
 HTTP Authentication Password and
 HTTP Authentication Method parameters
 may be set for accessing a password-protected HTTP server. Basic, Digest, and NTLM access authentication methods are supported:

 	Basic (HTTP Basic authentication): This is the default choice, and the only method in widespread use and supported virtually everywhere. This sends the username and password over the network in plain text, easily captured by others.

 	Digest (HTTP Digest authentication): Digest authentication is more secure over public networks than the Basic method.

 	NTLM (HTTP NTLM authentication): NTLM is a proprietary protocol invented and used by Microsoft. It uses a challenge-response and hash concept similar to Digest to prevent the password from being eavesdropped.

 Note
 that although the HTTP Basic access authentication is a mechanism designed
 to allow a client to provide credentials to a server on the assumption
 that the connection between them is trusted and secure, be aware that
 any credentials passed from client to server can be easily intercepted
 through an insecure connection.

 You can also use this transformer to access the contents of an FTP URL. If required, an FTP username and password can be specified in the HTTP Authentication Username and HTTP Authentication Password parameters. The contents of the file (or the filename if the Save File parameter is set to Yes) will be stored in the specified target attribute. When accessing an FTP URL, the _http_status_code attribute will not be populated.

 Proxy Parameters

 Proxy Parameters

 The optional Proxy URL, Proxy Port,
 Proxy Username, Proxy Password, and Proxy
 Authentication Method parameters may be set for organizations that
 require Internet access via an HTTP proxy server.

 Basic, Digest, and NTLM access authentication methods are supported:

 	Basic (HTTP Basic authentication): This is the default choice, and the only method in widespread use and supported virtually everywhere. This sends the username and password over the network in plain text, easily captured by others.

 	Digest (HTTP Digest authentication): Digest authentication is more secure over public networks than the Basic method.

 	NTLM (HTTP NTLM authentication): NTLM is a proprietary protocol invented and used by Microsoft. It uses a challenge-response and hash concept similar to Digest to prevent the password from being eavesdropped.

 Usage Notes

 You can also use this transformer to upload a file to an FTP server. Set the Upload Method parameter to PUT. If required, you can specify an FTP username and password in the HTTP Authentication Username and HTTP Authentication Password parameters. When uploading to an FTP server, neither the specified target attribute nor the _http_status_code attribute will be populated.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Web Services

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 HTTPHeader

 Performs an HTTP HEAD operation on a URL. An HTTP HEAD is the same as an HTTP GET, except that the server will not include the message body in the response. Only headers will be returned. This can be used to verify the validity of a URL, or to examine what headers will be returned from an HTTP GET request.

 Output

 The HTTP Response status code will be stored in the _http_status_code attribute. In addition, the HTTP response headers will be saved in the list attribute specified by the List Attribute for Response Headers parameter.

 The HTTP status code and HTTP response headers will be logged with each request.

 For more information on HTTP Status Codes, please refer to http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html. For a list of common HTTP response headers, please refer to http://en.wikipedia.org/wiki/List_of_HTTP_header_fields.

 If an error occurs while accessing the URL, the translation will continue, and the feature will be output via the <Rejected> port.

 Parameters

 HTTP Request

 Target URL

 Depending on the HTTP transformer, this parameter is either URL that will be accessed by the transformer, or the URL that identifies where data will be uploaded.

 HTTP Request Headers

 This parameter can be used to provide custom headers for the HTTP Request. Each header should be entered as plain text, on a single line. For example:

 User-Agent: FME/Workbench (http://www.safe.com)

 Accept-Language: en-US

 Expect: 100-continue

 Use Cookies

 If this parameter is set to Yes, any saved cookies that correspond to the URL being accessed will be sent with the request. In addition, any cookies contained in the response will be saved for use with subsequent HTTP requests.

 Saved cookies will persist for the duration of the translation – they cannot be used in subsequent translations.

 Saving cookies is useful when a web service keeps a "session". Then the following sequence of operations might be used:

 	An HTTPFetcher or HTTPUploader is used to log in to the web service and a session cookie is saved.

 	Another HTTP transformer is used to access the web service, utilizing the saved session cookie.

 	Another HTTPFetcher or HTTPUploader is used to log out of the web service, which invalidates the saved cookie.

 HTTP Response

 List Attribute for Response Headers

 This parameter is optional. If it is set to a list attribute name, then HTTP headers returned by the server will be stored in the list attribute. The headers will be split into names and values. For example:
`_headers{0}.name' has value `X-XSS-Protection'
`_headers{0}.value' has value `1; mode=block'
`_headers{1}.name' has value `Date'
`_headers{1}.value' has value `Wed, 25 May 2011 17:20:20 GMT'
`_headers{2}.name' has value `Transfer-Encoding'
`_headers{2}.value' has value `chunked'
`_headers{3}.name' has value `Content-Type'
`_headers{3}.value' has value `text/html; charset=ISO-8859-1'
`_headers{4}.name' has value `Cache-Control'
`_headers{4}.value' has value `private, max-age=0'

 Status Code Attribute

 This parameter is optional. If it is set to an attribute name, then the HTTP response code returned by the server will be stored in the attribute.

 HTTP Authentication Parameters

 HTTP Authentication Parameters

 The optional HTTP Authentication Username,
 HTTP Authentication Password and
 HTTP Authentication Method parameters
 may be set for accessing a password-protected HTTP server. Basic, Digest, and NTLM access authentication methods are supported:

 	Basic (HTTP Basic authentication): This is the default choice, and the only method in widespread use and supported virtually everywhere. This sends the username and password over the network in plain text, easily captured by others.

 	Digest (HTTP Digest authentication): Digest authentication is more secure over public networks than the Basic method.

 	NTLM (HTTP NTLM authentication): NTLM is a proprietary protocol invented and used by Microsoft. It uses a challenge-response and hash concept similar to Digest to prevent the password from being eavesdropped.

 Note
 that although the HTTP Basic access authentication is a mechanism designed
 to allow a client to provide credentials to a server on the assumption
 that the connection between them is trusted and secure, be aware that
 any credentials passed from client to server can be easily intercepted
 through an insecure connection.

 You can also use this transformer to access the contents of an FTP URL. If required, an FTP username and password can be specified in the HTTP Authentication Username and HTTP Authentication Password parameters. The contents of the file (or the filename if the Save File parameter is set to Yes) will be stored in the specified target attribute. When accessing an FTP URL, the _http_status_code attribute will not be populated.

 Proxy Parameters

 Proxy Parameters

 The optional Proxy URL, Proxy Port,
 Proxy Username, Proxy Password, and Proxy
 Authentication Method parameters may be set for organizations that
 require Internet access via an HTTP proxy server.

 Basic, Digest, and NTLM access authentication methods are supported:

 	Basic (HTTP Basic authentication): This is the default choice, and the only method in widespread use and supported virtually everywhere. This sends the username and password over the network in plain text, easily captured by others.

 	Digest (HTTP Digest authentication): Digest authentication is more secure over public networks than the Basic method.

 	NTLM (HTTP NTLM authentication): NTLM is a proprietary protocol invented and used by Microsoft. It uses a challenge-response and hash concept similar to Digest to prevent the password from being eavesdropped.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Web Services

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 HTTPMultipartUploader

 Creates a multipart upload request using the specified files and parameters using either an HTTP PUT or POST operation. The result of the upload will be stored in the specified target attribute.

 If an error occurs while uploading the data, the translation will stop, unless the Continue on Error parameter is set to Yes.

 Output

 The body of the server response will be stored in the attribute identified by the Target Attribute parameter. The encoding of this attribute will depend on the value of the Use Encoding from HTTP Response Headers parameter.

 The HTTP Response status code will be stored in the _http_status_code attribute. In addition, the HTTP response headers will be saved in the list attribute specified by the List Attribute for Response Headers parameter.

 The HTTP status code and HTTP response headers will be logged with each request.

 For more information on HTTP Status Codes, please refer to http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html. For a list of common HTTP response headers, please refer to http://en.wikipedia.org/wiki/List_of_HTTP_header_fields.

 If an error occurs while accessing the URL, the translation will continue, and the feature will be output via the <Rejected> port.

 Parameters

 HTTP Request

 Target URL

 Depending on the HTTP transformer, this parameter is either URL that will be accessed by the transformer, or the URL that identifies where data will be uploaded.

 Upload Method

 The upload method can be PUT or POST.

 The difference between PUT and POST is described in http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html as:

 The fundamental difference between the POST and PUT requests is
 reflected in the different meaning of the Request-URI. The URI in a
 POST request identifies the resource that will handle the enclosed
 entity. That resource might be a data-accepting process, a gateway to
 some other protocol, or a separate entity that accepts annotations.
 In contrast, the URI in a PUT request identifies the entity enclosed
 with the request – the user agent knows what URI is intended and the
 server MUST NOT attempt to apply the request to some other resource.

 HTTP Request Headers

 This parameter can be used to provide custom headers for the HTTP Request. Each header should be entered as plain text, on a single line. For example:

 User-Agent: FME/Workbench (http://www.safe.com)

 Accept-Language: en-US

 Expect: 100-continue

 Use Cookies

 If this parameter is set to Yes, any saved cookies that correspond to the URL being accessed will be sent with the request. In addition, any cookies contained in the response will be saved for use with subsequent HTTP requests.

 Saved cookies will persist for the duration of the translation – they cannot be used in subsequent translations.

 Saving cookies is useful when a web service keeps a "session". Then the following sequence of operations might be used:

 	An HTTPFetcher or HTTPUploader is used to log in to the web service and a session cookie is saved.

 	Another HTTP transformer is used to access the web service, utilizing the saved session cookie.

 	Another HTTPFetcher or HTTPUploader is used to log out of the web service, which invalidates the saved cookie.

 Follow Redirects

 If this parameter is set to Yes, the transformer will follow any URL redirects it encounters.

 Verify SSL Certificates

 If this parameter is set to Yes, the transformer will verify SSL certificates. This is done in two stages:

 	Ensure that the certificate is for the host we are trying to connect to.

 	Ensure that the certificate is valid.

 Files

 Setting these name-value pairs will add entries using file contents in the multipart upload, corresponding to the specification of a multipart/form-data request described in RFC2388 http://www.ietf.org/rfc/rfc2388.txt.

 Parameters

 Setting these name-value pairs will add entries using the value contents in the multipart upload, corresponding to the specification of a multipart/form-data request described in RFC2388 http://www.ietf.org/rfc/rfc2388.txt.

 HTTP Response

 Target Attribute

 This parameter names the attribute in which the HTTP response body will be saved. The default attribute name is _url_contents.

 Target Attribute Encoding

 This parameter is used to indicate the character encoding of the target attribute. If an encoding name is selected, the target attribute will be tagged with that encoding. If “Auto Detect from HTTP Headers” is selected, the HTTP response headers will be examined for encoding information. If the headers contain an encoding, it will be used; otherwise the fme-binary encoding will be used. If no value is given for this parameter, the target attribute will be tagged with the system default encoding. When fetching binary data, the parameter should be set to “Binary”, or “Auto Detect from HTTP Headers”.

 List Attribute for Response Headers

 This parameter is optional. If it is set to a list attribute name, then HTTP headers returned by the server will be stored in the list attribute. The headers will be split into names and values. For example:
`_headers{0}.name' has value `X-XSS-Protection'
`_headers{0}.value' has value `1; mode=block'
`_headers{1}.name' has value `Date'
`_headers{1}.value' has value `Wed, 25 May 2011 17:20:20 GMT'
`_headers{2}.name' has value `Transfer-Encoding'
`_headers{2}.value' has value `chunked'
`_headers{3}.name' has value `Content-Type'
`_headers{3}.value' has value `text/html; charset=ISO-8859-1'
`_headers{4}.name' has value `Cache-Control'
`_headers{4}.value' has value `private, max-age=0'

 Status Code Attribute

 This parameter is optional. If it is set to an attribute name, then the HTTP response code returned by the server will be stored in the attribute.

 Error Attribute

 This parameter is optional. If it is set to an attribute name, any error messages produced while processing a feature will be stored in the attribute.

 HTTP Authentication Parameters

 HTTP Authentication Parameters

 The optional HTTP Authentication Username,
 HTTP Authentication Password and
 HTTP Authentication Method parameters
 may be set for accessing a password-protected HTTP server. Basic, Digest, and NTLM access authentication methods are supported:

 	Basic (HTTP Basic authentication): This is the default choice, and the only method in widespread use and supported virtually everywhere. This sends the username and password over the network in plain text, easily captured by others.

 	Digest (HTTP Digest authentication): Digest authentication is more secure over public networks than the Basic method.

 	NTLM (HTTP NTLM authentication): NTLM is a proprietary protocol invented and used by Microsoft. It uses a challenge-response and hash concept similar to Digest to prevent the password from being eavesdropped.

 Note
 that although the HTTP Basic access authentication is a mechanism designed
 to allow a client to provide credentials to a server on the assumption
 that the connection between them is trusted and secure, be aware that
 any credentials passed from client to server can be easily intercepted
 through an insecure connection.

 You can also use this transformer to access the contents of an FTP URL. If required, an FTP username and password can be specified in the HTTP Authentication Username and HTTP Authentication Password parameters. The contents of the file (or the filename if the Save File parameter is set to Yes) will be stored in the specified target attribute. When accessing an FTP URL, the _http_status_code attribute will not be populated.

 Proxy Parameters

 Proxy Parameters

 The optional Proxy URL, Proxy Port,
 Proxy Username, Proxy Password, and Proxy
 Authentication Method parameters may be set for organizations that
 require Internet access via an HTTP proxy server.

 Basic, Digest, and NTLM access authentication methods are supported:

 	Basic (HTTP Basic authentication): This is the default choice, and the only method in widespread use and supported virtually everywhere. This sends the username and password over the network in plain text, easily captured by others.

 	Digest (HTTP Digest authentication): Digest authentication is more secure over public networks than the Basic method.

 	NTLM (HTTP NTLM authentication): NTLM is a proprietary protocol invented and used by Microsoft. It uses a challenge-response and hash concept similar to Digest to prevent the password from being eavesdropped.

 Usage Notes

 You can also use this transformer to upload a file to an FTP server. Set the Upload Method parameter to PUT. If required, you can specify an FTP username and password in the HTTP Authentication Username and HTTP Authentication Password parameters. When uploading to an FTP server, neither the specified target attribute nor the _http_status_code attribute will be populated.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Web Services

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 HTTPUploader

 Uploads data to a URL using an HTTP PUT or POST operation. The result of the upload will be stored in the specified target attribute.

 If an error occurs while uploading the data, the translation will stop, unless the Continue on Error parameter is set to Yes.

 This transformer may be used to simulate a web form submission, as from a browser:

 	Set the Upload Method parameter to POST.

 	Set the Upload Content Type parameter to application/x-www-form-urlencoded. (These are the default values for these parameters.)

 	Finally, set the Upload Body parameter to an attribute containing URL-encoded key value pairs. For example:

name=John%20Doe&address=123%2CSomewhere%20Rd%2E

 The TextEncoder transformer may be used to aid with the creation of the request body.

 Output

 The body of the server response will be stored in the attribute identified by the Target Attribute parameter. The encoding of this attribute will depend on the value of the Use Encoding from HTTP Response Headers parameter.

 The HTTP Response status code will be stored in the _http_status_code attribute. In addition, the HTTP response headers will be saved in the list attribute specified by the List Attribute for Response Headers parameter.

 The HTTP status code and HTTP response headers will be logged with each request.

 For more information on HTTP Status Codes, please refer to http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html. For a list of common HTTP response headers, please refer to http://en.wikipedia.org/wiki/List_of_HTTP_header_fields.

 If an error occurs while accessing the URL, the translation will continue, and the feature will be output via the <Rejected> port.

 Parameters

 HTTP Request

 Target URL

 Depending on the HTTP transformer, this parameter is either URL that will be accessed by the transformer, or the URL that identifies where data will be uploaded.

 Upload Method

 The upload method can be PUT or POST.

 The difference between PUT and POST is described in http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html as:

 The fundamental difference between the POST and PUT requests is
 reflected in the different meaning of the Request-URI. The URI in a
 POST request identifies the resource that will handle the enclosed
 entity. That resource might be a data-accepting process, a gateway to
 some other protocol, or a separate entity that accepts annotations.
 In contrast, the URI in a PUT request identifies the entity enclosed
 with the request – the user agent knows what URI is intended and the
 server MUST NOT attempt to apply the request to some other resource.

 Upload Body

 This parameter specifies the body of the HTTP request sent to the server. Select the attribute that contains the data to be uploaded.

 Upload Content Type

 This parameter allows you to specify the value of the Content-Type header in the HTTP Request.

 Note that this parameter takes precedence over the Content-Type provided in the HTTP Request Headers parameter, if one is provided.

 HTTP Request Headers

 This parameter can be used to provide custom headers for the HTTP Request. Each header should be entered as plain text, on a single line. For example:

 User-Agent: FME/Workbench (http://www.safe.com)

 Accept-Language: en-US

 Expect: 100-continue

 Use Cookies

 If this parameter is set to Yes, any saved cookies that correspond to the URL being accessed will be sent with the request. In addition, any cookies contained in the response will be saved for use with subsequent HTTP requests.

 Saved cookies will persist for the duration of the translation – they cannot be used in subsequent translations.

 Saving cookies is useful when a web service keeps a "session". Then the following sequence of operations might be used:

 	An HTTPFetcher or HTTPUploader is used to log in to the web service and a session cookie is saved.

 	Another HTTP transformer is used to access the web service, utilizing the saved session cookie.

 	Another HTTPFetcher or HTTPUploader is used to log out of the web service, which invalidates the saved cookie.

 Follow Redirects

 If this parameter is set to Yes, the transformer will follow any URL redirects it encounters.

 Verify SSL Certificates

 If this parameter is set to Yes, the transformer will verify SSL certificates. This is done in two stages:

 	Ensure that the certificate is for the host we are trying to connect to.

 	Ensure that the certificate is valid.

 HTTP Response

 Target Attribute

 This parameter names the attribute in which the HTTP response body will be saved. The default attribute name is _url_contents.

 Target Attribute Encoding

 This parameter is used to indicate the character encoding of the target attribute. If an encoding name is selected, the target attribute will be tagged with that encoding. If “Auto Detect from HTTP Headers” is selected, the HTTP response headers will be examined for encoding information. If the headers contain an encoding, it will be used; otherwise the fme-binary encoding will be used. If no value is given for this parameter, the target attribute will be tagged with the system default encoding. When fetching binary data, the parameter should be set to “Binary”, or “Auto Detect from HTTP Headers”.

 List Attribute for Response Headers

 This parameter is optional. If it is set to a list attribute name, then HTTP headers returned by the server will be stored in the list attribute. The headers will be split into names and values. For example:
`_headers{0}.name' has value `X-XSS-Protection'
`_headers{0}.value' has value `1; mode=block'
`_headers{1}.name' has value `Date'
`_headers{1}.value' has value `Wed, 25 May 2011 17:20:20 GMT'
`_headers{2}.name' has value `Transfer-Encoding'
`_headers{2}.value' has value `chunked'
`_headers{3}.name' has value `Content-Type'
`_headers{3}.value' has value `text/html; charset=ISO-8859-1'
`_headers{4}.name' has value `Cache-Control'
`_headers{4}.value' has value `private, max-age=0'

 Status Code Attribute

 This parameter is optional. If it is set to an attribute name, then the HTTP response code returned by the server will be stored in the attribute.

 Error Attribute

 This parameter is optional. If it is set to an attribute name, any error messages produced while processing a feature will be stored in the attribute.

 HTTP Authentication Parameters

 HTTP Authentication Parameters

 The optional HTTP Authentication Username,
 HTTP Authentication Password and
 HTTP Authentication Method parameters
 may be set for accessing a password-protected HTTP server. Both Basic
 and Digest access authentication methods are supported.

 Note
 that although the HTTP basic access authentication is a mechanism designed
 to allow a client to provide credentials to a server on the assumption
 that the connection between them is trusted and secure, be aware that
 any credentials passed from client to server can be easily intercepted
 through an insecure connection.

 Proxy Parameters

 Proxy Parameters

 The optional Proxy URL, Proxy Port,
 Proxy Username, Proxy Password, and Proxy
 Authentication Method parameters may be set for organizations that
 require Internet access via an HTTP proxy server.

 Basic, Digest, and NTLM access authentication methods are supported:

 	Basic (HTTP Basic authentication): This is the default choice, and the only method in widespread use and supported virtually everywhere. This sends the username and password over the network in plain text, easily captured by others.

 	Digest (HTTP Digest authentication): Digest authentication is more secure over public networks than the Basic method.

 	NTLM (HTTP NTLM authentication): NTLM is a proprietary protocol invented and used by Microsoft. It uses a challenge-response and hash concept similar to Digest to prevent the password from being eavesdropped.

 Usage Notes

 You can also use this transformer to upload data to an FTP server. When doing so, set the Upload Method parameter to PUT. If required, you can specify an FTP username and password in the HTTP Authentication Username and HTTP Authentication Password parameters. When uploading to an FTP server, neither the specified target attribute nor the _http_status_code attribute will be populated.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Web Services

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 HullAccumulator

 Creates convex or concave hulls for groups of features. One hull feature
 is output for each unique combination of values of the attributes specified
 in the Group By parameter.

 Input Ports

 Input

 This transformer accepts both 2D and 3D features, but the z coordinates of 3D features will be ignored during the calculation of the hull. The convex hull of 3D features will be a polygon that uses unmodified 3D vertices from the input features. This may result in a polygon with varying z coordinates. For concave hulls, the resulting polygons are always 2D features.

 Arcs and ellipses will be stroked prior to the calculation of the hull. Text features will be treated as points.

 Output Ports

 Hull

 A feature representing the requested hull. Typically a polygon, but possibly a line or a point.

 Parameters

 Group By

 If Group By attributes are specified, then a hull output feature is generated for each set of input features that have the same values for all those attributes. Otherwise, a single feature representing the hull of all input features is output.

 Hull Type

 The Hull Type parameter can specify either a convex or a concave hull. A convex hull is a polygon where no interior angle is greater than 180 degrees. For a concave hull this restriction does not apply.

 The convex hull is defined as the minimum enclosing convex polygon. In lay terms, the effect is similar to tightening a rubber band around the feature. Note that the convex hull may be a line or a point if the resulting polygon has an area of zero.

 The concave hull, also known as the alpha hull, is calculated based on the Alpha Value parameter. It is possible for the concave hull to more closely represent the outline of a feature’s geometry than the convex hull can. The concave hull may consist of multiple donuts or polygons.

 Concave Hull Parameters

 Alpha Value

 When the Alpha Value parameter is specified, it is used in the alpha hull calculation directly; a larger number will generally produce larger areas. If a circle with a radius of Alpha Value ground units is able to pass between two points A and B of the feature without touching any other points of the feature, then the resulting hull will not directly connect A and B. Geometries that are farther away than Alpha Value from the rest of the geometries may be culled (removed) if they do not constitute a valid area on their own. It is possible that a null geometry will be returned if the specified alpha was too small for the spacing of the geometry.

 When the Alpha Value parameter is not specified, an approximation to the optimal alpha, which is the smallest alpha that generates a single area, will be used to generate the concave hull. Concave hull generation works best with points, but line and area geometries will be accepted and converted to points if input.

 Example

 [image: convexhullcreator.gif]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Collectors

 Transformer History

 This transformer was previously named ConvexHullAccumulator.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 HullReplacer

 Replaces the geometry of the feature with a polygon representing its
 hull.

 Input Ports

 Input

 This transformer accepts both 2D and 3D features, but the z coordinates of 3D features will be ignored during the calculation of the hull. The convex hull of 3D features will be a polygon that uses unmodified 3D vertices from the input features. This may result in a polygon with varying z coordinates. For concave hulls, the resulting polygons are always 2D features.

 Arcs and ellipses will be stroked prior to the calculation of the hull. Text features will be treated as points.

 Output Ports

 Hull

 A feature representing the requested hull. Typically a polygon, but possibly a line or a point.

 Parameters

 Hull Type

 The Hull Type parameter can specify either a convex or a concave hull. A convex hull is a polygon where no interior angle is greater than 180 degrees. For a concave hull this restriction does not apply.

 The convex hull is defined as the minimum enclosing convex polygon. In lay terms, the effect is similar to tightening a rubber band around the feature. Note that the convex hull may be a line or a point if the resulting polygon has an area of zero.

 The concave hull, also known as the alpha hull, is calculated based on the Alpha Value parameter. It is possible for the concave hull to more closely represent the outline of a feature’s geometry than the convex hull can. The concave hull may consist of multiple donuts or polygons.

 Concave Hull Parameters

 Alpha Value

 When the Alpha Value parameter is specified, it is used in the alpha hull calculation directly; a larger number will generally produce larger areas. If a circle with a radius of Alpha Value ground units is able to pass between two points A and B of the feature without touching any other points of the feature, then the resulting hull will not directly connect A and B. Geometries that are farther away than Alpha Value from the rest of the geometries may be culled (removed) if they do not constitute a valid area on their own. It is possible that a null geometry will be returned if the specified alpha was too small for the spacing of the geometry.

 When the Alpha Value parameter is not specified, an approximation to the optimal alpha, which is the smallest alpha that generates a single area, will be used to generate the concave hull. Concave hull generation works best with points, but line and area geometries will be accepted and converted to points if input.

 Example

 [image: convexhullreplacer.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Transformer History

 This transformer was previously named ConvexHullReplacer.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 ImageFetcher

 Fetches an image by performing an HTTP GET operation on the specified
 URL, and then returning the resulting data as the geometry of a raster
 feature.

 If an error occurs while accessing the URL, or while converting the downloaded data into a raster, the translation will continue, and the feature will be output through the <Rejected> port.

 Parameters

 Image URL

 Enter the URL (for example, http://www.url.com) or select an attribute that contains a URL.

 Image Type

 Choose the image type. If the “<Auto-Detect from HTTP Headers>” option is chosen, the transformer will examine the ‘Content-Type’ header in the HTTP Response for a MIME type. If a known MIME type is found, the corresponding reader will be used to create the raster geometry.

 Username, Password, Authentication Method

 These parameters may be used if the image is being retrieved from a server which requires user authentication.

 Proxy URL, Proxy Port, Proxy Username, Proxy Password, Proxy Authentication Method

 These parameters may be set for organizations that require Internet access via an HTTP proxy server.

 FME Licensing Level

 FME Professional edition and above

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Web Services

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 ImageRasterizer

 Draws input point, line and polygon features onto a color raster filled with the background color. The fme_color attribute of the input vector features is used to generate pixel values. Features without an fme_color attribute will be discarded.

 Input Ports

 Input

 The Input port takes the vector features that will be rasterized. These features are valid only if they have an fme_color attribute.

 Output Ports

 Raster

 The raster drawn from a group of features.

 Parameters

 Group By

 If the Group By parameter is set to an attribute list, one raster per group will be produced.

 Parallel Processing Level

 How parallel processing works with FME: see About Parallel Processing for detailed information.

 This parameter determines whether or not the
transformer should perform the work across parallel processes. If it is enabled, a process will be launched for each group specified by the Group
By parameter.

 Parallel Processing Levels

 	Parameter
 	Number of Processes

 	No Parallelism
 	1

 	Minimal
 	cores1 / 2

 	Moderate
 	exact number of cores

 	Aggressive
 	cores x 1.5

 	Extreme
 	cores x 2

 For example, on a quad-core machine, minimal parallelism will result in two simultaneous FME processes. Extreme parallelism on an 8-core machine would result in 16 simultaneous processes.

 You can experiment with this feature and view the information in the Windows Task Manager and the Workbench Log window.

 Raster Properties

 Size Specification, Number of Columns (cells), Number of Rows (cells), X Cell Spacing, Y Cell Spacing

 To set the size of the output raster, specify either the dimensions or the cell size.

 To set the output raster size using dimensions, set the Size Specification to RowsColumns and specify values for both the Number of Columns and Number of Rows.

 To set the output raster size using cell size, set the Size Specification to CellSize and specify values for both the X Cell Spacing and Y Cell Spacing.

 Interpretation

 Interpretation Type

 This parameter sets the interpretation of the output raster.

 Pixel values for red, green, and blue bands will be taken from the corresponding component of a feature's fme_color attribute. Pixel values for gray bands will be the average of the fme_color components.

 Alpha Value

 This parameter sets pixel values for alpha bands.

 Background

 Background Color

 The Background Color parameter sets the background color for red, green, blue, or gray bands.

 Click the colored square to the right of the text field, or edit the contents of the field directly. The color must be specified as <red>,<green>,<blue> where each of <red>, <green>, and <blue> is a number between 0 and 1.

 Background Alpha Value

 The Background Alpha Value parameter sets the background value for any alpha bands on the raster. It must also be a number between 0 and 1.

 Fill Background with Nodata

 If the Fill Background with Nodata parameter is Yes, the background color will also be flagged as the nodata value for each raster band.

 Anti-Aliasing

 Anti-Aliasing

 If the Anti-Aliasing parameter is Yes, the output lines will be smoothed using an anti-aliasing algorithm.

 Tolerance

 The Tolerance parameter is the maximum normalized distance from a line segment or polygon vertex to a pixel to be rendered. For example a tolerance of 1.0 will draw all pixels touched by the input vector line, while a tolerance of 0.0 will draw only those pixels where the input vector line passes directly through their center. Tolerance can only be selected when anti-aliasing is off.

 Ground Extents

 Ground Extents

 If the Ground Extents parameter is set to Use input data ground extents, which means the extents are not explicitly specified, the output raster extents will be determined by the union of the bounding boxes of the valid input vector features. If the Ground Extents parameter is set to Specify ground extents, the remaining Ground Extents parameters are used to specify the extents of the output raster.

 Minimum X

 This specifies the minimum x value of the output raster. It is used when the Ground Extents parameter is set to Specify ground extents.

 Minimum Y

 This specifies the minimum y value of the output raster. It is used when the Ground Extents parameter is set to Specify ground extents.

 Maximum X

 This specifies the maximum x value of the output raster. It is used when the Ground Extents parameter is set to Specify ground extents.

 Maximum Y

 This specifies the maximum y value of the output raster. It is used when the Ground Extents parameter is set to Specify ground extents.

 Point Cloud

 Input Component

 When drawing point clouds on color bands, the Input Component specifies which component of the point should be used to set the color of the raster pixel. If the parameter is set to Color, the points in the cloud must have a color component. If the parameter is set to Intensity, the points in the cloud must have an intensity component. The intensity component is converted to a color using a grayscale continuum, where the minimum intensity in the cloud is black and the maximum intensity in the cloud is white.

 Usage Notes

 This transformer is intended for producing color images. For producing elevation rasters, use the NumericRasterizer instead.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: minimum bounding rectangle MBR fme_colour rasteriser

 1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 InlineQuerier

 Executes SQL queries against a temporary database consisting of tables created from incoming features, returning the results as new features.

 Any number of tables can be created, and each will be assigned an input port. Any features can be routed to that input port as long as they supply values for each column defined for the table. Similarly, any number of queries can be specified, and each is assigned an output port through which the features which result from that query will be routed. The queries can involve any and all tables and columns defined in the input. In particular, multi-way joins can be executed, advanced SQL operations involving nested Select statements and advanced predicates can be used, and the input tables can be used by multiple queries.

 This transformer is particularly useful to SQL-enable input streams of features coming from sources that have no SQL ability, as well as to perform multi-way joins across streams.

 An InlineQuerier transformer added into a workspace initially has no input or output ports. You must configure it to define at least one table and at least one associated query. These table definitions and associated queries then become the transformer’s respective input and output ports.

 The InlineQuerier uses a SQLite database to store the tables and then execute the queries. See http://www.sqlite.org/lang_select.html for a detailed reference on the SQL Select statement syntax that is supported.

 Parameters

 Inputs

 The InlineQuerier requires definition of one or more Tables, which will become input ports to the transformer. The Import… button provides a quick way to populate the input table definitions from the source feature types in the workspace.
To add an input port, you must define a table name and some columns against which queries may be performed.

 Note: For performance reasons, you should define as few columns as possible.

 At runtime, the transformer will build an index for each of the columns before any of the queries are processed. In addition to the columns defined, a special fme_feature_content column is implicitly defined on every table, and at runtime this column can be considered to contain the entire contents of the FME feature that entered through the table’s port. Because of this, only attributes that will be used in filtering or joining should be defined for the table – any additional attributes (as well as feature geometry) can be put onto the resulting output features by selecting the fme_feature_content column.

 Outputs

 Each output port is assigned an SQL query. A helpful editor is used to construct the queries, and provides convenient drag and drop access to tables, columns, and published and private parameters which can be used within the query. The Generate button will create one output port with a default Select * query for each input table.

 At the end of translation, each connected port's queries will be executed against the InlineQuerier's temporary database. A feature is emitted from the output port for each row which results from executing the SQL query.

 If the result of a query includes the fme_feature_content attribute (either explicitly or through the use of a SELECT *), then the content of the original feature will be included on the output feature.

 In the event where the query joins multiple tables with multiple values of fme_feature_content, the attributes of the resulting features will be merged in the order in which the fme_feature_content values are encountered in the query. If the original features had attributes with the same names, then the first fme_feature_content found in the resulting row will have its feature attributes on the output feature, and subsequent fme_feature_content will have their duplicate feature attributes ignored during the merging. (If this is not desired, you could use an AttributeRenamer prior to the InlineQuerier to ensure unique attribute names in the input streams.)

 Additionally, the resulting merged feature will, by default, have the geometry from the first source feature encountered. You may define the type of geometry for the query to "aggregate of all features"; in this case, the resulting merged feature will contain an aggregate geometry of all of the input features, in the order in which their respective fme_feature_content values were encountered.

 Coordinate System of Output Features

 The coordinate system on the output feature will be:

 	unset if no fme_feature_content was selected;

 	set to that of the first feature if you are selecting feature content with "First Feature";

 	set to the common coordinate system of all "content" features, if "Aggregate" mode is in effect and all input features have the same coordinate system.

 Otherwise it will be left unset.

 A note on table contents: The tables defined for the input ports require the attributes of the source features against which the queries will be performed. They do not have to – and should not – contain additional attributes. In the normal case, a SELECT * type of query will be performed, which will bring in all of the attributes and source geometry from the original feature because it will include the special fme_feature_content column.

 A note on features routed to input ports: Features routed to input ports should have attributes on them which match the schema defined for the input port table. If they do not, null values will be inserted in place of missing attributes for the columns defined for the input table. An upstream AttributeRenamer or NullAttributeMapper can be used to ensure that attribute values are present for defined columns.

 Usage Notes

 Relationship to FeatureMerger

 The InlineQuerier is the powerful cousin of the FeatureMerger. Whereas the FeatureMerger joins two datasets and uses a simple, single attribute key to match features, the InlineQuerier allows any number of input datasets to be merged, using the full power of SQL across any number of tables and columns. Furthermore, the InlineQuerier allows its input data to be reused multiple times in a single transformer, whereas if multiple joins are to be done with a FeatureMerger, multiple FeatureMergers must be employed and copies of the features sent to each. On the other hand, there is some overhead for the InlineQuerier to load the underlying SQLite database. Using a single InlineQuerier instead of several FeatureMergers also simplifies the workspace.

 Unless only a single FeatureMerger is needed in a workflow, the InlineQuerier may be a better choice. Older workspaces with multiple cascading FeatureMergers may experience a performance improvement by replacing the FeatureMergers with a single properly configured InlineQuerier.

 Relationship to SQLCreator/SQLExecutor

 The InlineQuerier can be thought of as the crafty cousin of the SQLCreator/SQLExecutor transformers, in that it allows the power of SQL to be applied to datasets originating from non-SQL capable data sources or disjoint SQL-capable sources.

 If all the data to be queried already exists in a SQL-capable data source, it is always more efficient to use the SQLCreator or SQLExecutor, because this allows the queries and filtering of the data to be executed directly by the database before it enters the FME environment.

 Relationship to Joiner

 The Joiner is very useful and efficient when there exists a one-to-one or one-to-many relationship between data flowing through FME and data held within a database. If it can be used, the Joiner can be more efficient than using either the InlineQuerier or SQLCreator/SQLExecutor, provided that the Joiner key fields have indexes in the source database. Joiner allows simple join relationships based on multiple attribute keys and requires no knowledge of SQL – this is often very effective for simple lookup tables. The InlineQuerier is useful in cases where data sources have no SQL ability, or for more complex queries. The InlineQuerier allows you to ask more sophisticated questions about the data than the Joiner.

 Example

 [image: inlinequerier.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Database

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 InsidePointExtractor

 Adds attributes holding the coordinates of a point guaranteed to be
 inside the area feature. The
 geometry of the feature is not changed by this transformer.

 If the feature is not an area, then the attributes will not be given
 any value.

 This is useful if the location of an interior point, or centroid, is
 needed as attributes on an area feature. If
 an actual text feature is to be created at the interior point, then the
 LabelPointReplacer
 transformer should be used instead. If
 a point feature is to be created, the InsidePointReplacer
 should be used.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 InsidePointReplacer

 Replaces the geometry of the area feature with a point that is guaranteed
 to be inside the area.

 Output Ports

 Insidepoint

 This port contains the result.

 Untouched

 Non-area features that go through the transformer will be output here, unchanged.

 Usage Notes

 To get the coordinates of a point inside an area, use the InsidePointExtractor.

 To generate text labels inside of an area, use the LabelPointReplacer.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: centroid geometry keywordtest

 Inspector

 Sends features to the FME Data Inspector (or the FME Universal Viewer) for display. (The application that opens depends on the Inspector Application setting in Tools > FME Options > Workbench.)

 When the workspace run is completed, any features that enter this transformer will be displayed in the FME viewer application. The Inspector also allows you to view the internal FME Feature Store (FFS) data as it is being processed at that particular moment. Depending on the placement of the Inspector, FME will open the Inspector and load the data in a new view.

 All Inspector transformers used in a workspace will be displayed in the same view.

 A feature type in the Inspector application will have the same name as its corresponding Inspector transformer.

 Input Ports

 This transformer has a single unnamed input port that accepts any feature.

 Output Ports

 This transformer has no output ports.

 Parameters

 Group By

 If any Group By attributes are specified, their values
 are appended to the Inspector name to create a feature type for display
 in the Inspector.

 Vector Parameters

 Pen Color Override

 The pen color override takes precedence over the fme_color attribute on the feature. It has the same effect as setting fme_color attribute on the feature to the selected override color for the purposes of inspection.

 For point cloud features, if the cloud contains color components for each point, the Inspector will use the color specified in the component. In this case, the pen color override will not be used.

 If the cloud does not contain color components for each point, the following priority is used when selecting the paint color for each point:

 	If there is a Pen Color Override selected, the inspector application will paint all points in the cloud with the selected override.

 	If the cloud does not contain color component and a Pen Color Override is not selected, the viewer application will paint all points in the clouds based on the fme_color attribute on the feature.

 	If the cloud does not contain color component and there is no Pen Color Override or fme_color attribute on the feature, the viewer application will use a color ramp based on the z range from blue for the minimum value to red for the maximum value. When the intensity component exists, the intensity value becomes the lightness of the color.

 Area Fill Color Override

 The Area Fill Color override sets the fme_fill_color for the feature for the purposes of inspection.

 Area Fill Color Override is not applicable for any feature that does not need a fill such as point clouds, line features, and point features.

 Raster Parameters

 Reduction Type

 This parameter offers different methods to speed up the inspection of rasters:

 	No Reduction: Rasters will be visualized in full detail.

 	Resample: Large rasters will be resampled down to a smaller size. This is useful if only an overview (that is, not full detail) is required for viewing.

 	Subset: Only a subset of each raster will be written. This subset is defined by the Subset Start Column, Subset Number of Columns, Subset Start Row, and Subset Number of Rows parameters.

 	Bounding Box Only: Only the bounding box of the raster data will be written.

 Subset Start Column

 Applicable when Subset is selected for the Reduction Type parameter. These parameters identify the position in the input raster from which the subset will be taken, as well as the size of the subset.

 Subset Number of Columns (cells)

 Applicable when Subset is selected for the Reduction Type parameter. These parameters identify the position in the input raster from which the subset will be taken, as well as the size of the subset.

 Subset Start Row

 Applicable when Subset is selected for the Reduction Type parameter. These parameters identify the position in the input raster from which the subset will be taken, as well as the size of the subset.

 Subset Number of Rows (cells)

 Applicable when Subset is selected for the Reduction Type parameter. These parameters identify the position in the input raster from which the subset will be taken, as well as the size of the subset.

 Point Cloud Parameters

 Thinning Type

 This parameter offers different methods to speed up the visualization of point clouds by removing points from the cloud:

 	Every Nth Point (Interval): Keeps every <interval>th point.

 	Every Nth Point (Maximum Number of Points): Keeps at most <maximum number of points> points that are evenly spaced throughout the dataset.

 	First/Last N Points: Keeps at most <maximum number of points> points from the start or end of the dataset. This likely will perform faster but produce a less even distribution of points than the Every Nth Point thinning type.

 Interval

 Specifies how often the points are retained. For example, an amount of 2 will result in every other point of the input cloud feature will be present in the output point cloud.

 Maximum Number of Points

 Specifies the maximum points in the output point cloud. For example, an amount of 100 will result in points in the input cloud being dropped so the maximum number of points in the output cloud is 100.

 Usage Notes

 This is a very useful tool for debugging workspaces. Keep in mind, however, that you are viewing the internal FME data, which may not be the same as the data eventually written to your output dataset. This is because FME does not apply any format-imposed restrictions on the data.

 Shortcuts

 	To attach an Inspector transformer: right-click on a selected reader feature type or transformer and choose Connect Inspector(s).

 	Click the Inspector button [image: inspector_button.png] to place an Inspector transformer in a workspace.

 	To immediately open the Viewer, right-click on a reader or writer feature type and select Inspect.

 Redirecting Output to an Inspector

 In some cases you might want to inspect output data, but you don't want to actually have to write the data to do so. For example, in a translation that applies updates to a spatial database, you will probably want to check the output before actually committing an update. The answer is the Redirect to Inspector Application setting.

 When this setting is applied, the output from a translation is redirected away from the specified output and sent directly to the viewer specified by the Inspector Application setting in Tools > FME Options > Workbench.

 The simplest way to turn on this feature is to select Writers > Redirect to Inspector Application from the Workbench menu bar. This is a toggle setting, meaning that each selection turns the setting on or off.

 Transformer History

 This transformer was previously named the Visualizer.

 References

 The FME Data Inspector help files contain additional information about viewing and saving raster, point cloud, and vector data.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Intersector

 Computes intersections between all input features, breaking lines and
 polygons wherever an intersection occurs. In addition, all overlapping
 segments are reduced to one segment before being output.

 Output Ports

 Intersected

 The intersected features are output to this port. If the List Name parameter was specified, these features will have an attribute containing their number of overlapping input features. They will also have all attributes of the original features.

 Node

 The locations of every intersection are represented by point features and are output to this port. The transformer parameters modify which attributes are included on the output features.

 Parameters

 Group By

 If you select Group By attributes, only those features with the same
 Group By attribute values will be processed. If you do not select Group By attributes, then all features will be processed.

 Parallel Processing Level

 How parallel processing works with FME: see About Parallel Processing for detailed information.

 This parameter determines whether or not the
transformer should perform the work across parallel processes. If it is enabled, a process will be launched for each group specified by the Group
By parameter.

 Parallel Processing Levels

 	Parameter
 	Number of Processes

 	No Parallelism
 	1

 	Minimal
 	cores1 / 2

 	Moderate
 	exact number of cores

 	Aggressive
 	cores x 1.5

 	Extreme
 	cores x 2

 For example, on a quad-core machine, minimal parallelism will result in two simultaneous FME processes. Extreme parallelism on an 8-core machine would result in 16 simultaneous processes.

 You can experiment with this feature and view the information in the Windows Task Manager and the Workbench Log window.

 Duplicate Nodes at Each Elevation

 The creation of nodes can be calculated in 3D, if requested. Constructing
 nodes in 3D would mean that line segments would only share a node if they
 shared the same Z value at the point they intersected. Constructing nodes
 in 2D would mean that all intersecting segments would share a common node,
 regardless of their respective Z values.

 Consider, for example, a situation
 where two lines (that crossed) represented roads, where one road was
 an overpass above the other road. Suppose these two lines had differing
 elevations. If you constructed nodes in 3D, these two roads would not
 be linked to the same node where they crossed. Two nodes would be produced
 at the crossing point – each one with a different Z value. If you constructed
 nodes in 2D, these lines would both link to a common node, which would
 be present at the location where they crossed. In either the 2D or 3D
 case, the full dimensionality of the input is preserved in the output
 – 3D features are never converted to 2D. The 2D or 3D choice only indicates
 how the nodes are created and which lines are linked to them; it does
 not affect the dimension of the features that are output.

 If the Duplicate Nodes at Each Elevation parameter is set to Yes,
 then whenever 3D lines intersect at differing heights, two 2D nodes will
 be output via the Node port. Each node will have the same x and y coordinates,
 but a different node number.

 If the Duplicate Nodes at Each Elevation
 parameter is set to No, then whenever
 3D lines intersect at differing heights, a single 2D node is output at
 the intersection point.

 Overlap Count Attribute

 The Overlap Count Attribute parameter names an attribute that will be
 added by the transformer, containing the number of collinear input lines
 that overlapped the output segment.

 Segment Count Attribute

 The Segment Count Attribute parameter, if specified, names an attribute
 that will be added by the transformer, containing the number of segments
 into which the segment’s original feature was divided.

 If an input feature was broken into n output segments, each of those segments will have an attribute named <attribute name> which has a value of n.

 List Name

 If the optional list name is supplied, a list of all the attributes
 of each lines which overlapped an output segment is made. This allows
 later inspection of overlapping segment attributes.

 Separate Collinear Segments

 This parameter causes overlapping segments not to be merged into a single segment:
 one copy is output for each original feature sharing the segment. Each such segment will have the respective original feature’s attributes
 as its main attributes, and attributes from all other collinear features
 will be added as a list attribute, if the list name was supplied.

 When a coverage of polygons is input, the set of topologically significant
 lines which form their boundaries is output.

 Split Self-Intersecting Features

 If the Split Self-Intersecting Features parameter is set to Yes, self-intersections
 in the input features are removed by splitting the feature.

 No feature-to-feature comparisons are made. In this case, the value set to the Overlap Count Attribute will be the number of features that result from removing self-intersections. If the feature did not self-intersect, the attribute will be set to 1.

 If the segment had several overlapping input features, the attributes of each of the input features will be added to the feature in the list identified by List Name, if one was specified. In any case, each output feature is also assigned the attributes of one of its original input features. This transformer also adds a "direction" attribute for each attribute resulting from the List Name parameter, labelling it as same if the geometry is oriented in the same direction, and opposite if the geometry is oriented in the opposite direction to the current geometry.

 Example

 [image: intersector.gif]

 Using the Intersector and ListConcatenator to Solve Problems

 What if you have linear street centerlines and, at each intersection point, you'd like to know which streets come together? The output should be a set of points, each with a single string attribute containing a comma-separated set of the street names.

 You can solve this by setting up a workspace that routes all the street centerlines into an Intersector. Adjust the parameters of the Intersector to supply a list name; for example, all_streets.

 Let's assume that the input street lines had an attribute called NAME. Now, among other things, the Node output of the Intersector will have an unqualified list on it called all_streets{}.NAME. This list will hold the names of all the streets that intersect at each particular point (or Node) that is output.

 To turn the list of NAMEs into a single string, add a ListConcatenator transformer and run the Node features into it. Then set up the ListConcatenator's parameters so that it would put the contents of the all_streets{}.NAME list together, separated by commas, into the "result" attribute. Then route the output of the ListConcatenator to an output file, and ensure that the "result" attribute was routed to an attribute in the output. After running the translation, you will have the desired result.

 Note that you could also access the individual street names by "exposing" some elements of your list (by right clicking on the attribute unqualified list name (in our example, "all_streets{}.NAME") and saying "Expose Elements", and entering the number of elements to expose. You'd then have to do something with those elements in your translation. (The disadvantage of this approach is that you need to know ahead of time how many list elements you want to work with -- so if 3 streets intersect at the same node and you only set yourself up to handle two, you'd have to do something special to handle that.)

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 JMSReceiver

 Using the Java Message System (JMS), receives messages from a message broker.

 Parameters

 Connection Parameters

 Provider Type or Context

 The message broker to connect to, or the initial context factory if the broker is not listed.

 Provider URL

 The URL of the directory containing connection details for the JMS provider.

 Additional Provider Properties

 Any additional provider-specific properties, in the form key=value.

 Connection Factory

 The name of the connection factory object.

 Username

 An authenticating username.

 Password

 An authenticating password.

 Destination

 The name of the destination object. These correspond to a queue or a topic.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Workflow

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 JMSSender

 Using the Java Message System (JMS), sends messages to a message broker.

 Parameters

 Connection Parameters

 Provider Type or Context

 The message broker to connect to, or the initial context factory if the broker is not listed.

 Provider URL

 The URL of the directory containing connection details for the JMS provider.

 Additional Provider Properties

 Any additional provider-specific properties, in the form key=value.

 Connection Factory

 The name of the connection factory object.

 Username

 An authenticating username.

 Password

 An authenticating password.

 Destination

 The name of the destination object. These correspond to a queue or a topic.

 Connection Parameters

 Message Attribute

 The attribute that contains the message to send.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Workflow

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Joiner

 Joins attributes from an external table to incoming features as they are being processed through a translation.

 The Joiner queries an external table to retrieve attributes associated with a feature. One or more feature attributes are joined to one or more columns in a table in the database, and the values from the matching table row(s) are added as feature attributes.

 The _matched_records attribute specifies how many records in the database the feature matched to.

 The Joiner is a very powerful transformer with many performance-related settings.

 Reader Format and Dataset

 Select the Reader format and dataset where the table resides, including any format-specific parameters.

 Table

 Specify the table to join. Click the Browse button to select the table from a list. Note that you can only select this after you have completely specified the reader format, dataset, and format-specific parameters.

 Join On

 Select the attribute(s) from the incoming feature and their corresponding table field(s) that will be used to find matches. Matches are made when the values of all the attributes equal the values of their corresponding table fields.

 There is one row for each attribute and column pair in the table entry widget. You can add more pairs by clicking the plus (+) button located to the right of the table. Similarly, you can remove pairs by pressing the minus (-) button. A minimum of one pair must be specified for the join to work.

 Select attributes from a drop-down list in the Feature Attributes column. (You can type directly in the corresponding table fields or select from a list by clicking the Browse button.) For the Browse button to list available table fields, all the information needed to read from the table needs to be specified.

 Fields to Add

 Specify a list of fields from the matching table rows to join onto the incoming feature.

 To select the fields from a list, click the Browse button. A dialog showing the list of possible fields will appear. Place a check next to each field you wish to add, and click OK.

 If no fields are specified, all the fields from the matching rows will be added.

 Cardinality

 Indicate the type of relationship between the database rows and each feature. This will describe how many rows will match to each feature and what action the Joiner will take if the expected number is not found.

 	Relationship Type
 	Description

 	Match All (1:M)
 	A feature can match to any number of records, all of which will be joined based on the value of the Multiple Matches parameter.

 	Match First (1:0..1+)
 	A feature can match to any number of records, or none at all, but only the first record found will be joined.

 	Must Match One (1:1)
 	Each feature MUST match to one record only. Zero matches or more than one match will cause an error.

 	Must Match Zero or One (1:0..1)
 	Each feature MUST match to a single record or none at all. More than one match will cause an error.

 Note: The Must Match rules are very strict. When in doubt, use Match First or Match All.

 Multiple Matches

 Specify how results of multiple matches will be given.

 Create a feature for each match: Each row matched is added to a copy of the incoming feature. In this scenario, for each feature in, there will be matched features out.

 Add fields on a list attribute: Each row matched is added to a list attribute on the feature. In this scenario, for each feature in there will always be one feature out.

 Joined List Name

 The name of the list attribute to append multiple matches.

 Added Fields Prefix

 To prevent overwriting existing feature attributes, you can optionally specify a prefix that will be applied to each table field name when it is added to the feature.

 Prefetch Query (Database formats only)

 Normally the cache is filled with records as they are matched in the
 database. However, for formats that support SQL, the cache can be preloaded (that is, filled with a specific
 set of data before matching takes place) by issuing a prefetch query.
 This prefetch query can select an entire table or a selected part of a
 table which is most likely to be matched by the feature attributes.

 Note: Unless the prefetch query is exhaustive, cache size limits apply. See Prefetch Exhaustive to learn what constitutes an exhaustive prefetch query

 Prefetch Exhaustive (Database formats only)

 A prefetch query which is known to retrieve all possible matches is
 called an exhaustive query. When
 a match cannot be found within the cached results of an exhaustive query,
 it is assumed that no match exists in the database; thus the database
 will not be further consulted.

 If Prefetch Exhaustive is set to Yes, this
 indicates whether a prefetch is exhaustive. Even when it is set to No, however, any prefetch query is assumed to be exhaustive when
 it does not contain a WHERE clause, and is of the form:

 SELECT * from TableName

 Note: When FME considers
 a prefetch query to be exhaustive, the cache size limit will be ignored.
 This is because the cache must contain all results from the query.

 For example, a number of FME features of type "roads" require
 a database match. The database table (myrecords) has a field (record_type)
 with a number of values; roads, highways, avenues, streets. The FME features
 will only ever be matched to where record_type=roads so the overall join
 process would be much more efficient if the following prefetch was issued:

 SELECT * from myrecords where record_type
 = 'roads'

 Cache Size (Database formats only)

 Specify the number of rows to cache locally if you do not want to accept
 the default of 5000. You can optionally specify an SQL query to preload
 the cache. Note that cache size is ignored if the prefech query is exhaustive.

 Trim Key Fields (appears with character fields)

 Engaging trimming of key fields may significantly
 reduce performance and should only be done if key column values in the
 database are known to contain trailing spaces.

 It
 has no effect if an exhaustive prefetch query is used (see above for an
 explanation of Prefetch Exhaustive).

 Note: This parameter is included for backwards compatibility and most users will have no need to use it. The parameter can only be accessed using the Navigator pane of the Workbench.

 Tip: Where Joiner transformers will match
 only on a known subset of records within a table, it will often be more
 efficient to prefetch that subset of records before matching takes place.

 Usage Notes

 Relationship to FeatureMerger

 The FeatureMerger joins two datasets and uses a simple, single attribute key to match features. You can concatenate attributes to simulate a multi-key join. The FeatureMerger is also able to perform certain geometric operations on incoming features using its Merge Type parameter. FeatureMerger does all joins in memory so it can be faster than the Joiner if you have more than one relationship on the same data. The article FME2011 Use Case: Joiner vs FeatureMerger contains a more detailed comparison of these transformers.

 Relationship to InlineQuerier/SQLCreator/SQLExecutor

 The Joiner is very useful and efficient when there exists a one-to-one or one-to-many relationship between data flowing through FME and data held within a database. If it can be used, the Joiner can be more efficient than using either the InlineQuerier or SQLCreator/SQLExecutor, provided that the Joiner key fields have indexes in the source database. Joiner allows simple join relationships based on multiple attribute keys and requires no knowledge of SQL – this is often very effective for simple lookup tables. SQLCreator/SQLExecutor allow more complex joins and these are executed by the source database.

 The InlineQuerier is useful in cases where data sources have no SQL ability, or for more complex queries. The InlineQuerier allows you to ask more sophisticated questions about the data than the Joiner.

 Example

 [image: joiner.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Database

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 JSONExtractor

 Extracts portions of JSON (JavaScript Object Notation) formatted text
 into feature attributes.

 Parameters

 JSON Attribute

 The JSON Attribute parameter
 identifies the feature attribute which contains the JSON text.

 Target Attribute

 This parameter
 identifies the feature attribute into which the result of the JSON query
 should be put.

 JSON Query

 This parameter is the JSON query whose value will be stored in the target attribute.

 A JSON query is primarily used to refer to values in some JSON text.
 They can also be used to extract some metadata about the JSON text, such
 as the type (object, array, string, etc.) of JSON value or the number
 of elements in an array. The outermost JSON value, which must be an object
 or an array, is always referred to by the term "json". Contained
 values can be referred to using JavaScript-like square bracket index operators.

 A value in an array can be referred to using its zero-based position
 in the array (for example, json[2] for the third element).

 A value in an object can be referred to using
 its object key name

 json["key"]

 All of the values in an array or object can be collectively referred
 to using a wildcard index

 json[*]

 The query used by this transformer can have multiple expressions, which
 are separated by a '+' operator, as well as string literal values. This allows more complex attribute values to be easily created from the JSON
 text. For example:

 json["name"]["first"]
 + " " + json["name"]["last"]

 The JSONFragmenter transformer contains more information on JSON queries.

 If the JSON query cannot be fully evaluated, a message will be logged,
 and the feature will be output without setting the target attribute.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 JSON

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 JSONFlattener

 Flattens JSON (JavaScript Object Notation) objects, extracting the object keys and values into FME feature attributes.

 For example, consider a feature which has an attribute named json containing the following text:
{
 "paramName":"GeocodeResult",
 "dataType":"GPFeatureRecordSetLayer",
 "value":
 {
 "geometryType":"esriGeometryPoint",
 "spatialReference": {"wkid":4326 }
 }
}

 After going through the JSONFlattener, the following attributes will have been added to the feature:

 	Attribute Name
 	Attribute Value

 	paramName
 	GeocodeResult

 	dataType
 	GPFeatureRecordSetLayer

 	value.geometryType
 	esriGeometryPoint

 	value.spatialReference.wkid
 	4326

 Parameters

 JSON Attribute

 The JSON Attribute parameter identifies the feature attribute that contains the JSON text.

 Recursively Flatten Objects/Arrays

 If this parameter is set to ‘No’, each JSON object key will become an attribute and the corresponding JSON value will become the attribute value. If this parameter is set to ‘Yes’, only object values which are simple types (integers, strings, etc) will become attribute values, while nested objects and arrays will be recursively flattened, as shown in the above example.

 Prefix New Attribute Names With

 This parameter may be used to provide a string with which to prefix the newly-created attributes.

 Attributes to Expose

 Exposes any attributes so they can be used by other transformers. Type directly in the text box or click the browse button to display the editor and add attributes there.

 FME Licensing Level

 FME Professional edition and above

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 JSON

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 JSONFormatter

 Provides options for formatting JSON (JavaScript Object Notation) text.

 Input Ports

 Input

 Input features that contain the JSON text attributes.

 Output Ports

 Output

 Features output through this port will contain formatted JSON text.

 Parameters

 JSON Attribute

 Specifies the attribute containing the JSON text which is to be formatted.

 Formatting Type

 Select the desired formatting of the JSON text:

 	Pretty Print: The JSON text will be formatted by adding indentations and new lines for improved readability.

 	Linearize: All JSON contents will be put on a single line, to reduce the size of the JSON text.

 Indent Style

 When using the ‘Pretty Print’ formatting type, this option may be used to control the indent style of the formatted JSON text. Each indent may be a tab or 1-8 space characters. This parameter is disabled when using the ‘Linearize’ formatting type.

 Result Attribute

 Specifies the attribute which will contain the formatted JSON text.

 Result Encoding

 Specifies the character encoding for the result attribute. Valid options are UTF-8, UTF-16 and UTF-32.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 JSON

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 JSONFragmenter

 Extracts portions of JSON (JavaScript Object Notation) formatted text
 into new FME features.

 Output Ports

 Exploded

 For each newly created feature, the attribute identified by the JSON Attribute parameter will contain
 JSON text referred to by the JSON query.

 The
 json_type attribute will contain the JSON type of the text (object, array,
 string, etc) and the json_index parameter will contain the object key or
 array index of the JSON value.

 If the JSON query cannot be fully evaluated, a message will be logged, and the translation will continue.

 Parameters

 JSON Attribute

 The JSON Attribute parameter
 identifies the feature attribute which contains the original JSON text.

 For each newly created feature that is output through the Exploded port, the attribute identified by this parameter will contain
 JSON text referred to by the JSON query.

 JSON Query

 The JSON Query parameter is the JSON query
 referring to the JSON values which will become new FME features.

 A JSON query is a mechanism to refer to values inside JSON text. The
 outermost JSON value, which must be an object or an array, is always referred
 to by the term "json". Contained
 values can be referred to using JavaScript-like square bracket index operators.
 A value
 in an array can be referred to using its zero-based position in the array
 (for example, json[2] for the third element).

 A value in an object can be referred to using its object key name. For
 example:

 json["key"]

 All of the values in an array or object can be referred to collectively
 using a wildcard index. For example:

 json[*]

 The query used by this transformer can have multiple expressions, separated
 by a '+' operator. This allows the transformer to refer to values in different
 areas of the JSON text. For example:

 json["resultSet_1"][*] + json["resultSet_2"][*]

 See below for more information on JSON queries.

 Explode as Format

 If the JSON text is in GeoJSON or EsriJSON format, you can select "Explode as format" to "GEOJSON" or "ESRIJSON". This will inform JSONQueryFactory that GeoJSON or ESRIJSON features need to be automatically recognized and extracted from the query results.

 The default format, "JSON", parses the JSON text as plain JSON. If no GeoJSON or ESRIJSON features were constructed, a warning will be issued and the text will be treated as plain JSON.

 Load Keys as Attributes

 If the JSON query produces a JSON Object, the keys may be used to produce additional attributes for the new feature(s) by setting ‘Load Keys as Attributes’ to ‘Yes’. If the JSON query produces a JSON array, and a value is provided to the ‘Prefix New Attributes With’ parameter, a list attribute will be created, using the prefix as the list name, and the JSON array values as the list elements.

 Recursively Flatten Objects/Arrays

 When the ‘Load Keys as Attributes’ parameter is set to ‘Yes’, this parameter controls the attributes which are created. If it is set to ‘No’, each JSON object key will become an attribute and the corresponding JSON value will become the attribute value. If this parameter is set to ‘Yes’, only object values which are simple types (integers, strings, etc) will become attribute values, while nested objects and arrays will be recursively flattened.

 Prefix New Attributes With

 If the ‘Load Keys as Attributes’ parameter is set to ‘Yes’, the ‘Prefix New Attributes With’ parameter may be used to provide a string with which to prefix the newly-created attributes. If the selected format is GeoJSON or ESRIJSON, the format-specific keys will not be added as attributes, but will instead be handled by the appropriate format parser.

 Attributes to Expose

 Exposes any attributes so they can be used by other transformers. Type directly in the text box or click the browse button to display the editor and add attributes there.

 JSON Queries

 A JSON query is a simple mechanism to refer to values within a JSON document. A query is made up of one or more expressions, which are separated by a + operator. There are three types of expressions: JSON structure expressions, JSON property expressions and string literal expressions.

 JSON Structure Expressions

 A JSON structure expression can refer to values in a JSON document. The outermost JSON element, which must be an array or an object, is always referred to by the term json, and this term must appear at the beginning of every JSON structure expression. The child elements can be referred to using JavaScript-like square bracket index operators. For example, if the outermost element is an array, the first element of the array can be referred to by the expression json[0], the second element can be referred to by the expression json[1], and so on. Likewise, if the outermost JSON element is an object, with keys "name" and "address", then the values of these keys can be referred to by the expressions json["name"] and json["address"] respectively.

 These index operators can be cascaded. For example, it the outermost JSON element is an object with a key and "address" whose value is an object containing keys "city" and "province", then these values can be referred to by the expressions json["address"]["city"] and json["address"]["province"].

 In order to refer to all of the values in an array or object, a wildcard index * can be used. For example, if the outermost JSON element is an array, then the expression json[*] refers to every element in the array.

 JSON Property Expressions

 A property expression is a structure expression as described above, followed by a . (dot) operator and a property name. Currently, the only supported properties are type and size. The type property returns the type of the JSON value referred to by the JSON structure expression. For example, if the outermost JSON element is an array, and the first element of the array is a string, then the expression json[0].type would have a value of string. The size property, which can only be applied to an array, returns the number of elements in the array.

 String Literal Expressions

 A string literal expression is simply a quoted string value, such as "this is a string literal expression".

 FME Licensing Level

 FME Professional edition and above

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 JSON

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 JSONTemplater

 Populates a JSON document with FME feature attribute values. The document is provided as a template, and the transformer will use XQuery to insert attribute values and geometry information into the template. The template may be loaded from an attribute, a file, or entered directly into the transformer parameters.

 For each feature that enters the Root input port, the Root JSON template will be evaluated, and the result will be put into the attribute named by the Result Attribute parameter. The feature will then be output from the transformer.

 A JSON template is simply a JSON document that contains XQuery functions. Essentially, these functions are placeholders for data values. When the template is processed, the functions will be evaluated, and the results will be inserted into the document. Most often this is used to insert feature attribute values into the document. The names of the attributes to be inserted are specified using the same XQuery functions used in several other transformers: XMLTemplater, XMLUpdater, XQueryExtractor, XQueryExploder, etc.

 In the JSONTemplater, the fme:get-attribute, fme:get-list-attribute and fme:get-json-attribute functions are particularly useful. Only functions which do not alter the feature are permitted. See the XQuery Functions documentation for more information on the available functions.

 The following JSON template populates a JSON element with the value of the ‘id’ feature attribute.

 {

 "id" : fme:get-attribute("id")

 }

 If the attribute does not exist on the feature, the JSON key value will have a null value.

 To populate a JSON array with the contents of a list attribute, the fme:get-list-attribute may be used, as in this sample:

 {

 "ids" : [fme:get-list-attribute("ids{}")]

 }

 If the function call is not contained in the square array braces, an array will automatically be created if the function returns more than one value. An array will not be created if the function returns one or zero values.

 Sub-Templates

 When a template is evaluated, it can only access the attributes of the feature which is currently being processed. In order to allow a template to access the attributes of multiple features, the concept of sub-templates was introduced. Using the fme:process-features function, the transformer can evaluate a sub-template on a set of features, and then insert the results into the first template. In the transformer interface, each sub templates will be given a name. This name will then be used in the fme:process-features call to identify the sub-template to evaluate. In addition, a transformer input port will be created for each sub-template. The sub-template will be processed on features which enter the corresponding transformer input. Features which enter one of these input ports will be referred to as sub-features.

 In the following example, the Root template constructs a JSON object representing a village, with information from a single feature. It then populates the “houses” value, using attribute values from features which entered the HOUSE input port.
{

 "name" : fme:get-attribute("village_name"),

 "populate" : fme:get-attribute("population"),

 "houses" : [

 fme:process-features("HOUSE")
]
}

 The template associated with the HOUSE input port creates a house object.

 {

 "address" : fme:get-attribute("address"),

 "owner" : fme:get-attribute("owner"),

 "num_floors" : fme:get-attribute("num_floors")

 }

 If a single feature enters the Root input and two features enter the HOUSE input, the resulting JSON document could look like this:

 {

 "name" : "Anytown, USA",

 "populate" : 2568,

 "houses" : [

 {

 "address" : "123 Main Street",

 "owner" : "John Doe",

 "num_floors" : 2

 },

 {

 "address" : "324 Main Street",

 "owner" : "Jane Doe",

 "num_floors" : 3

 }

]

 }

 A template may call many sub-templates. For example, in the above example, we could add another sub-template named BUSINESS, and then used the process-features function to run this sub-template from the Root template. Additionally, a sub-template may run another sub-template, with the restriction that a sub-template may not directly or indirectly run itself.

 Selecting the Sub-Features to Process

 Often there is a hierarchical structure to the features that enter the JSONTemplater. For example, each village will have a number of houses, and each house will have several rooms, etc. If the fme:process-features function is used as described above, the resulting document will probably not be correct. Suppose there are two villages, each with five houses. Each village and house is represented by a separate FME feature. The village features are routed into the Root input port, while the house features are routed into the HOUSE input port.

 If the transformer is run with the above templates, there will be two output features, as expected. However, both of the village objects will include all ten house objects. The correct behavior is to only evaluate the sub-template on the HOUSE features which correspond to the current village feature.

 The fme:process-features function provides a way to do this. Additional function parameters may be used to filter the sub-features which are to be processed. The second parameter is a list of attribute names, and the third is a list of attribute values. Only sub-features whose attributes match the given list of attribute names and values will be processed.

 This function call will evaluate the HOUSE sub-template on all HOUSE features whose village_id attribute matches the id attribute of the current feature.

 fme:process-features("HOUSE", "village_id", fme:get-attribute("id"))

 More than one attribute/value pair can be specified. In this case, the attribute names and attribute values have to be contained in parenthesis. The following function call will evaluate the HOUSE sub-template on all HOUSE features whose village_id attribute matches the id attribute of the current feature, and whose num_floors attribute is 2.

 fme:process-features("HOUSE", ("village_id","num_floors"), (fme:get-attribute("id"), 2))

 Grouping Sub-Features

 The Group Sub-Features By parameter allows for more coarse-grained filtering of sub-features than the parameters in the fme:process-features function. When this parameter is set to a list of attribute names, the fme:process-features function will only process sub-features which have the same values for these attributes as the feature currently being processed. Note that this parameter has no effect on the Root features. Each Root feature will be processed and output from the transformer.

 When grouping sub-features, if all features in each group are consecutive, the performance of the transformer can be improved by setting the Grouped Sub-Features are Consecutive parameter to Yes. When this value is set, Root features will be processed as soon as all the applicable sub-features have arrived at the transformer. This means the transformer will operate in a non-blocking manner, rather than waiting for all features to arrive before starting to process templates. The behavior of the transformer is undefined if the features in a group do not all arrive consecutively. It is likely that some sub-features will not be processed if this happens.

 Running Multiple Sub-Templates with a Single Function Call

 It is possible to evaluate multiple sub-templates using a single function call. Simply pass a list of template names to the fme:process-features function. The sub-templates will be evaluated on each of the sub-features named in the list. The features will be processed in the order that they entered the transformer. The following function call processes the HOUSE and BUSINESS sub-templates:

 fme:process-features(("HOUSE","BUSINESS"))

 The sub-feature selection parameters may still be used when the fme:process-features function is used to evaluate multiple sub-templates.

 Running a Sub-Template on the Same Feature

 It is possible to evaluate a sub-template using the same feature which is being used to evaluate the current template. The fme:process-template function takes a name, or list of names, of sub-templates which should be evaluated. These templates will be evaluated and the results will be inserted into the current template. To evaluate a template, just enter the name of the sub-template as a function parameter. For example, while a HOUSE feature is being processed, we could evaluate the OWNER template using the following function call. The OWNER template will be evaluated using the feature which entered the HOUSE input port.

 fme:process-template("OWNER")

 To evaluate a set of templates, pass a list of names:

 fme:process-template(("OWNER","ADDRESS"))

 This technique may be used to modularize JSON templates, by moving repeated template structures into a single place. For example, if both houses and businesses have an address, the address could be extracted into an ADDRESS template, and the HOUSE and BUSINESS templates could then use the fme:process-template function to insert the address values. This way, the address template does not have to be duplicated inside the HOUSE and BUSINESS templates.

 Geometry Templates

 Geometry templates can be used to write out custom JSON geometry. There are a large number of functions which allow the extraction of geometric data, and the processing of sub-templates on geometries. For more information, see the XQuery Functions documentation for a list of all the geometry functions, and how to write out geometric data using sub-templates.

 Geometry sub-templates operate in the same way as regular sub-templates, with the exception that a geometry sub-template does not create an input port on the transformer.

 While a geometry template is being evaluated, the functions which access feature attributes (fme:get-attribute etc), are still usable.

 Validation of Attribute and Sub-Template Names

 When specifying a JSON template through the Template Expression parameter or the Template File parameter, the transformer will verify that all referenced feature attributes are present in an incoming feature. If attributes are missing (not exposed) from input features, the transformer will be highlighted red as incomplete. When this situation occurs, the transformer’s Summary Annotation will indicate the missing attributes the JSON template is referencing.

 In addition, when sub-template names are passed to the fme:process-features and fme:process-template functions, the names will be validated to ensure they match the names given in the transformer interface.

 This additional validation behavior can be overridden by setting the parameter Validate Attribute/Template Names to No.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 JSON

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 JSONUpdater

 This transformer modifies JSON documents by performing one or more of the following actions:

 	Inserting a new value into a JSON object or array

 	Replacing an existing value in a JSON object or array

 	Merging the contents of two JSON objects or arrays

 	Removing a value from a JSON object or array

 	Appending a value to a JSON array

 	Renaming a key in a JSON object.

 For each document update, a JSON path expression is used to identify the location of the JSON object or array which is to be modified. A second parameter names the specific object key or array index which is to be changed. Note that the path may refer to more than one item. If this is the case, all the items will be modified.

 The JSON path expressions used in this transformer are the same as those used in the JSONExtractor and JSONFragmenter transformers, and in the JSON reader.

 For modifications that replace existing items or insert new items, two parameters are given which specify the value to be added to the document. This value may be given as a simple text value, or it may be an XQuery expression, a JSON object or a JSON array.

 The Update features provide the attribute values used in the document update operations. The Document feature is only used to supply the JSON document which is to be updated.

 For each feature that enters the Update port, all of the update operations listed in the transformer will be applied to each feature that entered the transformer through the Document port. Therefore, no changes will be made to the JSON document if no features enter the transformer through the Update port.

 Note that if the document is entered directly into the transformer parameters, it may be processed in two different ways:

 	If no Document features are given to the transformer, a new feature will be created to store the document. Each of the updates will be applied to the document, and it will then be output through the Document port.

 	If Document features are given to the transformer, each of the updates will be applied to the document, and these features will be output from the transformer.

 Input Ports

 Document

 Input features contain the JSON documents to be modified. The documents can be contained in an attribute, entered directly into the transformer, or contained in a file referenced by an attribute value.

 Update

 For each feature which enters this input port, each of the updates listed in the transformer will be executed on each document which entered via the Document input port. These features will contain the attributes values which are used in the document updates.

 Output Ports

 Document

 The Document input features will be output through this port. These features will contain the updated document, which will be stored in the attribute named in the Result Attribute parameter.

 Parameters

 Group Update Features By

 This parameter is used to specify which update features will modify a document. When this parameter is set to a list of attributes, Document features will only be modified by Update features that share the same values for these attributes. The document will be modified by all of the update features with the same attribute values. Note that a document will not be updated if no Update features with the same values for the “group by” attributes are provided to the transformer.

 JSON Document

 JSON Input

 This parameter is used to specify the type of JSON document which is to be modified. The JSON may come from the input features (Parameter Value: Text or Attribute), or it may come from an external file. (Parameter Value: JSON File)

 JSON Text

 When the JSON Input parameter is set to ‘Text or Attribute’, this parameter is used to specify the JSON text. The parameter may be set to an attribute value, or the JSON document may be entered into the parameter directly.

 JSON File

 When the JSON Input parameter is set to ‘JSON File’, this parameter is used to specify the location of the file. The file path may be entered directly into the parameter, or the path may come from an attribute value.

 Updates

 Each row in the Updates table specifies a single update operation.

 Update Type

 This parameter specifies the type of modification to apply to the XML document. The possible updates are:

 	Update Type
 	Description

 	
 Insert Into Object

 	
 Inserts a new key / value pair into an object. The name of the key is taken from the ‘Object/Array Index’ column. The inserted value is taken from the Value parameter.

 	
 Merge Objects

 	
 Copies all the key / value pairs from one object into another. If the Value parameter is not a JSON object, or an XQuery expression which evaluates to a object, the update will fail.

 	
 Insert Into Array

 	
 Inserts a new value into an array, at a specified position. The array position (which starts counting at 0) is taken from the ‘Object/Array Index’ column, and should be an integer. The new value is taken from the Value column.

 	
 Append to Array

 	
 Appends a new value to the end of an array.

 	
 Merge Arrays

 	
 Copies all values from one array into another. If the Value parameter is not a JSON array, or an XQuery expression which evaluates to an array, the update will fail.

 	
 Replace Object Value

 	
 Replaces the value of an object key. The key whose value is to be replaced is taken from the ‘Object/Array Index’ parameter.

 	
 Replace Array Value

 	
 Replaces the value at a specified position within an array. The array index of the value to replace is taken from the ‘Object/Array Index’ column. The index should be an integer. Array indices being counting at 0.

 	
 Rename Object Key

 	
 Changes an object key name. The key to rename is taken from the ‘Object/Array Index’ parameter.

 	
 Delete from Object

 	
 Removes a key / value pair from an object. The key which is to be removed is taken from the ‘Object/Array Index’ parameter.

 	
 Delete from Array

 	
 Removes a value from an array. The array index of the value to remove is taken from the ‘Object/Array Index’ column. The index should be an integer. Array indices being counting at 0.

 JSON Path

 This parameter is used to identify the JSON object or array which is to be updated. For updates which modify a specific object key or array index, the key / index is identified using the ‘Object/Array Index’ parameter.

 JSON paths use a simple text syntax to trace a route through a JSON document, from the top level object or array, down to the object or array which is being modified.

 All JSON documents must have a single object or array as the root value. In a JSON path, this root value is identified by the ‘json’ keyword. Thus, every JSON path begins with this keyword. Square bracket syntax is used to identify each level of the path.

 An integer can be used to identify a position within an array:

 	json[0] – If the root value is an array, this path refers to the first value in the array. If the root value is an object, this path will not resolve to any value.

 	json[4] – If the root value is an array, this path refers to the fifth value in the array.

 A quoted string can be used to refer to the value of an object key:

 	json["location"] – If the root value is an object, this path refers to the value of the ‘location’ key in the object. If the root value is an array, this path will not resolve to any value.

 	json["features"] – Refers to the value of the ‘features’ key in the root object.

 These indices may be repeated, to have the path go deeper into the JSON document. It is important to know the structure of the document, so that the types of indices (object or array) are correct.

 	json[0]["location"] – This path refers to the ‘location’ object key in the first element in the root array.

 	json["features"][0]["location"] – This path refers to the value of the ‘location key in the first item in the ‘features’ array of the root object. For example, this could apply to the following (incomplete) document:{
"features" : [
{ "location” : { ... } }
]
}

 A wildcard may be used to refer to all elements of an array, or all values in an object. A * character is used to denote a wildcard.

 	json[*] – If the root value is an array, this path refers to all values in the array. If the root value is an object, this path refers to the values of all keys in the object.

 	json[*]["location"] – This path refers to the ‘location’ key of all child values of the root object or array.

 	json["features"][*] – This path refers to all the values contained in the value of the ‘features’ key in the root object.

 In order to use an attribute value in a JSON path, the @Value FME function should be used. If the attribute value is an object key, the @Value function should be enclosed in quotes.

 	json[@Value(index)] – This path refers to the item in the root array at the position indicated by the ‘index’ attribute.

 	json["@Value(key)"] – This path refers to the object value whose key is named in the ‘key’ attribute.

 Note that the @Value() functions used in the path parameter will apply to the Update feature being processed, not the Document feature that is being updated

 Object/Array Index

 This parameter is used to specify the specific object key / array index whose value is to be inserted/removed/modified.

 For object updates, this value of this parameter should be a string, which will be interpreted as an object key. Quotes are NOT required around the string in this parameter.

 For array updates, the value of this parameter should be an integer. Note that array indices start at 0.

 Value Type

 This parameter is used to indicate how the value of the Value parameter should be interpreted. The effects of the different values of this parameter are explained in the description of the Value parameter. In general, this parameter should be set to Plain Text if the transformer is intended to insert text content into the document, while it should be set to JSON/XQuery if the transformer is intended to insert JSON objects or arrays into the document, or if the value is being produced through XQuery function calls.

 Value

 This parameter is used to specify the new values that should be inserted into the document. If the Value Type parameter is set to Plain Text, the contents of this parameter will be encoded for safe use in an XML document. That is, double quotes will be escaped as \", backslashes will be escaped as \\, and so on.

 If the Value Type parameter is set to JSON/XQuery, the contents of this parameter will be interpreted as an XQuery expression. This allows the insertion of JSON values elements into the document. Also, this allows the use of the FME XQuery functions. For example, a JSON Template (e.g., from the JSONTemplater transformer) could be entered as the parameter value. It would then be evaluated before being inserted into the document.

 Note that any FME XQuery functions used in the new value will access the Update feature, not the Document feature.

 Parameters

 Validate Attribute Names

 This parameter specifies whether or not Workbench should try to validate the attribute names which are passed to any XQuery functions used in the Value column.

 Result Attribute

 This parameter specifies the attribute to which the updated JSON document will be written. The default is _result.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 JSON

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 JSONValidator

 Validates the syntax of JSON (JavaScript Object Notation) text.

 Input Ports

 Input

 Input features that contain the JSON text attributes.

 Output Ports

 Passed

 Features that contain formatted JSON text.

 Failed

 Features that contain invalid JSON text.

 Parameters

 JSON Attribute

 This parameter
 identifies the feature attribute that contains the JSON text.

 Validation Error List Attribute

 This parameter names the list attribute that will contain information on JSON validation errors. The features that exit the transformer through the Failed output port will have validation errors listed in this list attribute.

 Each validation error message is made up of four parts:

 	error description

 	line number where the error occurred

 	column number where the error occurred

 	error type/severity

 FME Licensing Level

 FME Professional edition and above

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 JSON

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 KMLPropertySetter

 Sets common properties for groups of vector and raster features destined for the OGCKML Writer.

 Parameters

 Navigation Tree

 Name

 Name specifies the text that will be displayed in the navigation tree of a KML Viewer such as Google Earth. If the feature has a point geometry, it will also be used as the label text.

 Summary

 Summary specifies the text that will be displayed below the feature's name in the navigation tree of a KML Viewer such as Google Earth.

 Visible

 Visibility specifies whether or not the feature will be visible by default when the user first opens the dataset. If the visibility is set to No, the feature will not be displayed. However, the visibility may still be toggled in the navigation tree of a KML Viewer such as Google Earth.

 Balloon

 Content Type

 Content Type specifies the type of the feature's balloon content. If the type is Text, the contents will be XML entity-encoded when written to the KML file. If the type is HTML, the contents will not be XML entity-encoded, but preserved in such a way that the content will be displayed as valid HTML.

 Content

 Content specifies the text or HTML description to be displayed in the feature's Balloon.

 Include Attribute Table

 Include Attribute Table specifies whether or not a table of the features attributes should be included in the Balloon Content.

 Attribute Table Title

 If the Include Attribute Table parameter is set to Yes, the value of this parameter will be used as the title of the attribute table.

 Additional Files

 If the description contains HTML content, the HTML may require additional files in order to be rendered correctly. Common examples are images, CSS stylesheets and javascript files. The Additional Files parameter may be used to specify the files which are required by the HTML in a feature. The required files should be listed in the “Source File” column. The “Path in Dataset” column may be used to specify where the file should be located within the output KML dataset. Typically, the value in the “path in Dataset” column should just be set to the same path as is given in the HTML. For example, if the HTML contains the following:

 The “Path in Dataset” cell would be set to “images/pic.jpg”. If a cell is empty, the corresponding source file will be copied into the root directory of the dataset. If an absolute path is given (e.g., /images/pic.jpg), the path will be resolved relative to the root file of the dataset. If a relative path (e.g., images/pic.jpg) is given, the path will be resolved relative to the KML file which contains the current feature.

 Geometry

 Geometry Type

 Geometry Type specifies the type of geometry properties to apply to the feature.

 Altitude Mode

 Altitude Mode specifies how KML Viewers, such as Google Earth, should interpret the z value of features with vector geometry, or the altitude setting for features with raster geometry.

 Raster Altitude

 Raster Altitude specifies the altitude, in meters, at which the raster tile should be displayed. This option is not commonly required.

 Raster Opacity

 Raster Opacity specifies the opacity of raster tile when displayed in a KML Viewer, such as Google Earth. This value is a display directive only, and has no effect on the underlying raster geometry.

 Extrude

 Extrude specifies whether or not to connect the geometry of vectors to the ground. KML Viewers, such as Google Earth, will not display extruded geometry unless the Altitude Mode is Absolute, Relative To Ground, or Relative to Sea Floor.

 Follow Terrain

 This option only applies to linear geometries, not points or polygons.

 While the Altitude Mode parameter sets the behavior of the line vertices, this parameter sets the behavior of the line segments between the vertices. If Follow Terrain is set to Yes, the line segments between vertices will conform to the terrain. If Follow Terrain is set to No, the line segments will be a straight line from one vertex to the next. This will cause the line to hover above low terrain, and be buried underneath higher terrain.

 KML Viewers, such as Google Earth, will not enable terrain following unless the Altitude Mode is Clamp To Ground or Clamp To Sea Floor.

 Additional References

 For more information regarding KML:

 	See the FME OGCKML Writer chapter in the FME Readers and Writers manual (in Workbench, select Help > FME Readers and Writers Reference)

 	 See the documentation for KML: http://code.google.com/apis/kml/documentation/

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 KML

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: "Google Earth" KML

 KMLRegionSetter

 Sets the region-related KML attributes for a group of features destined for the OGCKML Writer.

 Parameters

 Region Bounding Box

 Calculate from Feature Bounding Box

 This parameter specifies whether or not the bounding box of the region should be computed from the bounding box of the feature's geometry.

 If the value is Yes, the bounding box will be computed; if necessary, the calculated bounding box will be reprojected to the LL84 coordinate system. A valid coordinate system is required for the bounding box to be calculated.

 Note: Setting a value of Yes on point features is not recommended because they have no area and will generate an infinitely small bounding box.

 Buffer By

 This parameter is only available when the region bounding box is being calculated from the bounding box of the feature geometry. It may be used to make the bounding box of the KML region larger (or smaller) than the bounding box of the geometry. The geometry bounding box will be expanded (or decreased if the value is negative) on all sides, by the value of the parameter. The parameter value should be given in degrees of latitude/longitude.

 Display Criteria

 Minimum Display Size

 Minimum Pixels specifies the minimum size, in pixels, in the user's Google Earth view, that the region's bounding box must occupy before the region will become active – that is, when zooming in, at what point the feature should appear.

 The smaller the value, the sooner the feature will appear when zooming into the view. A value in the range of 256 to 512 is recommended.

 Maximum Display Size

 Maximum Pixels specifies the maximum size, in pixels, in the user's Google Earth view, that the region's bounding box may occupy before the region will be deactivated – that is, when zooming in, at what point the feature should disappear again.

 The smaller the value, the sooner the feature will disappear when zooming into the view. A value of -1 (infinite) is recommended. It means there is no maximum size and, once the feature has appeared, zooming in further will not cause it to disappear.

 Minimum Fade Extent

 This parameter specifies an offset to Minimum Pixels, in pixels, that determines the rate at which the region will be activated, and its contents displayed.

 A value of 0 (immediate transition) is recommended.

 Maximum Fade Extent

 This parameter specifies an offset to Maximum Pixels, in pixels, that determines the rate at which the region will be deactivated, and its contents hidden.

 A value of 0 (immediate transition) is recommended.

 Bounding Box Parameters

 Minimum X, Y/Maximum X, Y

 These parameters specify the coordinates, in the LL84 coordinate system, that define the boundary of the region's bounding box.

 Example

 The default settings will calculate a bounding box, and use that as the bounding box for the feature's region:

 [image: KMLRegionSetter.png]

 The inactive view shows that the feature is not initially displayed when you are zoomed out. The region is "inactive" and therefore the feature is not shown.

 [image: GE_RegionSetter_Inactive.png]

 As you zoom in closer, the view meets the display criteria and the region activates; that is, the feature displays.

 [image: GE_RegionSetter_Active.png]

 Additional References

 For more information about KML regions and how Level of Detail is calculated:

 	See the FME OGCKML Writer chapter in the FME Readers and Writers manual (in Workbench, select Help > FME Readers and Writers Reference)

 	 See the KML documentation: http://code.google.com/apis/kml/documentation/regions.html

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 KML

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: "Google Earth" KML

 KMLStyler

 Creates a common style for a group of features destined for the OGCKML writer.

 Parameters

 Allow Unique Styles Per Feature

 This parameter specifies whether the first feature through the transformer defines the common style that will be used for all features that pass through the transformer, or whether each feature can supply a unique style. Unique styles per feature create larger output files but allow for different settings, such as color, per feature.

 Color

 Color

 This parameter specifies the pen color of the feature used to render the feature in the set color. The pen color determines the color of lines, and area boundaries. To edit this parameter, click the browse button to the right of the text field.

 Fill Color

 This parameter specifies the fill color for an area geometry on a feature used to render the interior feature in the set color. To edit this parameter, click the browse button to the right of the text field.

 Opacity

 Opacity specifies the opacity of the pen color of the feature. A value of 1.0 is fully opaque, and 0.0 is completely transparent.

 Fill Opacity

 Fill Opacity specifies the opacity of the fill color of the feature. A value of 1.0 is fully opaque, and 0.0 is completely transparent.

 Icon

 Name

 Icon Name specifies either the name of an icon selected from the icon picker, or a filename/URL of a valid image file.

 Scale

 This parameter specifies the scale of the icon.

 The scale is a multiplying factor, where 1.0 is unscaled. The lower scaling bound is 0.0, and there is no upper bound. If the value is exactly 0.0, Google Earth will not display the icon. The actual display size of the icon will vary according to how each Google Earth renders the dataset at various altitudes. This value has no units.

 Color

 This parameter allows the specification of a color that Google Earth will apply to the icon when it is displayed. This works best with white icons. Results may vary for icons which are already colored.

 Opacity

 This parameter specifies the opacity of the icon. A value of 1.0 is fully opaque, while a value of 0.0 is completely transparent.

 Line Style

 Line Width

 Line Width specifies the width of line geometries and boundaries of area geometries.

 Line Width Units

 Specifies the units for the previous parameter value. If the value of the parameter is ‘Pixels’, the line geometry will be a constant width at all zoom levels. As a result, it will appear narrower, relative to the ground when the view is zoomed in and wider when the view is zoomed out. If the value is ‘Meters’ the line width will be constant relative to the ground. As a result, it will be wider when the view is zoomed in, and narrower when the view is zoomed out.

 Create Labels on Lines

 If this parameter is set to ‘Yes’, the name of a KML feature (taken from the kml_name format attribute) will be displayed as a label along the length of the line.

 Label Style

 Scale

 Label Style Scale specifies a unitless scaling factor that the KML Viewer applies to the default size of the label when rendered. Labels are rendered by KML Viewers, such as Google Earth, when the feature has both a KML name and a point geometry. The KML Writer will convert text features to KML points that have a name property. It is not possible to specify label size in terms of absolute units.

 Color

 This parameter specifies the color in which the feature name will be displayed. This parameter is optional. If no value is given, the feature name will be displayed in white text. The color value may be selected using the button next to the field, or may be manually entered. The color must be specified as <red>,<green>,<blue> where each of <red>, <green>, and <blue> is a number between 0 and 1.

 Opacity

 This parameter specifies the opacity of the label. A value of 1.0 is fully opaque, while a value of 0.0 is completely transparent.

 Example

 This screen capture shows a polygon that has had its color and fill color set by the KMLStyler.

 [image: GE_Styler_Result.png]

 Additional References

 For more information regarding KML styling:

 	See the FME OGCKML Writer chapter in the FME Readers and Writers manual (in Workbench, select Help > FME Readers and Writers Reference)

 	 See the KML documentation: http://code.google.com/apis/kml/documentation/kml_tut.html

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 KML

 Stylers

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: "Google Earth" KML

 KMLTimeSetter

 Sets the time-related KML attributes for a group of features destined for the OGCKML Writer.

 Parameters

 Type

 This parameter determines the type of KML time primitive that will be created. Possible options include Timestamp and Time Period.

 Timestamp

 This parameter specifies the value of the timestamp if the time type is Timestamp. The value can either be in the FME DateTime format, or the XML Schema time format.

 Period Start

 This parameter specifies the beginning of the time period if TimePeriod is the selected time type. The value can either be in the FME DateTime format, or the XML Schema time format.

 Period End

 This parameter specifies the optional end of the time period if TimePeriod is the selected time type. The value can either be in the FME DateTime format, or the XML Schema time format.

 Examples

 Timestamp Settings

 [image: KMLTimeSetter_Timestamp.png]

 Time Period Settings

 [image: KMLTimeSetter_Timeperiod.png]

 FMEpedia

 See FMEpedia for additional information about FME DateTime formats.

 Additional References

 For more information regarding KML time primitives:

 	See the FME OGCKML Writer chapter in the FME Readers and Writers manual (in Workbench, select Help > FME Readers and Writers Reference)

 	 See the KML documentation: http://code.google.com/apis/kml/documentation/kml_tut.html

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 KML

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.
Keywords: "Google Earth" KML

 KMLTourBuilder

 Generates a KML Tour from input features. The tour consists of tour stops that correspond to each input feature.

 The location of the tour stop corresponds to the center point of the input feature. For features where the geometry is a line geometry, a series of tour stops will be generated, where each vertex in the line becomes a tour stop.

 Parameters

 Tour

 Name

 The name of the Tour object that will be displayed in the navigation tree of a KML Viewer such as Google Earth. If the value of the Tour Name comes from an attribute, all features sharing a common attribute value will be grouped into the same tour. It is possible for the KMLTourBuilder to build several tours if there are different attribute values.

 Duration

 The time, in seconds, for the entire tour. The duration of a tour has two components: flying time and waiting time (if wait delays are used). The flying time is calculated as the specified tour duration less the total wait times. The flying time between each tour stop will be calculated such that the velocity of the tour is approximately constant.

 Transition

 Type

 Smooth: The flying velocity will remain constant for the entire tour.

 Bounce: The flying velocity will be gradually reduced to zero as the tour reaches each stop.

 Balloon

 Display

 This parameter specifies whether the feature's balloon should be popped up as the tour reaches the tour stop, and then hidden when the tour departs the tour stop.

 The balloon will only display when the flight velocity has reached zero, so this option is best used with either a Wait or Pause delay.

 Delay

 Type

 Specifies the type of delay at each tour stop.

 If the Type is set to Wait, the tour will briefly stop at each tour stop for the number of seconds specified in the delay duration. If the Type is set to Pause, the tour will stop at each tour stop until the user presses the play button on the tour control of a KML Viewer such as Google Earth.

 Duration

 The number of seconds to stop if the Type parameter is set to Wait.

 View

 Perspective

 Specifies the user's perspective for the entire tour:

 	Third Person: the view will be from a point that orbits the tour stop.

 	 First Person: the view will be from the exact location of the tour stop.

 Range

 Specifies the distance, in meters, from the view point to the tour stop location in the Third Person perspective.

 If the value is <calculate>, the range value will be calculated such that user's view includes the tour stop, as well as a portion of the remaining tour. The calculated range is constant for every tour stop.

 Heading

 Specifies the direction (azimuth) of the view, in degrees, relative to North. If the value is <calculate>, the heading value will be calculated such the heading for the current tour stop is in the direction of the next tour stop.

 Tilt

 Specifies the rotation, in degrees, of the view around the X axis. A value of 0 indicates that the view is aimed straight down, and a value of 90 indicates that the view is aimed toward the horizon. Values greater than 90 only apply if the View Perspective is First Person, and indicate that the view is pointed towards the sky. If the value is <calculate>, the tilt value will be calculated such the tilt for the current stop is in the direction of the next stop.

 Additional References

 For more information regarding KML Touring and View parameters, see the documentation for KML Tours:

 http://code.google.com/apis/kml/documentation/touring.html

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 KML

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: "Google Earth" KML

 KMLViewSetter

 Sets the view-related KML attributes for a group of features destined for the OGCKML Writer. Creation of LookAt or Camera views are supported.

 Parameters

 Location

 Longitude, Latitude, Altitude

 These parameters specify a location associated with the View Type parameter.

 Altitude Mode

 Specifies how KML Viewers, such as Google Earth, should interpret the altitude value.

 View

 View Type

 If the View Type is LookAt, this location is the focal point of the view (where the view is looking at). In most cases, this is the view type you will choose. If you determine, for whatever reason, that it is too limiting, you can set the view type to Camera.

 If the View Type is Camera, this location is the location of the camera (where the view is looking from).

 Heading

 Heading specifies the rotation, in degrees, of the view around the Z axis, relative to North.

 Tilt

 Tilt specifies the rotation, in degrees, of the view around the X axis. A value of 0 indicates that the view is aimed straight down, and a value of 90 indicates that the view is aimed toward the horizon.

 Values greater than 90 only apply if the View Type is Camera, and indicate that the view is pointed towards the sky.

 Roll

 Roll specifies the rotation, in degrees, of the view around the Z axis, after the Heading and Tilt rotations have been applied. This value only applies to Camera views, and is generally not necessary.

 Range

 Range specifies the distance, in meters, that the view location is viewed from. This value only applies to LookAt view types.

 Time

 The parameters in the Time section allow the view to be active at a specific point or period of time.

 Type

 This parameter determines the type of KML time primitive that will be created. Possible options include Timestamp and Time Period. Select ‘None’ if you don’t wish to associate a time with the view.

 Timestamp

 This parameter specifies the value of the timestamp if the time type is Timestamp. The value can either be in the FME DateTime format, or the XML Schema time format.

 Period Start

 This parameter specifies the beginning of the time period if TimePeriod is the selected time type. The value can either be in the FME DateTime format, or the XML Schema time format.

 Period End

 This parameter specifies the optional end of the time period if TimePeriod is the selected time type. The value can either be in the FME DateTime format, or the XML Schema time format.

 Example

 These transformer parameters are configured for a LookAt view type.

 [image: KMLViewSetter.png]

 This is the resulting view of the selected area.

 [image: GE_ViewSetter_result.png]

 Additional References

 For more information regarding KML:

 	See the FME OGCKML Writer chapter in the FME Readers and Writers manual (in Workbench, select Help > FME Readers and Writers Reference)

 	 See the KML documentation: http://code.google.com/apis/kml/documentation/cameras.html

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 KML

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: "Google Earth" KML

 Labeller

 Interpolates labels along a linear or polygonal feature. Labels are
 placed at a regular perpendicular distance from the closest point on the
 line at some interval, and are given a rotation perpendicular to the line.

 Parameters

 Label

 The label text desired on the output geometry.

 Prevent Label Overlaps

 If this parameter is
 set to Yes, labels will only be generated if they don’t overlap with other
 labels already generated by the same transformer. If it is set to No,
 overlapping labels will be generated.

 Label Position

 The Label Position controls
 where the label will be placed relative to the original line.

 	If Above or Left
 is specified, then the points are located the <offset> distance
 above (or, if the line is vertical, to the left of) the line. Above
 or Right is identical, except if the line is vertical then label
 point will then be to the right of the linear feature.

 	Below or Left
 and Below or Right work similarly
 with all label points being below the linear feature unless it is vertical.
 If it is vertical, then the label points are to the left and right, respectively.

 	If Right
 is specified, then the label is always placed on the right side of the
 line.

 	If Left
 is specified, then the label is always placed on the left side of the
 line.

 Label Offset

 The labels
 will be placed Label Offset units
 perpendicular to the closest point on the line, where the offset is also
 measured in ground units. You can either enter a number, or take the value of a feature attribute
 by selecting the attribute name from the pull-down list.

 Labels at End Points

 This parameter
 controls whether or not labels will be placed at the end points of the
 line. If not, then the labels will start half the label spacing from the
 start of the line.

 Label Height

 This parameter controls the
 height of the labels, measured in ground units. You can either enter a number, or take the value of a feature attribute
 by selecting the attribute name from the pull-down list.

 Average Character Width

 This parameter controls the
 average character width. If left as the default, 0.0, the Label Height will also be used as the average character width.

 Label Spacing

 This parameter controls the
 interval of the labels. A label spacing of 0 will result in a single label
 being placed at the midpoint of the line. You can either enter a number, or take the value of a feature attribute
 by selecting the attribute name from the pull-down list.

 Minimum Length

 This parameter
 sets a length threshold. If a line does not meet the minimum length requirement,
 no labels will be generated for it.

 Label Rotation Attribute

 This is the name of the attribute which will hold the rotation of the label. This rotation
 is adjusted from the orientation of the line so that text oriented at
 the label point will be parallel to the line segment and will not be upside
 down or right-to-left.

 All rotations are measured in degrees counterclockwise from horizontal.

 Parallel Rotation Attribute

 This is the name of the attribute which will hold the rotation of the line itself at
 the point being labeled.

 All rotations are measured in degrees counterclockwise from horizontal.

 Example

 [image: labeller.gif]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 LabelPointReplacer

 Replaces the geometry of the feature with a label point.

 The text is guaranteed to be inside (in case of polygons) or on (lines and points) the original object.

 Input Ports

 Input

 Input features must have the correct geometry: point, line or area.

 Output Ports

 Labelpoint

 The features with the replaced geometry are output via this port.

 <Rejected>

 Invalid features are output via this port.

 Results

 	If the feature was already a point, it is simply turned into a text
 feature at the original location.

 	If the feature was a line, it is turned into a point text feature at
 the midpoint of the line, with a rotation parallel to the line.

 	If the feature was an area feature, the resulting point is somewhere
 in the interior of the feature (and outside of any holes in the area).

 Parameters

 Label

 The label to add to the geometry.

 Label Height

 The label height is measured in ground units, and may either be entered
 as a number, or can be taken from the value of a feature attribute by
 selecting the attribute name from the pull-down list.

 Always Rotate Label

 The label is rotated to prevent it from appearing upside down.

 Example

 [image: labelpointreplacer.gif]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Related Transformers

 To generate a point that will be used as a centroid for polygons, use an InsidePointReplacer. This saves you the overhead of having a text object.

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 LatLongToMGRSConverter

 Calculates a Military Grid Reference System
 (MGRS) code based on the latitude and longitude values supplied in a feature's
 attributes.

 The granularity of the resulting code is determined by the specified
 Precision which is an integer from 0 to 5 (inclusive). A precision of
 5 locates a point within a 1-meter square and precision of 0 locates a
 point within 100-km square.

 The result of the conversion is stored in the MGRS Code Attribute of
 the feature.

 Parameters

 Ellipsoid

 The ellipsoid used for the conversion. This can be any ellipsoid name supported by FME.

 Lettering Type

 The type of lettering used can be WGS84 or Bessel.

 Precision

 The granularity of the resulting code is determined by the specified
 Precision which is an integer from 0 to 5 (inclusive). A precision of
 5 locates a point within 1-meter square and a precision of 0 locates a
 point within 100-km square.

 Longitude, Latitude

 You can choose these parameters from the attributes in the pull-down list, or enter the longitude (-90, 90) and latitude (-180, 180) values.

 MGRS Code

 An MGRS code used to convert to lat/long coordinates. You can choose this parameter from the list of attributes in the pull-down list, or enter an MGRS string.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Coordinate Systems

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 LeftRightSpatialCalculator

 Computes relative position of Candidate input features relative to Base input features.

 The geometry of a Candidate feature is restricted to point and area, while Base features can only be lines.

 See the example below. The Base lines are considered to be oriented from the start point to the end point (digitization sense). A Candidate feature is:

 	located to the LEFT of a Base feature if looking down the Base line in the direction of the orientation (from start to finish);

 	located to the RIGHT if the Candidate is on the right of a Base feature;

 	UNDEFINED if the Base and Candidate features intersect, or if the Base feature has a single point.

 [image: leftrightspatialcalculator.png]

 Output Port

 Before being sent out through the Output port, each Candidate feature will have a list of its relative positions to each of the Base features attached to it. Each element of the list has two pieces of information:

 	a "base_id" which identifies the base

 	the computed relative "position"

 Base features are dropped after being used.

 Parameters

 Use Candidate Center of Mass

 If you choose Yes (default), the algorithm will use only the center of mass of passed in Candidates instead of the whole geometry.

 Use Base Closest Point

 If you choose Yes, the algorithm will compute only at the point on the Base line that is closest to the first or "center of mass" point.

 Group By

 If you choose Group By attributes, Candidates are only compared against Basesthat have the same values in these attributes.

 Base Type

 Define whether only a Single Base will be supplied, or whether Multiple Bases will be supplied. If you choose Bases First, all Base features will enter the transformer first, before any Candidate features.

 Base ID Attribute (Required)

 Choose the Base attribute whose value will be used to identify it in the list of relative positions attached to each output Candidate.

 Relative Position List Attribute

 Specify the name of the list attribute that will be added onto all output Candidate features, and that will contain the relative positions.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: relative position

 LengthCalculator

 Calculates the length of a feature and adds it as a new attribute. The
 multiplier parameter can be used to scale the length from being measured
 in ground units (the units of the feature's coordinates) to something
 else.

 By default, the two-dimensional length of the line is calculated, and
 any Z values, if present, are ignored.

 To have a 3D length calculated,
 the length dimension parameter should be set to 3, and then the elevations
 will be included in the length computation.

 Using this transformer on a polygon will produce the polygon's perimeter.

 To calculate the partial length of a feature, use the LengthToPointCalculator.

 To calculate the distance from the start of the line to each vertex,
 use the MeasureGenerator.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 LengthToPointCalculator

 Calculates the length of a feature from its start until the closest
 spot to a point, and adds it as a new attribute. The point coordinates
 are taken from attributes in the original feature.

 The length is calculated along the feature up until the spot on the
 feature that is closest to the given point.

 By default, the 2-dimensional length of the line is calculated, and
 any Z values, if present, are ignored. To have a 3D length calculated,
 the length dimension parameter should be set to 3, and then the elevations
 will be included in the length computation.

 To calculate the length of the entire feature, use the LengthCalculator.

 To calculate the distance from the start of the line to each vertex,
 use the MeasureGenerator.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Linear Referencing

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 LicenseChecker

 Checks whether the license file is valid and the specified product name is licensed, based on a vendor key and vendor registration code.

 Output Ports

 Passed

 If the license file is successfully validated and the specified product name is licensed, the feature is output via the Passed port.

 Failed

 If the license file fails to be validated or the specified product name is not licensed, the feature is output via the Failed port.

 Parameters

 Vendor ID

 This is the custom ID assigned by the vendor. This ID is used together with the Vendor Registration Key to generate the license file specified below.

 Vendor Registration Key

 The unique registration key of this vendor assigned by Safe Software Inc.

 License File Name

 The name of the license file to be validated. The license file is assumed to be located at $FME_HOME/licenses folder

 Product Name

 The name of the product to be checked by this transformer. If not specified, the license file will be checked for validation only.

 Example

 The LicenseChecker scenario outlines the steps required to license (author/publisher) and download (end-user) a custom transformer or workspace.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Filters

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: "custom transformer" "FME Server" FMEServer "license file" "FME Store" store FME_Store

 LineCloser

 Turns input linear features into areas by adding their start point as
 the end point.

 Note: Use this transformer with care: the result may self-intersect.

 Example

 [image: linecloser.gif]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 LineJoiner

 Takes lines and connects them to form longer lines. Each connecting line must meet at the exact same start/end point, but otherwise they must not intersect.

 Any nodes with only two lines
 connecting to them (sometimes called pseudonodes) are removed. Lines remain
 broken at points where three or more converge.

 Note: Duplicate lines passed into the transformer will be consumed by the transformer.

 Output Ports

 Line

 All linear features produced by this transformer are sent to the Line port.

 <Rejected>

 Features
 with invalid geometries are sent to the <Rejected> port.

 Parameters

 Group By

 The Group By list of attributes
 separates the input data into sets which are considered independently
 when the node removal is done. Only attributes that are listed in the
 Group By list will be passed to subsequent transformers –
 all other attributes are removed.

 Break Across Groups

 Yes: The transformer will consider all nodes from all groups of features when deciding on topologically significant points.

 No: Each group will be considered separately.

 Preserve Original Orientation

 This parameter controls whether or not lines can be reversed in order to create longer
 lines. If the direction of the lines is significant, then choose Yes.

 Break Loops

 This parameter indicates whether
 any resulting (or input) closed rings should ever be broken into two segments:

 	If you choose Yes
 and the input data contained a set of lines that formed a ring and did
 not interact with any other lines, no closed ring will be formed and the
 two lines will be returned, broken at two arbitrary end vertices of the
 original input.

 	If you choose No,
 then if a set of lines independent from any other set of lines would form
 a ring, they will be connected into a single linear feature whose start
 and end point is the same. The feature will be considered as having a
 geometry type of line and not polygon (however, you could use the GeometryCoercer
 to promote its geometry type to polygon).

 Consider Node Elevation

 This parameter specifies whether to consider the node elevation when joining lines. Nodes that share the same location but have different elevations will not be joined if this option is set to Yes.

 Input Feature Topology

 Input Feature Topology indicates the type of vertices the input features contain:

 	End noded means only the start and end points will be considered for joining lines, and other vertices will be ignored.

 	Vertex noded means all vertices will be considered when joining lines.

 List Name

 If a List Name is given, an
 attribute list is created on each output with an entry for each feature
 contributing to that output line, and attributes are merged as base attributes
 on the output features. Otherwise,
 no attributes besides the Group By attributes are added to the output
 features.

 Preserve Lines as Path Segments

 If set to Yes, then when lines originating from different input curves are concatenated into a longer curve in the output, they will be left as separate segments in a path. The default is No, which means that such lines will be joined into longer lines in the output unless they have different properties (e.g. traits, measures, geometry name).

 Usage Notes

 	If the data might contain intersecting lines, consider running it through
 the Intersector
 before connecting this transformer.

 	On common vertices between joined lines, the LineJoiner maintains z-values and measures from the subsequent line.

 Example

 [image: linejoiner.gif]

 Related Transformers

 Intersector

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: connectivity ring

 LineOnAreaOverlayer

 Performs a line-on-area overlay. Each input line is split at any area boundaries it intersects.

 Parameters

 Group By

 The Group By parameter specifies
 a series of attributes that must match on the features before they are
 considered for overlaying. This can be used to ensure that the overlay
 occurs only on certain groups of features. Click the browse button to
 select from a list of attributes.

 Overlap Count Attribute

 The Overlap Count
 Attribute added to output linear
 features holds the number of area features that they were inside of. The
 Overlap Count Attribute
 added to output area features
 holds the number of linear features that they contained.

 List Name

 If the optional List Name is
 supplied, the attributes of each area containing an output line are added
 to that line's list, and the attributes of each line contained by an output
 area are added to that area's list. Note that no intersections between
 area features are computed.

 Usage Notes

 Each resulting piece receives the attributes of the area(s) it is contained
 in, and each containing area receives the attributes of the line. When
 attributes are merged between features, existing attributes are not replaced.
 Therefore,
 if the lines and areas being overlaid have attributes with the same name,
 then the values will not be transferred from one to the other.

 You can avoid this problem by renaming (AttributeRenamer),
 prefixing (AttributeExpressionRenamer),
 or removing (AttributeRemover)
 attributes to avoid name collisions.

 Aggregates are not supported by this transformer.

 Example

 [image: lineonareaoverlayer.gif]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 LineOnLineOverlayer

 This transformer performs a line-on-line overlay. During the overlay,
 all input lines are intersected against each other and resultant line
 features are created and output. Intersection points are turned into point
 features that contain the merged list of attributes of the original intersected
 lines.

 Parameters

 Group By

 The Group By parameter specifies
 a series of attributes that must match on the features before they are
 considered for overlaying. This can be used to ensure that the overlay
 occurs only on certain groups of features. Click the browse button to
 select from a list of attributes.

 Overlap Count Attribute

 The Overlap Count Attribute holds the number of line features that intersected the resultant
 feature.

 List Name

 If the optional List Name is
 supplied, then all output Points
 will include a list containing attributes of each line that intersected
 at that point. If the List Name is supplied AND Separate Collinear Segments
 is set to No, then all output Lines
 will include a list containing attributes of each collinear line that
 was merged. If the optional List Name is supplied, AND Separate Collinear
 Segments is set to Yes, then no merging will occur and so output Lines will not include a list.

 Separate Collinear Segments

 No: All collinear segments are reduced to one representative
 segment.

 Yes: All collinear segments are output.

 Usage Notes

 	When attributes are merged between features, existing attributes are
 not replaced. Therefore if the two lines being overlaid contain attributes
 with the same name, then the values will not be transferred from one to
 the other. You can avoid this problem by renaming (AttributeRenamer),
 prefixing (AttributeExpressionRenamer),
 or removing (AttributeRemover)
 attributes to avoid name collisions.

 	When choosing to output only
 one segment for each collinear group, it may be difficult to predict which
 of the "original" geometries and attributes are preserved. In
 general, the features that arrive at the transformer FIRST will be the
 ones that form the separate segments. Use the FeatureHolder
 or Sorter transformers to change the sequence of
 features if this is important.

 	This transformer will preserve
 measures, based on the rules for the order of features described above.

 	Aggregates are not supported by this transformer.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 ListBasedFeatureMerger

 Moves the attributes/geometry from one feature to another feature. Features that contain the desired attributes/geometry are connected through the Supplier port, and the features that will receive the attributes/geometry are connected through the Requestor port.

 When a Requestor finds a Supplier, the attributes from the Supplier are merged with the Requestor. If the Requestor already had an attribute that the Supplier also had, the Requestor's original value for that attribute is preserved. A single Supplier may be used by many Requestors.

 Any merged geometry preserves arcs, ellipses and text.

 Requestor features are joined to
 Supplier features when an element in the specified Requestor List Attribute list matches the specified Supplier
 Attribute parameter.

 Input Ports

 Requestor

 Receives the new attributes/geometry from the features connected to the Supplier port.

 Supplier

 The source of new attributes/geometry for features that enter
 through the Requestor port.

 Output Ports

 Complete

 Requestors that find a Supplier for all of the elements in the specified list.

 Incomplete

 Requestors that do not
 find a Supplier for any elements of the Requestor List Attribute. That is, a Requestor will be Incomplete even if it has Suppliers for all but one of the elements of that list.

 Rejected

 Requestors for which the specified Requestor List Attribute is missing.

 Referenced

 Suppliers that are used by at
 least one Requestor.

 Unreferenced

 Suppliers that are not
 used by any Requestor.

 Parameters

 Group By

 The input features may be partitioned by the Group By parameter. If you choose any Group By attributes, then references between features will only be resolved if they share a common value for the selected attributes.

 If you do not choose any Group By attributes, all features are processed together.

 If you have more than one Reader, a typical use is to group by reader_id to ensure that references are resolved within the correct set of features.

 Join Attributes

 Requestor List Attribute

 The list attribute of Requestor features that will be matched against the Supplier Attribute for Supplier features.

 Supplier Attribute

 The attribute of Supplier features that will be matched against the Requestor List Attribute for Requestor features.

 Comparison Mode

 Specifies how to perform the comparison between Requestor and Supplier attribute values. If Automatic or Numeric is specified, an attempt will be made to convert attribute values to numbers before comparing them.

 Merge Parameters

 Feature Merge Type

 To generate the completed feature, there will usually be a need to combine the all the supplier features that match the requestor. These choices are determined through the Feature Merge Type parameter:

 	When the Feature Merge Type parameter is Attributes Only, then the Suppliers attributes will be joined to the attribution of the Requestor features using the specified Supplier List Name parameter.

 	When the Feature Merge Type parameter is Geometry, then the Suppliers are the features that contain the geometry. Note that the Requestor will lose its former geometry.

 	When the Feature Merge Type parameter is Attributes and Geometry, then both the geometry and attributes from the suppliers are joined to the requestor features. Any geometry on the Requestor will be overwritten. Attributes will be merged using the Supplier List Name Parameter.

 Supplier List Name

 If a Supplier List Name is specified, then any Suppliers that are combined with a Requestor will have their attributes added to the specified list on the Requestor.

 Geometry Merge Type

 Build Polygons: If the Suppliers consist exclusively of polygon and donut polygon features, any common border segments will be removed. If the Suppliers contain at least one non-donut or non-polygon feature, then the transformer will form polygons and donuts from the Suppliers and will join connected line segments of the Supplier features before setting the geometry of the Requestor feature. In this case, the geometry may be an aggregate if several disjoint geometries were created.

 Build Aggregates: The transformer will create an aggregate of the geometries of the Supplier features. (If there is only one Supplier feature, then the Requestor geometry will be an aggregate with one element.)

 Build Lines from Points: The transformer will connect the points of the Supplier features into lines. Note that any non-point features that are referenced will be ignored when building lines.

 Incomplete Requestors

 This parameter governs what happens to Requestors that cannot locate
 all of their Suppliers. That is, when not every element of the specified Requestor List Attribute was found in a Supplier.

 If this parameter is set to Merge Supplier Information, then the Suppliers that were found will be combined
 onto the Requestor and it will be output (after being changed) via the
 Incomplete port. The
 Suppliers used will be output via the Referenced port. If this parameter is set to Do Not Merge Supplier Information, then the Requestor will be output untouched via the Incomplete port and the Suppliers will be output via the Unreferenced
 port.

 Usage Notes

 Relationship to InlineQuerier

 The InlineQuerier is the powerful cousin of the ListBasedFeatureMerger. Whereas the ListBasedFeatureMerger joins two datasets and uses a simple, single attribute key to match features, the InlineQuerier allows any number of input datasets to be merged, using the full power of SQL across any number of tables and columns. Furthermore, the InlineQuerier allows its input data to be reused multiple times in a single transformer, whereas if multiple joins are to be done with a ListBasedFeatureMerger, multiple ListBasedFeatureMergers must be employed and copies of the features sent to each. On the other hand, there is some overhead for the InlineQuerier to load the underlying SQLite database. Using a single InlineQuerier instead of several ListBasedFeatureMergers also simplifies the workspace.

 Unless only a single ListBasedFeatureMerger is needed in a workflow, the InlineQuerier may be a better choice. Older workspaces with multiple cascading ListBasedFeatureMergers may experience a performance improvement by replacing the ListBasedFeatureMergers with a single properly configured InlineQuerier.

 Relationship to SQLCreator/SQLExecutor

 If all the data to be queried already exists in a SQL-capable data source, it is always more efficient to use the SQLCreator or SQLExecutor, because this allows the queries and filtering of the data to be executed directly by the database before it enters the FME environment.

 Relationship to Joiner

 The ListBasedFeatureMerger joins two datasets and uses a simple, single attribute key to match features. You can concatenate attributes to simulate a multi-key join. The ListBasedFeatureMerger is also able to perform certain geometric operations on incoming features using its Feature Merge Type parameter. ListBasedFeatureMerger does all joins in memory so it can be faster than the Joiner if you have more than one relationship on the same data. The article FME2011 Use Case: Joiner vs FeatureMerger contains a more detailed comparison of these transformers.

 Relationship to FeatureMerger

 This transformer is a very specific instance of the FeatureMerger dealing with the case where the Requestor attribute is a list. If the requestor attribute is NOT a list, the FeatureMerger is the transformer of choice.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Collectors

 Lists

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: concatenated foreign key tag cross-reference "cross reference" FeatureMerger

 ListBuilder

 Combines attributes of the input features into a single list structure.

 Output Ports

 One feature
 is output for each unique combination of values of the attributes specified
 in the Group By parameter. Features output from this transformer have no geometry.

 Parameters

 Group By

 This parameter allows you to specify the attribute values on which to join the series of input features. One feature is output for each group created by selecting a Group By attribute. If no Group By attributes are specified, then a single feature is output and the number of elements in its list is equivalent to the number of features input into the ListBuilder.

 List Name

 The features output from the ListBuilder have all of their attributes stored in the list identified by the name specified by this parameter.

 Example

 Suppose this transformer is used with no group-by attributes,
 and three features enter it with these attributes:

 	
 Feature
 0:

 	
 length = 7.3

 kind = 'paved'

 	
 Feature 1:

 	
 length = 8.4

 kind = ’smooth’

 lanes = 2

 	
 Feature 2:

 	
 length = 1.1

 kind
 = ’rough’

 then, presuming that the list name specified was somelist,
 a single feature with these attributes is output:

 somelist{0}.length = 7.3

 somelist{0}.kind = ’paved’

 somelist{1}.length = 8.4

 somelist{1}.kind = ’smooth’

 somelist{1}.lanes = 2

 somelist{2}.length = 1.1

 somelist{2}.kind = ’rough’

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Lists

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 ListConcatenator

 Concatenates all the values of a list into a single attribute.

 Parameters

 List Attribute

 Select the attribute that will supply the list containing the values you want to concatenate.

 Separator Character

 Characters can be expressed as regular characters but they can also include any number of control characters.

 Special
 character sequences (Advanced Editor only) are interpreted as shown below:

 	Sequence
 	Description

 	
 Ctrl+Shift+h (^H)

 	
 Backspace (0x08)

 	
 Ctrl+Shift+l (^L)

 	
 Form feed (0x0c)

 	
 Ctrl+Shift+j (^J)

 	
 Newline (0x0a)

 	
 Ctrl+Shift+r (^M)

 	
 Carriage return (0x0d)

 	
 Ctrl+Shift+i (^I)

 	
 Tab (0x09)

 	
 Ctrl+Shift+k (^K)

 	
 Vertical tab (0x0b)

 Destination Attribute

 Allows you to specify the attribute that will contain the concatenated list values.

 Drop Empty Elements

 Determines whether to concatenate list elements whose value is empty or null. Missing attributes are never concatenated. To treat missing attributes as empty or null, use an upstream NullAttributeMapper.

 By default, all attribute values will be concatenated, whether or not they are empty. If this parameter value is set to Yes, then only non-empty values will be concatenated.

 Example

 If this feature enters the ListConcatenator:

 	somelist{0}.length =
 7.3

 	somelist{0}.kind =
 ’paved’

 	somelist{1}.length =
 8.4

 	somelist{1}.kind =
 ’smooth’

 	somelist{1}.lanes =
 2

 	somelist{2}.length =
 1.1

 	somelist{2}.kind =
 ’rough’

 and a concatenation of somelist{}.kind
 with a backslash (\\) separator is requested, then the resulting attribute
 will contain: paved\smooth\rough.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Lists

 Related Topics

 Using the Intersector and ListConcatenator to Solve Problems

 About Attribute Lists

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 ListCopier

 Copies a complete attribute list, including all nested attributes, from
 one list name to another.

 Parameters

 Source List Attribute

 The name of the list attribute that will supply the values for the created list attribute.

 Destination List Name

 The name of a list attribute that will be created in the feature.

 Example

 If this feature enters the ListCopier:

 somelist{0}.length =
 7.3

 somelist{0}.kind
 =
 ’paved’

 somelist{1}.length =
 8.4

 somelist{1}.kind =
 ’smooth’

 somelist{1}.lanes =
 2

 somelist{2}.length =
 1.1

 somelist{2}.kind =
 ’rough’

 and the source list name is set to somelist
 and the destination list name is newlist,
 the feature leaving the transformer will have these attributes:

 somelist{0}.length =
 7.3

 somelist{0}.kind =
 ’paved’

 somelist{1}.length =
 8.4

 somelist{1}.kind =
 ’smooth’

 somelist{1}.lanes =
 2

 somelist{2}.length =
 1.1

 somelist{2}.kind =
 ’rough’

 newlist{0}.length =
 7.3

 newlist{0}.kind =
 ’paved’

 newlist{1}.length =
 8.4

 newlist{1}.kind =
 ’smooth’

 newlist{1}.lanes =
 2

 newlist{2}.length =
 1.1

 newlist{2}.kind =
 ’rough’

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Lists

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 ListDuplicateRemover

 Removes all duplicate values from a list attribute. In the resulting
 list, only distinct values for the list attribute will be present.

 Note: If the input list has gaps within it, these are eliminated from the output list.

 When looking for duplicates, null, missing and empty values are considered equivalent so will be treated as duplicates of each other. If the first ‘duplicate’ found is missing, the attribute created on the feature will have a value of null.

 Parameters

 List Attribute

 Specifies the list attribute from which to remove duplicates.

 Example

 If this feature enters this transformer:

 somelist{0}.kind = 'paved'

 somelist{1}.kind = 'smooth'

 somelist{2}.kind = 'smooth'

 somelist{3}.kind = 'rough'

 somelist{4}.kind = 'smooth'

 somelist{5}.kind = 'smooth'

 somelist{6}.kind = 'paved'

 and
 the list name is set to somelist{}.kind, the feature leaving
 the transformer will have these attributes:

 somelist{0}.kind
 = 'paved'

 somelist{1}.kind = 'smooth'

 somelist{2}.kind
 = 'rough'

 Note that if there were other attributes in the list “parallel”
 to the attribute being operated on, these will also be moved in the list
 to stay in “parallel” with the key attribute. Similarly, if there were other attributes in the list “parallel” to an entry that is a duplicate (so will be removed), those attributes will also be removed.

 For example, if the input feature had these attributes:

 somelist{0}.kind = 'paved'

 somelist{0}.id = 'A3'

 somelist{1}.kind = 'smooth'

 somelist{1}.id = 'B7'

 somelist{2}.kind = 'smooth'

 somelist{2}.id = 'B8'

 somelist{3}.kind = 'rough'

 somelist{3}.id = 'C9'

 somelist{4}.kind = 'smooth'

 somelist{4}.id = 'B9'

 somelist{5}.kind = 'smooth'

 somelist{5}.id = 'B2'

 somelist{6}.kind = 'paved'

 somelist{6}.id = 'A7'

 and the list name is set to somelist{}.kind, the feature leaving the
 transformer will have these attributes:

 somelist{0}.kind
 = 'paved'

 somelist{0}.id = 'A3'

 somelist{1}.kind = 'smooth'

 somelist{1}.id = 'B7'

 somelist{2}.kind = 'rough'

 somelist{2}.id = 'C9'

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Lists

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 ListElementCounter

 Stores the number of member elements found in the specified list into
 an attribute.

 Parameters

 List Attribute

 The name of the list attribute whose elements are to be counted.

 Element Count Attribute

 The attribute that will contain the number returned by this transformer.

 Example

 If this feature enters the ListElementCounter:

 somelist{0}.length =
 7.3

 somelist{0}.kind =
 ’paved’

 somelist{1}.length =
 8.4

 somelist{1}.kind =
 ’smooth’

 somelist{1}.lanes =
 2

 somelist{2}.length =
 1.1

 somelist{2}.kind =
 ’rough’

 and a count of somelist{} is requested,
 3 will be returned.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Lists

 Additional Resources

 More Information on Lists

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 ListExpressionPopulator

 Populates a new list from a series of attributes. The attributes to
 be used are specified by the expression parameter. Each attribute's index
 in the list is specified by the order of the attribute in the sorted result of the regular expression.

 See the StringSearcher for more information on regular expressions.

 The List Name parameter
 specifies the name for the new list.

 The geometry of each feature entering the transformer is not changed.

 For example, if the expression parameter is set to "^bob", and
 a feature entered the transformer with the following attributes:

 bob0
 = 'cat'

 bob1
 = 'dog'

 bob2
 = 'rooster'

 anotherAttr
 = 'carrot'

 then, presuming that the list name specified was "somelist",
 the feature would now look like:

 bob0
 = 'cat'

 bob1
 = 'dog'

 bob2
 = 'rooster'

 anotherAttr
 = 'carrot'

 somelist{0}
 = 'cat'

 somelist{1}
 = 'dog'

 somelist{2}
 = 'rooster'

 Additional Resources

 More Information on Lists

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Lists

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 ListExploder

 Explodes each list member on each input feature out into its own feature.

 Any attributes on the list are demoted to become non-list attributes
 of the feature output. In addition, the element number of the attributes
 in the original list is added to the feature. Each feature's output has
 a copy of the geometry from the original input feature.

 Input Ports

 Input

 Features containing list members.

 Output Ports

 ListFound

 If the list is found in the input feature, it will be processed based on Attributes to Keep and output via this port.

 NotFound

 If the list is not found in the input feature, the feature will be output via this port without being processed. In this case, the Attributes to Keep parameter will not be applied and the transformer will pass the feature through without processing it.

 Parameters

 List Attribute

 The name of the list that will be exploded by this transformer.

 Element Index Attribute

 If the Element Index Attribute is specified, then each element feature output will be given an attribute containing the element's list position.

 Attributes to Keep

 Determines if the output features contain just the list element attributes, or the original input attributes as well.

 List Elements and Original Attributes: The list elements that are produced in this mode will retain all the attributes of the original Input feature except for the list attributes referred to in the List Attribute clause. In addition, all of the attributes of each particular element in the list will be added without the list prefix.

 List Element Attributes: The list elements that are produced in this mode will not retain any of the attributes of the original Input feature. They will only add the attributes of each particular element in the list, without the list prefix. This mode has a significant impact on performance when the lists have large numbers of elements.

 Tip:

 Attributes to Keep determines which attributes
 remain on the exploded features –
 the entire set of attributes from the source feature, or just the attributes
 in the List?

 When you choose List Element Attributes then you need to be aware that this will remove
 all existing attributes, including format attributes. This
 means your features won't have an fme_type, and this can cause them to
 be written incorrectly to a destination (for example, as non-geom features).

 What might be even more confusing is that you
 won't see the problem if you connect the ListExploder to an Inspector:
 the features will appear to have the correct fme_type and fme_geometry.
 This is because when features are sent to the Inspector, FME converts
 them to FFS format first, which recreates these attributes. The problem
 would only be apparent if you sent the features to a Logger transformer,
 where you would see that fme_type is missing.

 The solution to this problem is to set fme_type manually after the
 ListExploder.

 Usage Notes

 	If Input attributes and list element attributes have the same name, the Input attributes will be overwritten by the list element attributes.

 	ListExploder will not work with an invalid list, such
 as one that doesn't start at entry 0. For example:

 	Valid List
 	Invalid List

 	mylist{0}.attr1
 	mylist{1}.attr1

 	mylist{1}.attr1
 	mylist{2}.attr1

 	mylist{2}.attr1
 	mylist{3}.attr1

 	mylist{3}.attr1
 	mylist{4}.attr1

 Examples

 Example 1:

 If this feature enters this transformer:

 somelist{0}.length = 7.3

 somelist{0}.kind = ’paved’

 somelist{1}.length = 8.4

 somelist{1}.kind = ’smooth’

 somelist{1}.lanes = 2

 somelist{2}.length = 1.1

 somelist{2}.kind = ’rough’

 another_attr = ’something else’

 then, presuming that the list name specified was somelist{},
 the index attribute was element_num, and the Attributes to Keep parameter was set to List Elements and Original Attributes, the first returned feature would look like:

 length
 = 7.3

 kind
 = ’paved’

 element_num
 = 0

 another_attr
 = ’something else’

 If the Attributes to Keep parameter
 was set to List Element Attributes,
 the first returned feature would look like:

 length
 = 7.3

 kind
 = ’paved’

 element_num
 = 0

 Example 2:

 Suppose you have a Input feature with the following 6 attributes. (The List Attribute used here would be ID{}.)

 Name

 Type

 ID{0}.dec

 ID{0}.hex

 ID{1}.dec

 ID{1}.hex

 List Elements and Original Attributes
 will produce elements with 4 attributes:

 Name

 Type

 dec

 hex

 List Element Attributes will
 produce elements with 2 attributes:

 dec

 hex

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Lists

 FMEpedia

 See a workspace example on FMEpedia.

 Additional Resources

 	More Information on Lists

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 ListHistogrammer

 Computes a histogram of the values found in a list, and returns these
 in a new list attribute on the feature.

 Parameters

 Source List Attribute

 The source list from which the histogram will be computed.

 Histogram List Name

 The name of the new list attribute that will contain the output histogram. The new list will be sorted so
 that the value with the most occurrences will be first.

 Usage Notes

 If the source list did not have elements, a new list will not be created and this transformer will have made no changes to the feature.

 Example

 If a feature with this list enters this transformer:

 somelist{0}.val = 'apple'

 somelist{1}.val = 'donut'

 somelist{2}.val = 'aardvark'

 somelist{3}.val = 'apple'

 somelist{4}.val = 'aardvark'

 somelist{5}.val = 'apple'

 the resulting feature will have this list attribute:

 _histogram{0}.value = 'apple'

 _histogram{0}.count = 3

 _histogram{1}.value = 'aardvark'

 _histogram{1}.count = 2

 _histogram{2}.value = 'donut'

 _histogram{2}.count = 1

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Lists

 FMEpedia

 See FMEpedia for an example use of this transformer.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 ListIndexer

 Demotes the attributes of the list element specified by the index to
 become main attributes of the feature.

 Parameters

 List Attribute

 Specifies the name of the list attribute the transformer will read from.

 List Index

 The index of the list element whose contents will be copied to the main attribute(s) of the output feature.

 If you enter a negative number, the index starts from the back of the list (for example, -1 will copy the last element in the list).

 Demoted Attribute Prefix

 An optional prefix that is added to the demoted attributes.

 Example

 If this feature enters this transformer:

 somelist{0}.length = 7.3

 somelist{0}.kind = ’paved’

 somelist{1}.length = 8.4

 somelist{1}.kind = ’smooth’

 somelist{1}.lanes = 2

 somelist{2}.length = 1.1

 somelist{2}.kind = ’rough’

 and the index is set to 2, then the feature leaving the transformer
 will have these attributes:

 length = 1.1

 kind = 'rough'

 somelist{0}.length = 7.3

 somelist{0}.kind = paved

 somelist{1}.length = 8.4

 somelist{1}.kind = 'smooth'

 somelist{1}.lanes = 2

 somelist{2}.length = 1.1

 somelist{2}.kind = 'rough'

 The index may either be entered as a number, or can be taken from the
 value of a feature attribute by selecting the attribute name from the
 pull-down list.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Lists

 Additional Resources

 More information about lists

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 ListPopulator

 Populates a new list from a series of attributes. The attributes to
 be used are specified by the prefix parameter. Each attribute's index
 in the list is specified by everything in the attribute name after the
 prefix.

 The List Name parameter
 specifies the name for the new list.

 The geometry of each feature entering the transformer is not changed.

 For example, if the prefix parameter is set to "bob," and
 a feature entered the transformer with the following attributes:

 bob0
 = 'cat'

 bob1
 = 'dog'

 bob2
 = 'rooster'

 anotherAttr
 = 'carrot'

 then, presuming that the list name specified was "somelist,"
 the feature would now look like:

 bob0
 = 'cat'

 bob1
 = 'dog'

 bob2
 = 'rooster'

 anotherAttr
 = 'carrot'

 somelist{0}
 = 'cat'

 somelist{1}
 = 'dog'

 somelist{2}
 = 'rooster'

 Note that in order for the resulting list to be useful, the source attributes
 must begin at index 0, and count up without any gaps. For instance, if
 in the example above, only the bob2
 attribute was available, the resulting list would not be valid.

 Additional Resources

 More Information on Lists

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Lists

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 ListRangeExtractor

 Extracts the minimum and maximum values found in a list.

 For example, if this feature enters this transformer:

 somelist{0}.val = 12

 somelist{1}.val = 0.5

 somelist{2}.val = 8

 Then the value assigned to the resulting minimum attribute would be
 0.5 and the value assigned to the maximum attribute would be 12.

 Note that non-numeric minima and maxima may also be extracted. For
 example, if this feature enters this transformer:

 somelist{0}.val = 'apple'

 somelist{1}.val = 'donut'

 somelist{2}.val = 'aardvark'

 Then the value assigned to the resulting minimum attribute would be
 'aardvark' and the value assigned to the maximum attribute would be 'donut'.

 If some values are numeric and some are not, the minimum and maximum
 values extracted may not be useful.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Lists

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 ListRenamer

 Renames a list name, or the components of a list.

 For example, if this feature enters this transformer:

 somelist{0}.length
 = 7.3

 somelist{0}.kind
 = 'paved'

 somelist{1}.length
 = 8.4

 somelist{1}.kind
 = 'smooth'

 somelist{1}.lanes
 = 2

 somelist{2}.length
 = 1.1

 somelist{2}.kind
 = 'rough'

 and if the 'List/Component Name' value is "somelist" and the
 'Replace With' value is "newlist," then the feature leaving
 the transformer will have these attributes:

 newlist{0}.length
 = 7.3

 newlist{0}.kind
 = 'paved'

 newlist{1}.length
 = 8.4

 newlist{1}.kind
 = 'smooth'

 newlist{1}.lanes
 = 2

 newlist{2}.length
 = 1.1

 newlist{2}.kind
 = 'rough'

 Additional Resources

 More Information on Lists

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Lists

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 ListSearcher

 Searches a list to find a value and returns the index of the value in
 the list.

 Output Ports

 Found

 An element in the list matched. The output feature will return the index of the found element in the index attribute specified.

 NotFound

 If the element is not found in the input feature, the feature will be output via this port and no index attribute will be applied.

 Parameters

 List Attribute

 The name of the list to search. The list name should contain a pair of braces {}.

 Search For

 The string or regular expression to search in the list.

 Index Attribute

 If the Index Attribute is specified and the search string is found, an attribute with the specified name will be added to the output feature containing the index of the found element.

 Search Type

 This parameter determines how the list will be searched.

 	Parameter Choice
 	Description

 	
 First Exact Match

 	
 Searches for an exact match.

 	
 First regular expression match

 	
 Uses a regular expression to search for a first matching entry in the
 list. Advanced Regular Expressions (AREs) are supported.

 Search the FME Functions and Factories for a complete description of AREs. In brief, an ARE is one or more branches, separated by `|', matching anything that matches any of the branches.

 	
 First not matching

 	
 Returns
 the index of the first non-matched entry in the list.

 	
 First less than,
First less than or equal to,
First greater than,
First greater than or equal to

 	
 Searches for the first element in the list that satisfies the
 criteria. Numerical comparisons are used if both the list element and
 the search value can be converted to floating point numbers; otherwise,
 string comparisons are used

 Demote Found List Element

 If checked, the contents of the found element will be copied to the main attribute(s) of the output feature. This saves adding a ListIndexer after the searcher to demote the list element.

 Note that any list element attributes that start with fme_ will not be copied (for example, fme_type) unless you specify a Demoted Attribute Prefix.

 Demoted Attribute Prefix

 The prefix that should be added to any attribute(s) copied onto the output feature.

 Example

 For example, if this feature enters the transformer:

 somelist{0}.length =
 7.3

 somelist{0}.kind =
 ’paved’

 somelist{1}.length =
 8.4

 somelist{1}.kind =
 ’smooth’

 somelist{1}.lanes =
 2

 somelist{2}.length =
 1.1

 somelist{2}.kind =
 ’rough’

 and the somelist{}.kind list attribute
 is searched for the value smooth, then the
 index attribute would be set to 1.

 Additional Resources

 More Information on Lists

 Test regular expressions with Rubular, a Ruby-based regular expression editor.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Lists

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 ListSorter

 Sorts the elements of the given list. The sorting can either be alphabetic
 or numeric, and in either increasing or decreasing order.

 For example, if an input feature had these attributes:

 somelist{0} = '3'

 somelist{1} = '17'

 somelist{2} = '4'

 somelist{3} = '9'

 somelist{4} = '2'

 and the list name is set to somelist{}, then the feature leaving the
 transformer will have these attributes:

 somelist{0} = '2'

 somelist{1} = '3'

 somelist{2} = '4'

 somelist{3} = '9'

 somelist{4} = '17'

 Note that if there were other attributes in the list "parallel"
 to the attribute being operated on, these will also be moved in the list
 to stay in "parallel" with the key attribute.

 For example, if the input feature had these attributes:

 somelist{0}.kind = 'paved'

 somelist{0}.count = '3'

 somelist{1}.kind = 'smooth'

 somelist{1}.count = '17'

 somelist{2}.kind = 'trail'

 somelist{2}.count = '4'

 somelist{3}.kind = 'rough'

 somelist{3}.count = '9'

 somelist{4}.kind = 'logging'

 somelist{4}.count = '2'

 and the list name is set to somelist{}.count, then the feature leaving
 the transformer will have these attributes:

 somelist{0}.kind = 'logging'

 somelist{0}.count = '2'

 somelist{1}.kind = 'paved'

 somelist{1}.count = '3'

 somelist{2}.kind = 'trail'

 somelist{2}.count = '4'

 somelist{3}.kind = 'rough'

 somelist{3}.count = '9'

 somelist{4}.kind = 'smooth'

 somelist{4}.count = '17'

 Lastly, if the original list was sparse, that is, it was missing some
 elements, the sorting operation will have the side effect of compacting
 the list to make all elements have consecutive indices. For example, if
 the input feature had these attributes:

 somelist{0}.kind = 'paved'

 somelist{0}.count = '3'

 somelist{3}.kind = 'rough'

 somelist{3}.count = '9'

 somelist{4}.kind = 'logging'

 somelist{4}.count = '2'

 and the list name is set to somelist{}.count, then the feature leaving
 the transformer will have these attributes:

 somelist{0}.kind = 'logging'

 somelist{0}.count = '2'

 somelist{1}.kind = 'paved'

 somelist{1}.count = '3'

 somelist{3}.kind = 'rough'

 somelist{3}.count = '9'

 Additional Resources

 More Information on Lists

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Lists

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 ListSummer

 Computes the sum of all the elements of a list.

 Input Ports

 Input

 This transformer accepts features with a list attribute.

 Output Ports

 Output

 Features with the summed list attribute are output through this port.

 Parameters

 Source List Attribute

 The list attribute whose elements are to be summed.

 Each element must be
 a valid integer or floating point number. List elements that are non-numeric
 will be considered to have a value of 0.

 Sum Attribute

 The attribute used to store the sum of the list attribute elements. The default value is _sum.

 Example

 Suppose this feature enters this transformer:

 somelist{0}.val = 12

 somelist{1}.val = 0.5

 somelist{2}.val
 = 8

 somelist{3}.val
 = 'a'

 somelist{4}.val = 1

 Then the value assigned to the resulting sum attribute would be 21.5.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Lists

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 LocalCoordinateSystemSetter

 Tags all features with the local coordinate system defined by the specified parameters. It does not reproject features, or otherwise modify their geometry.

 You should use this transformer if you know the feature belongs to a certain local coordinate system, but it is not tagged. This can happen if the feature is read from a format that does not store coordinate system information.

 Parameters

 Projection Type

 Choose the local projection from the drop-down list based on whether preservation of distances or areas will be more important during subsequent reprojections. Choices are:

 	AZMED (Lambert Azimuthal Equidistant)

 	AZMEA (Lambert Azimuthal Equal Area)

 Projection Units

 Choose the units of the features that will be entering the transformer.

 Origin Coordinate System

 Specify the coordinate system of the origin point. The created local coordinate system will be based on the datum of the origin coordinate system.

 Origin X and Y

 Specify the point that corresponds to 0,0 for the features that will be entering the transformer. Origin points within 0.5 degree of the North or South Pole will be rejected.

 Usage Notes

 Local coordinate systems have the following limitation:

 	Z is not considered, so areas or distances are best preserved for geometry at an ellipsoid height of 0 meters.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Coordinate Systems

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 Logger

 Logs each feature to the translation log. All attributes and geometry
 of the feature will be output.

 Limits can be placed on both the number of features that will be logged,
 and the number of coordinates that will be logged per feature.

 Input Ports

 Input

 Features to be logged.

 Output Ports

 Logged

 All logged Input features are output to this port unchanged.

 Parameters

 Log Message

 You can choose to add a message to the log file, which can be useful to identify features if you have many Logger transformers. If present, this message is output to the log file before each feature is logged.

 Maximum Logged Coordinates

 The number of coordinates to be logged. If not specified, the first 5 and the last 5 coordinates will be logged. If the
 feature has more than the maximum allowed coordinates, then only a set
 of coordinates at the beginning and end of the feature will be logged.

 If you enter -1, all coordinates will be logged; if you enter 0, no coordinates will be logged.

 If any other value is specified, only the first <maxCoords> coordinates will be logged.

 Maximum Logged Features

 The maximum number of features logged for this message.

 If more features than the maximum to be logged enter the transformer,
 the features over the limit are not logged.

 Note: The Workbench parameter Max Features to Log takes precedence over this transformer parameter.

 Log Feature Type

 The Log Feature Type text will set the feature type of the feature just prior to it being logged. If the log file is being saved, the logged features are also saved in a companion FFS file, and this setting is most useful to control the feature type of the features in this FFS file.

 If this parameter is left blank, the feature type is constructed from the preceding transformer's name and output port. This can be useful to determine the origin of features when there are multiple Loggers in a workspace, or multiple connections made to the same Logger. For example, if this line appears in the log:

 Feature Type: 'MyCreator_CREATED'

 it indicates that the feature was output through the CREATED port of a transformer named "MyCreator".

 Usage Notes

 	An alternate way to see the attributes and geometries of features is
 to route them into an Inspector
 transformer, which will display them in the FME Data Inspector.

 	The Logged port should be used to guarantee that the features are logged before they are further processed. If a Logger does not output features, the logging may occur after other transformers have completed. The logging may not even take place if the workspace terminates early.

 	Null values and strings whose content is "<null>" can be distinguished by a careful reading of the logged attributes. Null values will be logged as "is <null>", whereas strings whose content is "<null>" will be logged as "has value '<null>'".

 	To quickly attach Logger transformers: right-click on one or more selected reader feature types and choose Connect Logger.

 [image: connectlogger.png]

 FMEpedia

 See FMEpedia for additional information about this transformer.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster grid band channel palette lookup LUT colormap log describe dump lumberjack Lumberjack

 MapInfoStyler

 Prepares features for output to MapInfo MIF/MID or MapInfo TAB by providing a convenient interface to set a variety of MapInfo format-specific attributes.

 Parameters – Color

 Color

 This parameter specifies the pen color that will be used to render the feature. The pen color determines the color of lines and area boundaries.

 To edit this parameter, click the browse button to the right of the text field.

 Format attribute set:

 	fme_color

 	mapinfo_symbol_color, mapinfo_pen_color, mapinfo_text_fontfgcolor

 	mif_symbol_color, mif_pen_color, mif_text_fontfgcolor

 Parameters – Symbols

 If this section is active, point features will be turned into the specified symbol.

 Features with other geometry types will not be affected by settings in this section.

 Symbol Point Size

 Symbol Point Size specifies the size of the symbol in points.

 Format attribute set: mapinfo_symbol_size, mif_symbol_size

 Symbol Type

 Symbol Type specifies the type of symbol to be associated with the point.

 Format attributes set:

 	Symbol Type Option
 	mapinfo_type
 	mif_type

 	TrueType Font
 	mapinfo_font_point
 	mif_font_point

 	MapInfo 3.0
 	mapinfo_point
 	mif_point

 	Custom Symbols
 	mapinfo_custom_point
 	mif_custom_point

 TrueType Symbol

 TrueType Symbol is available only if Symbol Type is TrueType Font. It specifies the number of the symbol to be associated with the point. To select a symbol, click the browse button to the right of the text field.

 Format attributes set:

 	mapinfo_symbol_shape, mapinfo_symbol_font

 	mif_symbol_shape, mif_symbol_font

 Symbol Font Effects

 Symbol Font Effects is available only if Symbol Type is TrueType Font. It specifies the display style for the symbol.

 Format attribute set: mapinfo_symbol_style, mif_symbol_style

 Symbol Rotation

 Symbol Rotation is available only if Symbol Type is TrueType Font. It specifies the rotation angle for the symbol, measured in degrees counterclockwise from horizontal.

 Format attributes set: mapinfo_symbol_angle; mif_symbol_angle

 Custom Symbol File

 Custom Symbol File is available only if Symbol Type is Custom Symbols. It specifies the custom symbol associated with the point. To select a symbol, click the browse button to the right of the text field.

 Format attributes set: mapinfo_symbol_file_name; mif_symbol_file_name

 Custom Symbol Effects

 Custom Symbol Effects is available only if Symbol Type is Custom Symbols. It specifies the display style for the symbol.

 Format attributes set: mapinfo_symbol_style; mif_symbol_style

 MapInfo 3.0 Symbol

 MapInfo 3.0 Symbol is available only if Symbol Type is MapInfo 3.0. It specifies the symbol to display for the point. To select a symbol, click the browse button to the right of the text field.

 Format attributes set: mapinfo_symbol_shape; mif_symbol_shape

 Parameters – Lines/Borders

 If this section is active, features containing lines will be prepared for output to MapInfo.

 Features with other geometry types will not be affected by settings in this section.

 Line Width Type

 Line Width Type specifies the how the line width will be interpreted.

 Line Width

 Line Width specifies the thickness of the line, when it is rendered.

 Format attributes set: mapinfo_pen_width; mif_pen_width

 Line Pattern

 Line Pattern specifies how the line should be rendered. To select a pattern, click the browse button to the right of the text field.

 Format attribute set: mapinfo_pen_pattern; mif_pen_pattern

 Line Interleaving

 Line Interleaving specifies whether or not the line should be interleaved. You can use interleaved line styles to create the appearance of intersections for overlapping intersections and lines within a single layer.

 Format attributes set: mapinfo_pen_pattern; mif_pen_pattern

 Parameters – Regions

 If this section is active, then area and ellipse features will be prepared for output to MapInfo.

 Features with other geometry types will not be affected by settings in this section.

 Fill Foreground Color

 Fill Foreground Color specifies the foreground color when the area is filled. To edit this parameter, click the browse button to the right of the text field.

 Format attributes set: fme_fill_color; mapinfo_brush_foreground; mif_brush_foreground

 Fill Background Color

 Fill Background Color specifies the background color when the area is filled. To edit this parameter, click the browse button to the right of the text field.

 Format attributes set: mapinfo_brush_background; mif_brush_background

 Fill Pattern

 Fill Pattern specifies how the filled area should be rendered. To select a pattern, click the browse button to the right of the text field.

 Format attribute set: mapinfo_brush_pattern; mif_brush_pattern

 Parameters – Text

 If this section is active, text features will be prepared for output to MapInfo.

 Features with other geometry types will not be affected by settings in this section.

 Text Background Color

 Text Background Color specifies the background color used when the text is drawn. To edit this parameter, click the browse button to the right of the text field.

 Format attribute set: mapinfo_text_fontbgcolor; mif_text_fontbgcolor

 Text TrueType Font Name

 Text TrueType Font Name specifies the font to use for the text. To edit this parameter, click the browse button to the right of the text field.

 Format attribute set: mapinfo_text_fontname; mif_text_fontname

 Text Font Effects

 Text Font Effects specifies the effects to apply to the font. To edit this parameter, click the browse button to the right of the text field.

 Format attributes set:

 	mapinfo_text_fontstyle_bold; mapinfo_text_fontstyle_italic; mapinfo_text_fontstyle_underline; mapinfo_text_fontstyle_strikeout; mapinfo_text_fontstyle_outline; mapinfo_text_fontstyle_shadow; mapinfo_text_fontstyle_inverse; mapinfo_text_fontstyle_blink; mapinfo_text_fontstyle_opaque; mapinfo_text_fontstyle_halo; mapinfo_text_fontstyle_allcaps; mapinfo_text_fontstyle_expanded

 	mif_text_fontstyle

 Text Justification

 Text Justification specifies how to place the text.

 Format attributes set: mapinfo_text_justification; mif_text_justification

 Text Line Spacing

 Text Line Spacing specifies the space between lines of multiline text. The measure is expressed as a multiple of the text height.

 Format attributes set: mapinfo_text_spacing; mif_text_spacing

 Additional References

 For more information about MapInfo MIF/MID or MapInfo TAB styling, see:

 	MapInfo TAB and MapInfo MIF/MID Reader/Writer chapters (Feature Representation sections) in the FME Readers and Writers manual. In Workbench, select Help > FME Readers and Writers Reference.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Stylers

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 MapnikRasterizer

 Draws input point, line, polygon, and raster features onto a raster using the Mapnik toolkit.

 Mapnik divides features into groups called layers. Features in a layer should share the same geometry type. For each layer, one or more symbolizers will be defined; these represent a set of parameters that describe how to render the features. For example, a layer could be a set of lines representing country borders. This layer could then have two symbolizers -- one to draw the lines, and a second one to draw a "glow" surrounding the lines.

 Input Ports

 This transformer will have one input port for each layer. Layers are defined using the Inputs parameter.

 Output Ports

 Raster

 The raster(s) drawn from a group of features.

 <Rejected>

 Invalid features that will not be included in the output raster.

 Parameters

 Transformer

 Group By

 If the Group By parameter is set to an attribute list, one raster per group will be produced.

 Inputs

 Inputs

 Defines the layers and symbolizers that specify how features will be rendered.

 Each entry in the table contains a layer name, a symbolizer type, and the parameters for that symbolizer. The symbolizer parameters depend on the symbolizer type. Descriptions of the parameters for each symbolizer may be found in the Mapnik documentation.

 Note that layers will be rendered in the order they are specified. The first layer in this table will be rendered first (i.e. will appear below any subsequent layers).

 Raster Properties

 Size Specification

 To set the size of the output raster, specify either the dimensions or the cell size.

 To set the output raster size using dimensions, set the Size Specification to Columns and Rows and specify values for both the Number of Columns and Number of Rows.

 To set the output raster size using spacing, set the Size Specification to Spacing and specify a value for Cell Spacing.

 Number of Columns

 This specifies how many cell columns there are in the output raster. This parameter is used when the Size Specification is Columns and Rows.

 Number of Rows

 This specifies how many cell rows there are in the output raster. This parameter is used when the Size Specification is Columns and Rows.

 Cell Spacing

 This parameter specifies the width of the output raster cells, measured in ground units. This parameter is used when the Size Specification is Spacing.

 Interpretation Type

 This parameter sets the interpretation of the output raster.

 Background

 The background may be filled with a solid color and/or image. If neither a color nor image is specified, the background will be transparent.

 Color

 The Color parameter sets the background color.

 Click the colored square to the right of the text field, or edit the contents of the field directly. The color must be specified as <red>,<green>,<blue> where each of <red>, <green>, and <blue> is a number between 0 and 1.

 Color Alpha Value

 The Color Alpha Value parameter sets the alpha value for the background color. It must be a number between 0 and 1.

 Image

 This parameter specifies an image file that should be used as the background for the raster.

 Ground Extents

 Ground Extents

 If the Ground Extents parameter is set to Use input data ground extents, the output raster extents will be determined by the union of the bounding boxes of the valid input vector features.

 If the Ground Extents parameter is set to Specify ground extents, the remaining Ground Extents parameters are used to specify the extents of the output raster.

 Note that the output raster extents may not be equal to the specified extents if the raster size was specified by the number of rows and columns. This is because the x and y spacing must be equal (i.e. (Maximum X - Minimum X) / Number of Columns must be equal to (Maximum Y - Minimum Y) / Number of Rows). If they are not, the extents may be enlarged in one dimension.

 Minimum X

 This specifies the minimum x value of the output raster. It is used when the Ground Extents parameter is set to Specify ground extents.

 Minimum Y

 This specifies the minimum y value of the output raster. It is used when the Ground Extents parameter is set to Specify ground extents.

 Maximum X

 This specifies the maximum x value of the output raster. It is used when the Ground Extents parameter is set to Specify ground extents.

 Maximum Y

 This specifies the maximum y value of the output raster. It is used when the Ground Extents parameter is set to Specify ground extents.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: minimum bounding rectangle MBR fme_colour rasteriser

 MapTextLabeller

 Note: The MapTextLabeller transformer is available as an extra-cost package from Safe Software. Please contact sales@safe.com
 or call 604-501-9985.

 Creates text labels for features using the MapText Label Manager.

 Input Ports

 The input ports are dynamically generated via the Rule Configurations parameter.

 Output Ports

 The output ports are dynamically generated via the Rule Configurations parameter.

 For each configured layer with name <layername>, two ports called <layername>_TXT and <layername>_UNL will be created.

 The text labels will be output through the <layername>_TXT port.

 Features for which a label could not be placed will be output through the <layername>_UNL port. An attribute named _ez_unlabeled_reason will be added to the feature. Possible values for this attribute are Suppressed, Excluded and Unplaced.

 Parameters

 Target Format

 Specifies the format used for the text labels.

 Ground Units Per Font Point

 Specifies the size of the text labels. The specified value represents the size on the ground that the label would occupy if a 1-point sized font were used.

 Prefer Source Feature Color

 If this parameter is enabled, the color specified by the feature's fme_color attribute will be used for the labelling.

 If this parameter is not enabled, or the feature has no fme_color attribute, then the color specified in Rule Configurations will be used for the labelling.

 Rule Configurations

 Specifies which layers are to be labelled and how the labelling will be performed.

 Usage Notes

 The following steps are typically used when specifying the Rule Configurations parameter:

 	Use the Import button to choose which layers and attributes are to be labelled.

 	Click the Configure button to bring up the Label Manager dialog.

 	For each layer to be labelled, select the geometry type (i.e. Point, Line, Polygon) of the feature from the Feat Type column. If the geometry type remains unselected, this layer can continue to be used as an obstacle.

 	Click the Style button to specify what text should be displayed for the selected layer.

 	Ensure that the Label checkbox is selected.

 	Select the Obstacle checkbox if labels should not overlap features in the selected layer.

 	Click the Rule button to customize the rules used to determine how the labels are placed.

 For more information on label configuration, see the Label Manager documentation provided by MapText, Inc.

 The MapTextStyler can be used with this transformer to specify no-label zones around features.

 The MapTextLabeller automatically deaggregates features and attempts to label
the individual pieces if they meet the labelling criteria. For more control over how
labelling of aggregates is done, it is recommended that aggregates are split
apart and possibly recombined prior to the MapTextLabeller, using transformers such as the
Deaggregator and Amalgamator.

 Some of the target formats have the following specific issues:

 Bentley MicroStation Design

 If colors are set within the MapTextLabeller, the MicroStation writer will try to select the closest color from the seed file. To set colors properly, the desired font number from the seed file can be used for the Index Color parameter in the DGNStyler.

 TrueType fonts should be specified in the seed file, since MapTextLabeller only uses this type of font. The FME igds_font format attribute must be set to the font number from the seed file. The igds_font attribute can be set using an AttributeCreator, ValueMapper or another suitable transformer.

 ESRI ArcGIS

 There is no color for shields and leaders (fme_color/fme_fill_color doesn't work).

 It is not possible to write composite leaders to writer (a leader that is an aggregate of a polyline
and filled polygon).

 GeoMedia

 There is no color for shields and leaders (fme_color/fme_fill_color doesn't work).

 It is necessary to manually set the Nominal scale and scaling to Paper in the GeoMedia workspace.

 Powered by Maptext, Inc., Copyright © 2011, MapText, Inc. All Rights Reserved.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 MapText

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 MapTextStyler

 Prepares features for labelling by the MapTextLabeller by specifying no-label zones around features.

 Can be used in conjunction with MapTextLabeller.

 Input Ports

 Input

 Features that are to have no-label zones specified.

 Output Ports

 Output

 Features that have the no-label zone specified.

 Parameters

 Label-Free Zone

 Measurement Units

 The units that the various sizes and widths are specified in.

 The last three choices (Centimeters, Inches and Points) are page units, and are interpreted differently than the Ground Units choice.

 Point Symbol Zone

 Point Symbol Size

 Specifies the size of any point feature symbols to prevent labels from overlapping.

 Font Name

 Specifies the Windows font name of the point symbol.

 Font Character Index

 Specifies the index in the font of the point symbol.

 Font Character Angle

 Specifies the rotation angle of the point symbol, measured in degrees counter-clockwise from horizontal.

 Line Zone

 Line Width

 Specifies the width of the zone around any linear features in which no labels will be allowed. For example if 5 units are specified, then no labels will be present within 2.5 units of each side of the line.

 Polygon Boundary Zone

 Polygon Line Width

 Specifies the width of the zone around the boundary of any area features in which no labels will be allowed. For example if 5 units are specified, then no labels will be present within 2.5 units of each side of the boundary line.

 Usage Notes

 All parameters are optional. Typically one instance of this transformer is placed for each group of features to be labelled by the MapTextLabeller.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 MapText

 Stylers

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Matcher

 Detects features that are matches of each other. Features are declared
 to match when they have matching geometry, matching attribute values,
 or both. A
 list of attributes which must differ between the features may also be
 specified.

 Output Ports

 Matched

 All features matching another feature are output to the Matched port.

 SingleMatched

 A single copy of each matched feature is sent to the SingleMatched port.

 NotMatched

 All non-matching features are sent to the NotMatched port.

 Parameters

 Feature Elements To Match

 Match Geometry

 The Match Geometry parameter controls whether 2D or 3D (or NO) geometry must be the same before a match
 is declared. FULL makes sure 3D, measures, and Geometry Traits all match.

 When comparing raster geometries:

 	2D matches the properties

 	3D matches the properties and values

 	FULL matches the properties, values and geometry
 traits.

 When comparing surface and solid geometries: 2D behaves the same way
 as 3D, that is, Z values will also be compared.

 When comparing point cloud geometries:

 	2D and 3D match the properties

 	FULL matches the properties and component values

 Attribute Matching Strategy

 In conjunction with Selected Attributes, this parameter controls which attributes of input features must have the same value before a match is declared.

 	Match Selected Attributes: the attributes specified in the Selected Attributes parameter will be matched.

 	Match All Except Selected Attributes: all attributes will be matched, except those specified in Selected Attributes (and in Attributes That Must Differ).

 	Match All Attributes: the only fields excluded from the match are those given by Attributes That Must Differ, if any.

 Selected Attributes

 This parameter is applicable when Attribute Matching Strategy is set to Match Selected Attributes or Match All Except Selected Attributes, and specifies which attributes to match, or exclude from the match, depending on the matching strategy chosen.

 Attributes That Must Differ

 Controls
 which attributes that are part of the input feature must have different
 values before a match is declared. The values from all attributes matching
 the regular expression are concatenated together and compared to determine
 a match.

 Matching Options

 Differentiate Empty, Missing, and Null Attributes

 If this parameter is set to No, then empty, missing, and null attributes will be treated as equivalent. If this parameter is set to Yes, then empty, missing, and null attributes will be considered as pairwise different. This parameter applies to attributes as well as geometry traits.

 Lenient Geometry Matching

 If this parameter
 is set to yes, then the order of points in line and area features will
 be ignored.

 Composition differences between paths and lines will be ignored. True
 arcs and ellipses versus their stroked polygon equivalents will be ignored
 in Aggregates, Polygons, Donuts, Paths, and all other multis. When comparing
 raster geometries, only the extents are compared.

 Interior Vertex Tolerance

 This parameter
 determines how close together interior vertices must be in order for them
 to be declared a match. Note that the start and end points of features
 should be LESS than the parameter value. That is, if two vertices are 2 meters apart, and the parameter is set to 2, they will not match. This
 value is optional.

 Extra Vertex Tolerance

 When geometry is being matched, Extra
 Vertex Tolerance can allow for extra vertices along line segments.
 A value of 0 means that no such extra vertices are permitted. A nonzero
 value controls how close any extra vertices must be to the line connecting
 the adjoining matching vertices.

 Note: For surface and solid geometries, Interior Vertex Tolerance
 and Extra Vertex tolerance are ignored and assumed to be 0.0. This transformer
 does not support surfaces or solids in the input if the Lenient Geometry
 Match is set to yes.

 Output Attributes

 Match ID Output Attribute

 An ID is added to each set of matched features so that it is possible
 to build a relationship between them if required.

 List Name on SingleMatched
 Output

 If provided, a list of all attributes from features contributing
 to each SingleMatched output will be constructed with this name.

 Match Count Attribute on SingleMatched
 Output

 If provided, an attribute with this name will be added to each SingleMatched output, set to the number of contributing input features.

 Related Transformers

 DuplicateRemover

 The ChangeDetector
 provides an alternative (but less general) approach which may be more convenient
 for certain applications.

 Example

 [image: matcher.gif]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Filters

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 MeasureExtractor

 Extracts the measures of geometries that match the given type, and places them in attributes or list attributes.

 Input Ports

 Input

 Feature types that contain point, line arc, area geometry, or a vertex of linear or area geometry.

 Parameters

 The Type parameter that you choose determines which of the remaining transformer parameters become enabled.

 Type

 Individual Vertex by Index sets the value of the attribute specified in the Destination Attribute of Point or Vertex to the measure extracted from a point, curve or area at the vertex specified by the Index.

 A negative index can be used to indicate the position of the vertex in which the measure is to be extracted relative to the end of the geometry (-1 is the last coordinate, -2 the second last, and so on). If the geometry of a feature is a point, then only index 0 or index -1 can be used to retrieve the measure value. Any geometry other than a point, curve or area is ignored.

 Point sets the value of the attribute specified in the Destination Attribute of Point or Vertex to the measure extracted from the point.

 End Points of Arc sets the values of attributes specified in the Destination Start/End Point Attribute of Arc to the measures extracted from the start and end points of the arc respectively.

 Whole Line or Whole Area adds the list attribute specified in the Destination List Attribute of Line or Area and sets the list elements to the measures extracted from the line or area. A Path geometry or path boundary of an area is not supported. A PathSplitter transformer can be used to split a path to its respective segments in order to retrieve the measure(s) on each individual segment. A PathBuilder can then join the segments back into a path.

 Source Measure Name

 Retrieves the measures of geometries matching the given type. If the geometry is of a different type, the feature will not be modified. If a Source Measure Name is not supplied, the default measures will be used.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Linear Referencing

 Related Transformers

 PathSplitter

 PathBuilder

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 MeasureGenerator

 Creates a set of measures attached to the geometry of the feature, where each value is the distance from the start of the line up to that vertex, multiplied by the given Multiplier.

 This transformer is often used to load useful measure values into an attribute for
 writing to measure-supporting formats such as Shape, Geodatabase, and
 SDE.

 Parameters

 Length Dimension

 The Length Dimension parameter
 controls how the distance will be calculated. The distance can be calculated
 as either a two-dimensional distance (in which case any z coordinates
 on the features will be ignored), or as a three-dimensional distance.

 The first value will always be
 0, since the length up to the very first point is 0. The
 last value will be the length of the entire line multiplied by the value set in the Multiplier parameter.

 Multiplier

 A Multiplier is applied to each
 distance before it is added to the list, to potentially scale each measurement
 by a fixed amount. By default, the multiplier is 1.

 Destination Measure Name

 You can enter an optional name for the resulting measures.

 Related Transformers

 	To get measures as a list or a series of attributes (for example, if you need to manipulate the calculated measure values), place a MeasureGenerator followed by a MeasureExtractor and a ListConcatenator.

 	To calculate the entire length of a feature, use the LengthCalculator.

 	To calculate the partial length of a feature, use the LengthToPointCalculator.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Linear Referencing

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: chainage

 MeasureRemover

 Removes measures from a feature's geometry.

 Parameters

 Remove All

 Yes: all measures will be removed, including measures present on components of aggregate geometries.

 No: only the measure named will be removed. In this mode, the measure will not be removed from collections such as Aggregates, MultiCurves, and MultiPoints; measures will remain on the components, if they are present.

 Name of Measure to Remove

 Type the measure name, or choose an attribute that contains the measure name. (This can be left blank to remove the default measure.)

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Linear Referencing

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 MeasureSetter

 Sets measure(s) on a point, line, arc, area geometry or a vertex of a linear geometry to attribute value(s) of given attribute(s) or list attribute.

 For Point, Arc, Line or Area, if the geometry is of a different type than what is specified in Geometry Type, the feature will not be modified.

 Parameters

 The Type parameter selection will determine which of the other parameters is enabled for this transformer.

 Type

 Individual Vertex by Index

 Sets the measure of a point, curve, or area at the vertex specified by the Index to the value or attribute value specified in Measure Value of Point or Vertex. A negative index can be used to indicate the position of the vertex in which the measure is to be set relative to the end of the geometry (-1 is the last coordinate, -2 the second last, and so on). If the geometry of a feature is a point, then only index 0 or index -1 can be used to retrieve the measure value. Any geometry other than a point, curve or area is ignored.

 Point

 Sets the measure of the point to the value or value of the attribute specified in Measure Value of Point.

 End Points of Arc

 Sets the measure of the start and end points of an arc to the values or values of the attributes specified in Start Point Measure Value of Arc and End Point Measure Value of Arc respectively.

 Whole Line or Whole Area

 Sets the measure of a line or area to the values of the list attribute specified in Source Measure List Attribute of Line or Area. The number of elements in the list attribute must match the number of points of the line or area. A Path geometry or path boundary of an area is ignored. A PathSplitter transformer can be used to split a path to its respective segments in order to set the measure(s) on each segment separately. A PathBuilder can also be used to join the segments back into a path.

 Destination Measure Name

 If no Destination Measure Name is specified, the default measures will be set.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Linear Referencing

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 MeshMerger

 Merges mesh features (features with IFMEMesh geometries) into a single output mesh.

 The final merged mesh is post-processed to remove duplicate vertices, texture coordinates, and vertex normals.

 Parameters

 Merge Break Attributes

 Select from the list of attributes.

 The feature being created is output whenever one of the Merge Break Attributes' values changes. When this happens, the feature with the differing attribute is not added to the current output feature; instead, it begins the next feature to be output.

 List Name (optional)

 If supplied, produces a list of all the attributes of each feature that was merged when creating the output mesh.

 Usage Notes

 Before using this transformer, a Deaggregator may be necessary to extract meshes stored in aggregates, multi-surfaces, or composite surfaces.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 3D

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: mesh merge connect aggregate IFMEesh geometry

 MGRSGeometryExtractor

 Calculates a Military Grid Reference System
 (MGRS) code based on the geometry of a feature.

 The MGRS code for a position consists of a group of letters and numbers which include the following elements:

 	grid zone designation

 	the 100,000-meter square letter identification

 	the grid coordinates (also referred to as rectangular coordinates); the numerical portion of the reference expressed to a desired refinement

 If a non-point feature (that is, a feature with more than one point) is
 passed in, then the first point of the geometry will be used for the conversion.

 Parameters

 Ellipsoid

 The ellipsoid used for the conversion. This can be any ellipsoid name supported by FME.

 Lettering Type

 The type of lettering used can be WGS84 or Bessel.

 Precision

 The granularity of the resulting code is determined by the specified
 Precision which is an integer from 0 to 5 (inclusive). A precision of
 5 locates a point within 1-meter square and a precision of 0 locates a
 point within 100-km square.

 MGRS Code Attribute

 The result of the conversion is stored in the MGRS Code Attribute of
 the feature.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Coordinate Systems

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 MGRSGeometryReplacer

 This transformer is used to convert Military Grid Reference System (MGRS) code to longitude and latitude coordinates.

 The geometry of an input feature will be replaced with a point at the longitude/latitude values obtained from the MGRS code.

 Parameters

 Ellipsoid

 The ellipsoid used for the conversion. This can be any ellipsoid name supported by FME.

 Lettering Type

 The type of lettering used can be WGS84 or Bessel.

 MGRS Code

 An MGRS code used to convert to lat/long coordinates. You can choose this parameter from the list of attributes in the pull-down list, or enter an MGRS string.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Coordinate Systems

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 MGRSToLatLongConverter

 Converts Military Grid Reference System (MGRS) code to longitude and latitude coordinates.

 Parameters

 Ellipsoid

 The ellipsoid used for the conversion. This can be any ellipsoid name supported by FME.

 Lettering Type

 The type of lettering used can be WGS84 or Bessel.

 MGRS Code

 An MGRS code used to convert to lat/long coordinates. You can choose this parameter from the list of attributes in the pull-down list, or enter an MGRS string.

 Longitude, Latitude Attributes

 The longitude and latitude values obtained from the MGRS code will be stored in the Longitude and Latitude attributes of the feature, respectively.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Coordinate Systems

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 MinimumAreaForcer

 Ensures that features with polygon geometry have an area that is equal to, or in excess of, the specified minimum area.

 Output Ports

 Enlarged

 Features that were scaled will be output via the Enlarged output port.

 Untouched

 Features that were not scaled will be output via the Untouched port.

 <Rejected>

 Features with 0 area, or have non-area geometry, will be output via the <Rejected> port.

 Parameters

 Minimum Area

 This is the area, expressed in ground units, that all output features will exceed. You can also choose to use the area of a selected attribute.

 Any feature with polygon geometry that is smaller than the specified area will be scaled such that the geometry's area meets the required minimum value. The center of gravity of the feature will remain unchanged.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 MinimumSpanningCircleReplacer

 Replaces the geometry of the feature with a polygon representing its
 minimum spanning circle. The minimum spanning circle is defined as the
 smallest circle that encloses all vertices of the passed-in feature.

 If the feature was an aggregate feature, a single minimum spanning circle
 is computed from all vertices of all geometries in the aggregate. If the
 feature was a linear feature, it will be turned into a polygonal feature.
 No change is made to a point feature.

 Parameters

 Mode

 In Replace Geometry mode, each feature's geometry will be replaced with the calculated circle. In Set Attributes mode, the input geometry will be left untouched and the properties (location and radius) of the circle saved as the designated attributes on the feature.

 Center X, Y Attributes

 The name of the attribute into which the x and y values of the circle center will be placed.

 Radius Attribute

 The name of the attribute into which the radius of the circle will be placed.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 ModuloCounter

 Adds an attribute holding the next integer in a sequence, restarting
 the count at 0 whenever the sequence reaches the specified maximum value.

 Each
 feature will have a number added to it, in the range from 0 to one less than the maximum.

 Example

 If you set the Count Maximum to a value of 3, this will set the value of the Count Output Attribute to 0,1,2,0,1,2,0 for the first 7 features that enter the transformer.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 MRF2DCleaner

 Note: The MRFCleaner transformers are available as an extra-cost package from Safe Software. Please contact sales@safe.com
 or call 604-501-9985. This package includes all MRFCleaner transformers.

 MRF Geosystems Corporation (www.mrf.com)
 has produced cleaning software and made it available to FME users to apply
 to data as it is transformed between arbitrary input and output formats.1

 The MRFCleaner repairs geometry, particularly during data migration from
 CAD to GIS, and is built upon the MRFCleanFactory,
 which is an integration of MRF’s cleaning technology into FME. The MRFCleaner fixes geometric
 problems in input data such as line overshoots and undershoots within
 the user-specified tolerance. It is useful for multi-layer and multi-tolerance
 two-dimensional data cleaning. Typical applications include the correction
 of utility maps, parcel maps, topographic maps and resource maps as data
 is migrated from one system to another.

 The MRFCleaner includes the following functionality:

 	fuzzy
 tolerance

 	extending
 lines

 	weeding
 lines

 	joining
 lines

 	processing
 short elements

 	removing gaps

 	removing
 duplicates

 	removing
 dangles

 	performing
 conflation

 The number of layers used in
 cleaning the data is determined by the number of different tolerance values
 of input features. Features that have the same tolerances are processed
 as being on the same layer. This allows feature data from a high-quality
 data source to be assigned a low tolerance and integrated with data from
 a lower-quality data source which would be given a larger tolerance.

 Geometries such as path, polygon,
 donut, ellipse, elliptical arc, multi-area, multi-curve, text, and multi-text
 are converted to basic geometries such as point, line, path, arc or multi-point
 prior to the cleaning process. The cleaner understands and works with
 circular arcs. Input features with invalid geometries are ignored and
 deleted.

 Usage Tips

 You can also use one more of the following transformers to perform singular MRFCleaner operations. These transformer parameters are all available as part of this MRF2DCleaner transformer, but you may wish to use separate transformers so that the operations are more easily visible in your workflow.

 MRF2DConflator

 MRF2DDangleRemover

 MRF2DDuplicateRemover

 MRF2DExtender

 MRF2DGeneralizer

 MRF2DIntersector

 MRF2DJoiner

 MRF2DShortGeometryRemover

 Output Ports

 Cleaned

 Each feature that is output
 through the Cleaned port has a new attribute "mrf_clean_status"
 added to specify whether the feature is modified, created, or will remain
 unchanged in the cleaning process. The possible values of this attribute
 are "Modified", "Created" and "Original".

 Flagged

 Features can also be output
 through the Flagged port if any of the Remove Dangles, Remove Short Geometries
 and Compute True Intersections is set to Flag. Each of these features
 has a new attribute "mrf_flag_status" added to specify whether
 this feature is flagged as being shorter than the tolerance value ("short"),
 a dangling geometry ("dangle") or an intersection point ("intersection").

 Parameters

 Group By

 The default behavior is to use the entire set of input features as the group. This option allows you to select attributes that define which groups to form—each set of features that have the same value for all of these attributes will be processed as an independent group.

 Parameters

 Cleaning
 Tolerance

 This is used as the default tolerance unless the Feature Tolerance
 Attribute is specified and valid. The minimum tolerance allowed is 0.0.

 Compute
 Intersections

 If set to Yes, intersections between all input features
 are computed, breaking arcs and lines wherever an intersection occurs.
 A fuzzy intersection is also created from geometries which are within
 one of the tolerance distances, but do not actually touch or cross.

 Correct
 Undershoots

 If set to Yes, arcs and lines that are within the specified
 tolerance are extended –
 while maintaining line-work direction. No intersections are created while
 doing this. This option does not process overshoots; a combination of
 Compute Intersections and Remove Short Geometries can serve this
 purpose.

 Generalize
 Lines

 If set to Yes, a number of vertices of lines are removed.
 The number of vertices removed is controlled by a weeding tolerance of
 the value of (Filter Factor * tolerance) or (Filter Factor * value of
 Feature Tolerance Attribute). The latter is always used when it is valid
 and the Feature Tolerance Attribute is specified. The larger the value
 of weeding tolerance, the more vertices will be removed.

 Remove
 Dangles

 If set to Yes, then features that have at least one free
 end point and have lengths smaller than (Dangle Factor * tolerance) or
 (Dangle Factor * value of Feature Tolerance Attribute) are removed. The
 default value of Dangle Factor is 1.0 and the minimum is 0.0.

 Dangle Factor

 The default value is 1.0 and the minimum value is 0.0.

 Filter Factor

 The default value is 1.0 and the minimum value is 0.0.

 Geometries

 Remove
 Short Geometries

 If set to Yes, features that have lengths smaller
 than the specified tolerances are deleted.

 Remove
 Duplicate Geometries

 If set to Yes, duplicated features are deleted.
 Features are considered to be duplicates if their geometries are within
 tolerance and only features with a smaller tolerance will remain after
 cleaning.

 Join
 Geometries

 If set to Yes, then singly-connected features are joined
 to form longer ones. A pair of linear features becomes a candidate for joining
 only when the two are singly connected at a given node or end point.

 Conflate
 Geometries

 If set to Yes, then the geometry of a feature can be
 changed to match that of another, if the two are approximately the same
 to begin with.

 Clean
 Area Geometries

 If set to Yes, then area features such as polygons
 or donuts will be cleaned without stroking them first.

 Module Workflow

 MRFCleaner Modules provide more detailed information
 on the modules in the underlying MRFCleanFactory.

 This default workflow
 is suitable for most situations. However, using the individual modules,
 it is possible to create any number of customized workflows for specific
 projects and/or datasets (for example, in Workbench, by using a series
 of consecutive MRFCleaner transformers or custom transformers). It is
 important, however, to understand the data being processed and the desired
 end result.

 [image: mrf_workflow.gif]

 More Information

 	See General Processing Tips.

 	MRFCleaner Sample Results

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 MRF

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 1Portions of this work are the intellectual property of the MRF Geosystems Corporation and are used under license. Copyright © 2006 MRF Geosystems Corporation. All rights reserved.

 MRF2DConflator

 Changes the geometry of a feature to match that of another, if the two have approximately the same shape and location, and have matching endpoints.

 Output Ports

 Cleaned

 Each feature that is output through the Cleaned port will have a new attribute "mrf_clean_status" added to specify whether the feature was modified, created, or unchanged in the cleaning process. The possible values of this attribute are "Modified", "Created" and "Original".

 Parameters

 Group By

 The default behavior is to use the entire set of input features as the group. This option allows you to select attributes that define which groups to form—each set of features that have the same value for all of these attributes will be processed as an independent group.

 Cleaning Tolerance

 Cleaning
 tolerance is used as the default tolerance unless the Feature Tolerance
 Attribute is specified and valid. The minimum tolerance allowed is 0.0.

 Feature Tolerance Attribute

 The number of layers used in cleaning the data is determined by the number of different tolerance values of input features. Features that have the same tolerances are processed as being on the same layer.

 Usage Notes

 This transformer performs the same operation as the MRF2DCleaner with the Conflate Geometries set to Yes and no other options selected. See the MRF2DCleaner for more details.1

 FME Licensing Level

 The MRFCleaner transformers are available as an extra-cost package from Safe Software. Please contact sales@safe.com
 or call 604-501-9985.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 MRF

 Related Transformers

 MRF2DDangleRemover

 MRF2DDuplicateRemover

 MRF2DExtender

 MRF2DGeneralizer

 MRF2DIntersector

 MRF2DJoiner

 MRF2DShortGeometryRemover

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 1Portions of this work are the intellectual property of the MRF Geosystems Corporation and are used under license. Copyright © 2006 MRF Geosystems Corporation. All rights reserved.

 MRF2DDangleRemover

 Removes features that have at least one free endpoint and have lengths smaller than (Dangle Factor * Cleaning Tolerance) or (Dangle Factor * value of Feature Tolerance Attribute).

 Output Ports

 Cleaned

 Each feature that is output through the Cleaned port will have a new attribute "mrf_clean_status" added to specify whether the feature was modified, created, or unchanged in the cleaning process. The possible values of this attribute are "Modified", "Created" and "Original".

 Flagged

 If Dangle Action is set to Remove Short and Flag Long, for each feature that is a dangle but is longer than this tolerance, a point, label, or circle (depending on the value of Flag Type) will be output through the Flagged port.

 Parameters

 Group By

 If selected, each group of features with the same values in the Group By attributes will be processed separately from other groups.

 Cleaning Tolerance

 Cleaning
 tolerance is used as the default tolerance unless the Feature Tolerance
 Attribute is specified and valid. The minimum tolerance allowed is 0.0.

 Feature Tolerance Attribute

 The number of layers used in cleaning the data is determined by the number of different tolerance values of input features. Features that have the same tolerances are processed as being on the same layer.

 Dangle Action

 If Dangle Action is set to Remove Short and Flag Long, for each feature that is a dangle but is longer than this tolerance, a point, label, or circle (depending on the value of Flag Type) will be output through the Flagged port.

 Flag Type and Flag Size

 For each feature that is a dangle but is longer than the flag size tolerance, this parameter sets the flag type as a point, label or circle, if Dangle Action is set to Remove Short and Flag Long.

 Usage Notes

 This transformer performs the same operation as the MRF2DCleaner with the Remove Dangles parameter set to Yes and no other options selected. See the MRF2DCleaner for more details.1 Note that the circle/label flagging is an added option in this transformer.

 Related Transformers

 MRF2DConflator

 MRF2DDuplicateRemover

 MRF2DExtender

 MRF2DGeneralizer

 MRF2DIntersector

 MRF2DJoiner

 MRF2DShortGeometryRemover

 FME Licensing Level

 The MRFCleaner transformers are available as an extra-cost package from Safe Software. Please contact sales@safe.com
 or call 604-501-9985.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 MRF

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 1Portions of this work are the intellectual property of the MRF Geosystems Corporation and are used under license. Copyright © 2006 MRF Geosystems Corporation. All rights reserved.

 MRF2DDuplicateRemover

 Deletes duplicated features. Features are considered to be duplicates if their geometries are within tolerance and only features with a smaller tolerance will remain after cleaning.

 Output Ports

 Cleaned

 Each feature that is output through the Cleaned port will have a new attribute "mrf_clean_status" added to specify whether the feature was modified, created, or unchanged in the cleaning process. The possible values of this attribute are "Modified", "Created" and "Original".

 Parameters

 Group By

 If selected, each group of features with the same values in the Group By attributes will be processed separately from other groups.

 Usage Notes

 This transformer performs the same operation as the MRF2DCleaner with the Remove Duplicate Geometries set to Yes and no other options selected. See the MRF2DCleaner for more details.1

 FME Licensing Level

 The MRFCleaner transformers are available as an extra-cost package from Safe Software. Please contact sales@safe.com
 or call 604-501-9985.

 Related Transformers

 MRF2DConflator

 MRF2DDangleRemover

 MRF2DExtender

 MRF2DGeneralizer

 MRF2DIntersector

 MRF2DJoiner

 MRF2DShortGeometryRemover

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 MRF

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 1Portions of this work are the intellectual property of the MRF Geosystems Corporation and are used under license. Copyright © 2006 MRF Geosystems Corporation. All rights reserved.

 MRF2DExtender

 Extends arcs and lines that are within the specified tolerance to correct undershoots while maintaining line-work direction. No intersections are created while doing this.

 This does not process overshoots: the MRF2DCleaner with a combination of Compute Intersections and Delete Short Geometries can serve this purpose.

 Output Ports

 Cleaned

 Each feature that is output through the Cleaned port will have a new attribute "mrf_clean_status" added to specify whether the feature was modified, created, or unchanged in the cleaning process. The possible values of this attribute are "Modified", "Created" and "Original".

 Parameters

 Group By

 If selected, each group of features with the same values in the Group By attributes will be processed separately from other groups.

 Cleaning Tolerance

 Cleaning
 tolerance is used as the default tolerance unless the Feature Tolerance
 Attribute is specified and valid. The minimum tolerance allowed is 0.0.

 Feature Tolerance Attribute

 The number of layers used in cleaning the data is determined by the number of different tolerance values of input features. Features that have the same tolerances are processed as being on the same layer.

 Usage Notes

 This transformer performs the same operation as the MRF2DCleaner with the Correct Undershoots set to Yes and no other options selected. See the MRF2DCleaner for more details.1

 FME Licensing Level

 The MRFCleaner transformers are available as an extra-cost package from Safe Software. Please contact sales@safe.com
 or call 604-501-9985.

 Related Transformers

 MRF2DConflator

 MRF2DDangleRemover

 MRF2DDuplicateRemover

 MRF2DGeneralizer

 MRF2DIntersector

 MRF2DJoiner

 MRF2DShortGeometryRemover

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 MRF

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 1Portions of this work are the intellectual property of the MRF Geosystems Corporation and are used under license. Copyright © 2006 MRF Geosystems Corporation. All rights reserved.

 MRF2DGeneralizer

 Removes a number of vertices from lines. The number of vertices removed is controlled by a weeding tolerance, which will be either (Filter Factor * Cleaning Tolerance) or (Filter Factor * value of Feature Tolerance Attribute). The latter is always used when it is valid and the Feature Tolerance attribute is specified. The larger the weeding tolerance, the more vertices will be removed.

 Each feature that is output through the Cleaned port will have a new attribute "mrf_clean_status" added to specify whether the feature was modified, created, or unchanged in the cleaning process. The possible values of this attribute are "Modified", "Created" and "Original".

 Output Ports

 Cleaned

 Each feature that is output through the Cleaned port will have a new attribute "mrf_clean_status" added to specify whether the feature was modified, created, or unchanged in the cleaning process. The possible values of this attribute are "Modified", "Created" and "Original".

 Parameters

 Group By

 If selected, each group of features with the same values in the Group By attributes will be processed separately from other groups.

 Cleaning Tolerance

 Cleaning
 tolerance is used as the default tolerance unless the Feature Tolerance
 Attribute is specified and valid. The minimum tolerance allowed is 0.0.

 Feature Tolerance Attribute

 The number of layers used in cleaning the data is determined by the number of different tolerance values of input features. Features that have the same tolerances are processed as being on the same layer.

 Filter Factor

 The default value of Filter
 Factor is 1.0 and the minimum value is 0.0.

 Usage Notes

 This transformer performs the same operation as the MRF2DCleaner with the Generalize Lines parameter set to Yes and no other options selected. See the MRF2DCleaner for more details.1

 FME Licensing Level

 The MRFCleaner transformers are available as an extra-cost package from Safe Software. Please contact sales@safe.com
 or call 604-501-9985.

 Related Transformers

 MRF2DConflator

 MRF2DDangleRemover

 MRF2DDuplicateRemover

 MRF2DExtender

 MRF2DIntersector

 MRF2DJoiner

 MRF2DShortGeometryRemover

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 MRF

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 1Portions of this work are the intellectual property of the MRF Geosystems Corporation and are used under license. Copyright © 2006 MRF Geosystems Corporation. All rights reserved.

 MRF2DIntersector

 Computes intersections between all input features, breaking arcs and lines wherever an intersection occurs. A fuzzy intersection is also created from geometries which are within one of the tolerance distances, but do not actually touch or cross.

 Output Ports

 Cleaned

 Each feature that is output through the Cleaned port will have a new attribute "mrf_clean_status" added to specify whether the feature was modified, created, or unchanged in the cleaning process. The possible values of this attribute are "Modified", "Created" and "Original".

 Flagged

 If Intersection Action is set to Split Lines at Intersections, the input lines will be split at true intersection points into separate output lines. If it is set to Flag Intersections, then true intersection points will be output through the Flagged port as points, labels, or circles, depending on the Flag Type selected.

 Parameters

 Group By

 If selected, each group of features with the same values in the Group By attributes will be processed separately from other groups.

 Cleaning Tolerance

 Cleaning
 tolerance is used as the default tolerance unless the Feature Tolerance
 Attribute is specified and valid. The minimum tolerance allowed is 0.0.

 Intersection Action

 If set to Split Lines at Intersections, intersections are computed between all input features, breaking arcs and lines wherever an intersection occurs. If set to Flag Intersections, the Flag Type and Flag Size parameters are enabled.

 Compute Fuzzy Intersections

 If set to Yes, a fuzzy intersection is also created from geometries which are within
 one of the tolerance distances, but do not actually touch or cross.

 Feature Tolerance Attribute

 The number of layers used in cleaning the data is determined by the number of different tolerance values of input features. Features that have the same tolerances are processed as being on the same layer.

 Flag Type and Flag Size

 This parameter sets the flag type for true intersection points as a point, label or circle, if Intersection Action is set to Flag Intersections.

 Usage Notes

 This transformer performs the same operation as the MRF2DCleaner no options selected except Compute True Intersections and/or Compute Fuzzy Intersections. See the MRF2DCleaner for more details.1 Note that the circle/label flagging is an added option in this transformer.

 FME Licensing Level

 The MRFCleaner transformers are available as an extra-cost package from Safe Software. Please contact sales@safe.com
 or call 604-501-9985.

 Related Transformers

 MRF2DConflator

 MRF2DDangleRemover

 MRF2DDuplicateRemover

 MRF2DExtender

 MRF2DGeneralizer

 MRF2DJoiner

 MRF2DShortGeometryRemover

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 MRF

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 1Portions of this work are the intellectual property of the MRF Geosystems Corporation and are used under license. Copyright © 2006 MRF Geosystems Corporation. All rights reserved.

 MRF2DJoiner

 Joins connected features to form longer ones. A pair of linear features become candidates for joining only when the two are connected at a given node or end point.

 Output Ports

 Cleaned

 Each feature that is output through the Cleaned port will have a new attribute "mrf_clean_status" added to specify whether the feature was modified, created, or unchanged in the cleaning process. The possible values of this attribute are "Modified", "Created" and "Original".

 Parameters

 Group By

 If selected, each group of features with the same values in the Group By attributes will be processed separately from other groups.

 Usage Notes

 This transformer performs the same operation as the MRF2DCleaner with the Join Geometries parameter set to Yes and no other options selected. See the MRF2DCleaner for more details.1

 FME Licensing Level

 The MRFCleaner transformers are available as an extra-cost package from Safe Software. Please contact sales@safe.com
 or call 604-501-9985.

 Related Transformers

 MRF2DConflator

 MRF2DDangleRemover

 MRF2DDuplicateRemover

 MRF2DExtender

 MRF2DGeneralizer

 MRF2DIntersector

 MRF2DShortGeometryRemover

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 MRF

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 1Portions of this work are the intellectual property of the MRF Geosystems Corporation and are used under license. Copyright © 2006 MRF Geosystems Corporation. All rights reserved.

 MRF2DShortGeometryRemover

 Removes features that have lengths smaller than the specified tolerance, if Short Geometry Action is set to Remove.

 Output Ports

 Cleaned

 Each feature that is output through the Cleaned port will have a new attribute "mrf_clean_status" added to specify whether the feature was modified, created, or unchanged in the cleaning process. The possible values of this attribute are "Modified", "Created" and "Original".

 Flagged

 If Short Geometry Action is set to Flag, such features will not be removed, but for each one a point, label, or circle (depending on the value of Flag Type) will be output through the Flagged port.

 Parameters

 Group By

 If selected, each group of features with the same values in the Group By attributes will be processed separately from other groups.

 Cleaning Tolerance

 Cleaning
 tolerance is used as the default tolerance unless the Feature Tolerance
 Attribute is specified and valid. The minimum tolerance allowed is 0.0.

 Feature Tolerance Attribute

 The number of layers used in cleaning the data is determined by the number of different tolerance values of input features. Features that have the same tolerances are processed as being on the same layer.

 Short Geometry Action

 You can set the Short Geometry Action to either Remove or Flag features.

 Flag Type and Flag Size

 This parameter sets the flag type as a point, label or circle, if Short Geometry Action is set to Flag.

 For each feature that is smaller than the specified tolerance, this parameter sets the flag type as a point, label or circle, if Short Geometry Action is set to Flag.

 Usage Notes

 This transformer performs the same operation as the MRF2DCleaner with the Delete Short Geometries parameter set to Yes and no other options selected. See the MRF2DCleaner for more details.1 Note that the circle/label flagging is an added option in this transformer.

 FME Licensing Level

 The MRFCleaner transformers are available as an extra-cost package from Safe Software. Please contact sales@safe.com
 or call 604-501-9985.

 Related Transformers

 MRF2DConflator

 MRF2DDangleRemover

 MRF2DDuplicateRemover

 MRF2DExtender

 MRF2DGeneralizer

 MRF2DIntersector

 MRF2DJoiner

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 MRF

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 1Portions of this work are the intellectual property of the MRF Geosystems Corporation and are used under license. Copyright © 2006 MRF Geosystems Corporation. All rights reserved.

 MRF3DCleaner

 Note: This is an extra-cost transformer, available from Safe
 Software. Please contact sales@safe.com
 or call 604-501-9985.

 MRF Geosystems Corporation (www.mrf.com)
 has produced cleaning software and made it available to FME users to apply
 to data as it is transformed between arbitrary input and output formats.1

 The MRFCleaner repairs geometry, particularly during data migration from
 CAD to GIS, and is built upon the MRFCleanFactory,
 which is an integration of MRF’s cleaning technology into FME.

 The MRFCleaner fixes geometric
 problems in input data such as line overshoots and undershoots within
 the user-specified tolerance. It is useful for multi-layer and multi-tolerance
 three-dimensional data cleaning. Typical applications include the correction
 of utility maps, parcel maps, topographic maps and resource maps as data
 is migrated from one system to another.

 The MRFCleaner includes the following functionality:

 	fuzzy
 tolerance

 	extending
 lines

 	weeding
 lines

 	joining
 lines

 	processing
 short elements

 	removing gaps

 	removing
 duplicates

 	removing
 dangles

 	performing
 conflation

 The number of layers used in
 cleaning the data is determined by the number of different tolerance values
 of input features. Features that have the same tolerances are processed
 as being on the same layer. This allows feature data from a high-quality
 data source to be assigned a low tolerance and integrated with data from
 a lower-quality data source which would be given a larger tolerance.

 Geometries such as path, polygon,
 donut, ellipse, elliptical arc, multi-area, multi-curve, text, and multi-text
 are converted to basic geometries such as point, line, path, arc or multi-point
 prior to the cleaning process. The cleaner understands and works with
 circular arcs. Input features with invalid geometries are ignored and
 deleted.

 Output Ports

 Cleaned

 Each feature that is output
 through the Cleaned port has a new attribute "mrf_clean_status"
 added to specify whether the feature is modified, created, or will remain
 unchanged in the cleaning process. The possible values of this attribute
 are "Modified", "Created" and "Original".

 Flagged

 Features can also be output
 through the Flagged port if any of the Remove Dangles, Remove Short Geometries
 and Compute True Intersections is set to Flag. Each of these features
 has a new attribute "mrf_flag_status" added to specify whether
 this feature is flagged as being shorter than the tolerance value ("short"),
 a dangling geometry ("dangle") or an intersection point ("intersection").

 Parameters

 Group By

 The default behavior is to use the entire set of input features as the group. This option allows you to select attributes that define which groups to form—each set of features that have the same value for all of these attributes will be processed as an independent group.

 Parameters

 Cleaning
 Tolerance

 This is used as the default tolerance unless the Feature Tolerance
 Attribute is specified and valid. The minimum tolerance allowed is 0.0.

 Compute
 Intersections

 If set to Yes, intersections between all input features
 are computed, breaking arcs and lines wherever an intersection occurs.
 A fuzzy intersection is also created from geometries which are within
 one of the tolerance distances, but do not actually touch or cross.

 Correct
 Undershoots

 If set to Yes, arcs and lines that are within the specified
 tolerance are extended –
 while maintaining line-work direction. No intersections are created while
 doing this. This option does not process overshoots; a combination of
 Compute Intersections and Remove Short Geometries can serve this
 purpose.

 Generalize
 Lines

 If set to Yes, a number of vertices of lines are removed.
 The number of vertices removed is controlled by a weeding tolerance of
 the value of (Filter Factor * tolerance) or (Filter Factor * value of
 Feature Tolerance Attribute). The latter is always used when it is valid
 and the Feature Tolerance Attribute is specified. The larger the value
 of weeding tolerance, the more vertices will be removed.

 Remove
 Dangles

 If set to Yes, then features that have at least one free
 end point and have lengths smaller than (Dangle Factor * tolerance) or
 (Dangle Factor * value of Feature Tolerance Attribute) are removed. The
 default value of Dangle Factor is 1.0 and the minimum is 0.0.

 Dangle Factor

 The default value is 1.0 and the minimum value is 0.0.

 Filter Factor

 The default value is 1.0 and the minimum value is 0.0.

 Geometries

 Remove
 Short Geometries

 If set to Yes, features that have lengths smaller
 than the specified tolerances are deleted.

 Remove
 Duplicate Geometries

 If set to Yes, duplicated features are deleted.
 Features are considered to be duplicates if their geometries are within
 tolerance and only features with a smaller tolerance will remain after
 cleaning.

 Join
 Geometries

 If set to Yes, then singly-connected features are joined
 to form longer ones. A pair of linear features becomes a candidate for joining
 only when the two are singly connected at a given node or end point.

 Conflate
 Geometries

 If set to Yes, then the geometry of a feature can be
 changed to match that of another, if the two are approximately the same
 to begin with.

 Clean
 Area Geometries

 If set to Yes, then area features such as polygons
 or donuts will be cleaned without stroking them first.

 Module Workflow

 MRFCleaner Modules provide more detailed information
 on the modules in the underlying MRFCleanFactory.

 This default workflow
 is suitable for most situations. However, using the individual modules,
 it is possible to create any number of customized workflows for specific
 projects and/or datasets (for example, in Workbench, by using a series
 of consecutive MRFCleaner transformers or custom transformers). It is
 important, however, to understand the data being processed and the desired
 end result.

 [image: mrf_workflow.gif]

 More Information

 	See General Processing Tips.

 	MRFCleaner Sample Results

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 MRF

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 1Portions of this work are the intellectual property of the MRF Geosystems Corporation and are used under license. Copyright © 2006 MRF Geosystems Corporation. All rights reserved.

 MRFCleaner Modules

 	TOLERANCE

 	SHORT_ELEMENT

 	EXTEND

 	INTERSECT

 	DUPLICATE_REMOVE

 	JOIN

 	CONFLATE

 	DANGLER

 TOLERANCE

 The TOLERANCE clause must be specified.
 This value serves as the default tolerance of the input features if the
 TOLERANCE_ATTR clause is not specified or
 the features have invalid tolerance value. The minimum value allowed is
 0.0.

 If the TOLERANCE_ATTR is specified and
 the value of the <attribute_name> is
 greater than or equal to 0.0, this value is used instead of the value
 specified in TOLERANCE clause.

 SIMPLIFY

 If the SIMPLIFY clause is set to “YES”,
 the line weeding / generalization will
 be included as part of the cleaning process. This involves the removal
 of line string vertices based on a specified tolerance. This process uses
 a weeding tolerance of the value of (FILTERFACTOR
 * TOLERANCE) or (FILTERFACTOR* value of TOLERANCE_ATTR). The latter is used
 whenever TOLERANCE_ATTR clause is specified
 and its value is valid. The larger the value of the weeding tolerance,
 the more vertices will be removed. The default value of FILTERFACTOR
 is 1.0.

 [image: 3.2.1.gif]

 FIGURE 1 Line string before and after simplification

 SHORT_ELEMENT

 If the SHORT_ELEMENT clause is set to “YES”,
 geometries of features that have lengths smaller than the specified tolerances
 are deleted. Short geometries created during the cleaning process are
 also deleted.

 EXTEND

 If the EXTEND clause is set to “YES”, the
 MRF Extend module is enabled. It is useful to extend certain elements
 – correcting for undershoot – while maintaining line-work direction. If
 a feature has a free end, this module will attempt to extend it until
 it meets other line-work within its tolerance; no intersections are created.
 This module does not process overshoots; the combination INTERSECTION
 and DANGLER modules can be used to serve
 this purpose.

 The EXTEND clause processes elements in
 the following manner:

 	line-line extension

 	line-arc extension

 	arc-arc extension

 Line-line extension

 In the figure below, lines AB and CD will be extended
 to point E, if E is within tolerance of both AB and CD, and both B and
 D are free ends.

 [image: 3.4.1.gif]

 FIGURE 2 Linear extension, example 1

 In Figure 3, lines AB and DE cannot be extended to point
 F, even though the distance BF is less than the tolerance for AB and EF
 is less than the tolerance for DE. This is because B is not a free end.

 [image: 3.4.2.gif]

 FIGURE 3 Linear extension, example 2

 In Figure 4, CD has a tolerance layer larger than both
 the distances DE and CD. In this case, point D (rather than point C) will
 be extended to point E, since it has the smaller extension distance.

 [image: 3.4.3.gif]

 FIGURE 4 Linear extension, example 3

 If a line can be extended to more than one element, it
 will be extended only as far as the closest one. In Figure 5, line AB
 will be extended to point C (not D or E).

 [image: 3.4.4.gif]

 FIGURE 5 Linear extension, example 4

 Line-Arc Extension

 Figure 6 shows that circular arc AB will be extended along its path
 to point C, if BC is less than the tolerance for AB. Also, line DE will
 be extended to DEF if EF is less than DE’s tolerance.

 [image: 3.4.5.gif]

 FIGURE 6 Line-arc extension, example 1

 Arc-Arc Extension

 Figure 7 shows that for arcs AB and DE, if BC is less than the tolerance
 for AB, then arc AB will be extended to C. Arc DE will be extended to
 F, if EF is less than the tolerance of DE.

 [image: 3.4.6.gif]

 FIGURE 7 Arc-arc extension, example 1

 INTERSECT

 MRF Intersect flags and/or creates true and fuzzy intersections. It
 has element intersection, clustering, and splitting sub-functions.

 MRF Intersect recognizes two types of relationships:

 True intersections: When two
 vectors cross each other, the crossover point (X) is called a true intersection

 [image: 3.5.1.gif]

 Fuzzy intersections: A fuzzy intersection can be created from elements
 which are within

 one of the tolerance distances, but do not actually touch or cross.
 In other words, the two

 lines nearly intersect, and the minimum distance from the end of one
 line to the other line

 is shorter than one of the lines’ tolerances

 [image: 3.5.2.gif]

 If the INTERSECT clause is set to “YES”,
 the MRF Intersect module is enabled. This module computes intersections
 between all input features, breaking arcs and lines wherever an intersection
 occurs. A fuzzy intersection is also created from geometries which are
 within one of the tolerance distances, but do not actually touch or cross.

 If the FUZZY_INTERSECT clause is set to
 “NO” then fuzzy intersections will not be created in the process.

 DUPLICATE_REMOVE

 If the DUPLICATE_REMOVE clause is set to
 “YES”, the MRF Duplicate remover module is enabled. Features are considered
 to be duplicates if their geometries are within tolerance and only features
 with a smaller tolerance will remain after cleaning.

 JOIN

 If the JOIN clause is set to “YES”, then
 singly-connected features will be joined to form longer ones. A pair of
 linear features become candidates for joining only when the two of them
 are singly connected at a given node or end point.

 CONFLATE

 If the CONFLATE clause is set to “YES”,
 then the geometry of a feature can be changed match that of another, if
 the two are approximately the same to begin with.

 DANGLER

 A dangle is a geometry that has at least one free end point. If the
 DANGLER clause is set to “YES”, MRFCleanFactory
 will remove dangles if their lengths are less than the (DANGLEFACTOR
 * TOLERANCE) or (DANGLEFACTOR * value of
 TOLERANCE_ATTR). Again the latter is always used whenever possible.
 The default value of DANGLEFACTOR is 1.0.

 See the MRFCleaner topics for a description of the other types of output clauses that
 are supported.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 MRFCleaner: General Processing Tips

 There are several fundamental tips and tricks for optimizing processing.
 The following list identifies and briefly describes some key issues to
 consider when cleaning data.

 Know your data

 The first step in any cleaning exercise is to become familiar with your
 source data. Information on data quality (i.e., 1m vs. 100m accuracy),
 data currency, and intended use is important in determining which cleaning
 modules and tolerances should be used. If such information is not available,
 a visual inspection of the design file(s) should provide insight into
 average line-work gap sizes, line weeding requirements, and other issues
 which may exist.

 Start small

 When setting cleaning tolerances, it is always best to start small.
 With smaller tolerances, the software uses a smaller search radius, which
 reduces the number of potential element intersections to consider and
 increases processing speed. Also, if the bulk of the linework errors can
 be corrected using a small tolerance, more detail can be maintained in
 the dataset. One or more cleaning processes can always be repeated with
 larger tolerances to increase the number of errors automatically corrected.

 Mix it up

 Depending on the source dataset, and its intended use, you may achieve
 better results running the individual modules with different tolerances.

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 MRFCleaner Sample Results

 The MRFCleanFactory uses generic algorithms to perform data cleaning
 and does not follow a set of predefined cases. The best way to learn the
 behavior of MRFCleanFactory is to construct test cases.

 The following diagrams illustrate the cleaning principles. Each element
 is assumed to be on a unique level unless otherwise stated. Tolerances
 are shown at the top of each figure.

 [image: figure5.1.gif]

 FIGURE 8 Arc and line nodes moved to cell origin

 [image: figure5.2.gif]

 FIGURE 9 Arc broken and ends collocated to cell origin

 [image: figure5.3.gif]

 FIGURE 10 Cell moved to arc. Arc is broken.

 [image: figure5.4.gif]

 FIGURE 11 Redundant vertices removed by line weeding.

 [image: figure5.5.gif]

 FIGURE 12 Line with larger tolerance moved to line
 with smaller tolerance

 [image: figure5.6.gif]

 FIGURE 13 Fuzzy intersection created in linear element
 with larger tolerance

 [image: figure5.7.gif]

 FIGURE 14 Fuzzy intersection created in linear element
 with smaller tolerance

 [image: figure5.8.gif]

 FIGURE 15 Fuzzy intersection
 created in linear element with larger tolerance

 [image: figure5.9.gif]

 FIGURE 16 Cell with large tolerance moved to fuzzy
 intersection in linear element

 [image: figure5.10.gif]

 FIGURE 17 Linear elements with large tolerance moved
 to collocate with cell origin with smaller tolerance

 [image: figure5.11.gif]

 FIGURE 18 Nodes and vertices on linear element with
 large tolerance collocated at cell origin with smaller tolerances

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 MultipleGeometryFilter

 Filters aggregate features based on the type of aggregate.

 About Multiple Geometry

 Output Ports

 Contains

 If the aggregate is set up such that each part is independent from the others, and should be interpreted as its own complete geometry, then the feature will be sent to the Contains port.

 NotContains

 Aggregates that do not match the criteria for Contains will be sent to the NotContains port.

 Invalid

 This transformer works only on aggregates, so features containing any other geometry type will be sent to the Invalid output port.

 Example

 It may be useful to know whether a feature contains multiple geometries when the source dataset supports the notion of multiple independent geometries per feature but the destination dataset does not.

 In this case, it may be desirable to split up the feature into multiple separate features.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Filters

 Transformer History

 This transformer was previously named IndividualGeometriesFilter.

 [bookmark: mc_index_keyword_aggregate;individual;multiple;many]
 Keywords: aggregate individual multiple many

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: aggregate individual multiple many

 MultipleGeometrySetter

 Provides the ability to set up an aggregate where each part is independent from the others, and its own complete geometry.

 For example, if an aggregate enters and it contains two parts, a line and a polygon, it will leave containing the same two parts, but the difference will be that each part should now be interpreted as its own separate geometry. For example, a database writer that supports this concept may then write out each of the multiple geometries to its own geometry column.

 About Multiple Geometry

 Output Ports

 Aggregate

 Aggregates will be sent out via the Aggregate port.

 Invalid

 This transformer works only on aggregates, so features containing any other geometry type will be sent to the Invalid output port.

 Parameters

 Set to Contain Multiple Geometries

 When this parameter is set to No, the aggregate will represent a single geometry comprising multiple parts

 When this parameter is set to Yes, each part in the aggregate will be interpreted as its own separate geometry, independent from the other parts.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Transformer History

 This transformer was previously named IndividualGeometriesSetter.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: aggregate individual multiple many "multiple geometry" multigeometry

 NeighborFinder

 Finds the closest Candidate feature within a specified maximum distance of
 each Base feature.

 Input Ports

 If a feature is routed to both the Base and the Candidate input ports,
 then features will be compared to themselves as they are both a Base and
 Candidate.

 If there is only a connection made to the Candidate port, but not to the Base port, then all Candidates will be compared
 with all other Candidates, but will not be compared to themselves.

 Output Ports

 If there are no Candidate features found to be within the maximum distance,
 then the Base feature will be output unchanged via the UnmatchedBase
 port.

 Candidate features not close enough to any Base feature are output via
 the UnmatchedCandidate port.

 If a Candidate feature is found, then all the attributes from the
 closest Candidate feature are added to the Base feature and the Base feature
 is output via the Matched port. In addition, several other attributes
 are added to the Base feature just prior to it being output via the Matched
 port:

 	Attributes
 	Description

 	 _distance
 	 The distance from the Base to the matching Candidate

 	 _angle
 	The angle between the closest interpolated Base point and the closest
 interpolated Candidate point.

 	 _closest_base_x,
 _closest_base_y
 	The coordinates of the closest interpolated point on the Base feature relative
to the Candidate feature.

 	 _closest_candidate_x,
 _closest_candidate_y
 	The coordinates of the closest interpolated point on the Candidate feature
relative to the Base feature.

 	 _candidate_angle
 	The angle from (_closest_candidate_x, _closest_candidate_y) to the next vertex
within the Candidate feature. If (_closest_candidate_x, _closest_candidate_y)
equals the last vertex of the Candidate feature, then candidate_angle will be
the angle from the previous vertex of the Candidate feature to
(_closest_candidate_x, _closest_candidate_y).

 	 _candidate_label_angle
 	The _candidate_angle adjusted so that if it is used as a text rotation,
 the text will run from left to right. This
 angle is guaranteed to be greater than or equal to 270 and less than 360,
 or greater than or equal to 0 and less than or equal to 90.

 Invalid features (i.e. extra candidates) are output via the <Rejected> port.

 Parameters

 Group By

 The default behavior is to use the entire set of input features as the group. This option allows you to select attributes that define which groups to form. Each set of features that have the same value for all of these attributes will be processed as an independent group.

 Parallel Processing Level

 How parallel processing works with FME: see About Parallel Processing for detailed information.

 This parameter determines whether or not the
transformer should perform the work across parallel processes. If it is enabled, a process will be launched for each group specified by the Group
By parameter.

 Parallel Processing Levels

 	Parameter
 	Number of Processes

 	No Parallelism
 	1

 	Minimal
 	cores1 / 2

 	Moderate
 	exact number of cores

 	Aggressive
 	cores x 1.5

 	Extreme
 	cores x 2

 For example, on a quad-core machine, minimal parallelism will result in two simultaneous FME processes. Extreme parallelism on an 8-core machine would result in 16 simultaneous processes.

 You can experiment with this feature and view the information in the Windows Task Manager and the Workbench Log window.

 Maximum Distance

 The maximum distance is measured in the units of coordinates
 of the input features.

 The list contains all of the candidate features that were within the maximum distance of the base.

 To get the distance from a given Base to all Candidate features, use a very large number for this parameter and specify a Close Candidate List Name.

 Insert Vertex on Base Feature

 If Insert Vertex on Base feature is Yes, then (_closest_base_x, _closest_base_y) will be inserted onto the Base feature if the insertion is well-defined. For example, if a Candidate polygon is contained inside a Base polygon, insertion will not take place.

 If Insert vertex on Base feature is Yes, the _closest_base_x, _closest_base_y vertex will be inserted onto to the Base feature as well as added as an attribute. This option only applies to Lines, Polygons, Paths, Arcs, Ellipses, and Donuts.

 Candidates First

 If set to Yes, then all Candidate features must be input before any Base features. If a Candidate feature is input after a Base feature and this option is set to Yes, the Candidate feature will be ignored in all calculations.

 Close Candidate List Name

 If specified, a list will be built on the Matched output, consisting of all the attributes from the Candidate features that were within maximum distance of the Base feature.

 Tested Candidate List Name

 If specified, a list will be built on the Matched output, consisting of all
the attributes from the Candidate features whose bounding boxes were within
maximum distance of the bounding box of the Base feature.

 Treat Polygons As

 	Lines: A polygon, donut, or ellipse will be treated as a line (that is, its boundary line) for backwards compatibility.

 	Areas: A polygon, donut, or ellipse will be treated as an area, and any geometry that overlaps with the area will be of 0 distance away from that area.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Collectors

 Example

 All angles are measured in degrees counterclockwise from horizontal. Where angles are not well-defined (for example, when a Candidate polygon is contained inside a Base polygon), they are set to 0.

 [image: neighborfinder.gif]

 Usage Notes

 This transformer works with 2D geometries only; if an input geometry is 3D, its z-coordinate will be ignored.

 This transformer has full support for points, lines, arcs, ellipses, polygons, and donuts, and has limited support for other types of geometry. Polygons, ellipses and donuts may be processed as lines or areas, depending on user selection.

 FME Licensing Level

 FME Professional edition and above

 FMEpedia

 See the NeighborFinder page in FMEpedia for additional information and examples that use this transformer.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: MBR "minimum bounding rectangle" neighbourfinder

 1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 NeighborhoodAggregator

 Creates aggregates of features based on their proximity to each other.
 Each aggregate that is created covers approximately the neighborhood width
 and height (measured in feature ground units).

 This transformer is used to reduce the data volume of "wallpaper"
 types of features that have no individual attributes. The resulting aggregates
 can be output to a system using many fewer records than if each feature
 was output by itself. For systems that support aggregates, or multi-part
 features, this can result in substantial performance improvements and
 greatly decrease storage requirements.

 Parameters

 Group By

 Features that leave this transformer will have only the group-by attributes present on them. Any other feature attributes are lost.

 Neighborhood Width and Neighborhood Height

 These parameters, measured in ground units, divide the input space into cells. The center of the bounding box of each input feature is used to determine the cell for the feature. Once all input features have been read, an aggregate feature is created from all features in each cell. If linear features are input, they will have pseudo nodes removed from within their cells to further reduce the number of separate entities. No such reduction is done to any polygons or donuts that enter.

 Minimum Neighborhood Members

 When you set this parameter, neighborhoods with fewer than the specified number of features are merged with a vertical neighbor area in order to increase the number of members. You can prevent this from happening by setting the parameter to 0 (zero).

 Example

 [image: neighborhoodaggregator.gif]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Collectors

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: MBR "minimum bounding rectangle" neighbourhoodaggregator

 NeighborPairFinder

 Finds the closest two Candidate features within some maximum distance
 of each Base feature and some minimum separation in heading between the
 Candidates and the Base. The maximum distance is measured in the units
 of coordinates of the input features. The minimum separation angle is
 measured in degrees, and specifies the minimum difference in heading from
 the base that the two candidates must have before the second one will
 be used.

 If none, or only one, Candidate feature is found to be within the maximum
 distance, then the Base feature will be output unchanged via the UnmatchedBase
 port.

 If two Candidates are found, then the Base feature is output via the
 Matched port. In
 this case, the following attributes will be added to the Base feature:

 	_distance1, _distance2
 – The
 distance (in ground units) from the Base to the matching Candidate

 	_heading1, _heading2
 – The
 angle between the closest interpolated Base point and the closest interpolated
 Candidate point.

 	 _closest_base_x1,
 _closest_base_y1, _closest_base_x2, _closest_base_y2 –
 The coordinates of the closest interpolated point on the Base feature
 to the closest interpolate point on the Candidate feature.

 	_closest_candidate_x1,
 _closest_candidate_y1, _closest_candidate_x2, _closest_candidate_y2
 – The
 coordinates of the closest interpolated point on the Candidate feature
 to the closest interpolate point on the Base feature.

 	_candidate_angle1,
 _candidate_angle2 –
 The angle from the closest interpolated point on the Candidate feature
 to the next vertex within the Candidate feature. (If
 the closest interpolated point on the Candidate feature is its last vertex,
 then candidate_angle will contain the angle from the previous vertex of
 the candidate feature to the closest interpolated point on the Candidate
 feature.)

 	 _candidate_label_angle1,
 _candidate_label_angle2 –
 The _candidate_angle adjusted so that if it is used as a text rotation,
 the text will run from left to right. This
 angle is guaranteed to be greater than or equal to 270 and less than 360,
 or greater than or equal to 0 and less than or equal to 90.

 (The attributes ending in 1 relate to the closest Candidate feature
 found. The
 attributes ending in 2 relate to the next closest Candidate feature found,
 which has a sufficiently different heading.)

 All headings are measured in degrees counterclockwise from horizontal.
 All distances
 are measured in the ground units of the features.

 The ClosestVector and SecondClosestVector ports will have linear
 features output on them that connect the closest points on the base and
 candidate features. These
 ports are useful only for visualizing where the closest points were found.

 The Candidate Key Attribute field will be used to select a Candidate
 attribute from the two closest Candidates that will be preserved on the
 Base feature as _key attributes.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Collectors

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 NetworkCostCalculator

 Computes and assigns the cost of the shortest path from a source object to each connected object as the Z-values or measure values of the input features.

 Input Ports

 Line

 Network lines.

 Input Line features must be a topologically noded
network with features connecting at line ends only. That is, all features must be
split at junctions.

 Source

 There can only be one Source input for each group.

 Output Ports

 Connected

 All lines that are connected to the Source input port are output through the Connected port.

 Disconnected

 The lines that are not connected to the Source input port will be output through the Disconnected port. If Output Optimal Cost As parameter is set to Z-Values, the dimension of the disconnected lines is set to 2D. Otherwise, disconnected lines are untouched.

 Invalid

 There can only be one Source input for each group. All other inputs and non-linear features are output through the Invalid port.

 Parameters

 Group By

 Choose the attributes to group by.

 Weight Type, Forward Weight Attribute, Reverse Weight Attribute

 If Weight Type is set to By Length (Forward Only) or By One Attribute, then the weight of each input line is set to the length of the line or the attribute value specified in the Forward Weight Attribute. In this case, the algorithm will only consider the original orientation of the lines when computing the cost of the shortest path.

 If Weight Type is set to By Length or By Two Attributes, then the shortest path algorithm will consider both directions of the input lines. If Weight Type is set to By Two Attributes, the original orientation of the input line has the weight specified in the Forward Weight Attribute and the reversed orientation of the input line has the weight specified in the Reverse Weight Attribute. If Weight Type is set to By Length, the weight of both the original orientation and the reversed orientation of the input line is set to the length of the line.

 Only linear features with non-negative weight attribute values are allowed if the Weight Type is set to By One Attribute or By Two Attributes. If a feature does not have the attribute specified in the Forward Weight Attribute or the Reverse Weight Attribute, a zero weight is used for the line.

 Output Optimal Cost As

 If this parameter is set to Z-Values, then the optimal cost for each connected node is set as the Z-value of the node. Otherwise, the optimal cost is set as the measure value of the node with the measure name specified in Measure Name.

 Measure Name

 If you leave the Measure Name empty, the default measure name will be used.

 Snap Options

 Snap Source Points/Snapping Tolerance

 If this parameter is set to Yes, the transformer snaps the source points to the closest end points of the network lines.

 The source points are only snapped to the network lines if they are within the tolerance specified in Snapping Tolerance.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Network

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: topology

 NetworkFlowOrientor

 Fixes the flow (direction) of each edge or linear feature in the network to fit the downstream direction to the destination node.

 Input Ports

 Line

 Network lines.

 Input Line features must be a topologically noded
network with features connecting at line ends only. That is, all features must be
split at junctions.

 Destination

 Only one destination node is allowed for each group.

 Output

 Network

 All connected features are output through the Network port.

 Unused

 All edges or linear features not connected to the destination node are output through the Unused port.

 Invalid

 All non-linear features or extra destination nodes are output through the Invalid port.

 Parameters

 Group By

 The default behavior is to use the entire set of features as the group. This option allows you to select attributes that define which groups to form.

 Direction Attribute

 If an edge is reversed, the value of the attribute specified in Direction Attribute will be opposite. Otherwise, the value will be same.

 Usage Notes

 The functionality works well in a non-cycle network; however, it does not always yield desired results in a cycle network. One way to fix a cycle network is to omit edges that should not be modified from the input.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Network

 Related Transformers

 NetworkTopologyCalculator

 ShortestPathFinder

 StreamOrderCalculator

 StreamPriorityCalculator

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 NetworkTopologyCalculator

 Finds the connected lines that belong to the same network graph.

 Input Ports

 Line

 Network lines

 Input Line features must be a topologically noded
network with features connecting at line ends only. That is, all features must be
split at junctions.

 Output

 Network

 All connected lines are output through the Network port.

 Invalid

 All non-linear features are output through the Invalid port.

 Parameters

 Group By

 The default behavior is to use the entire set of features as the group. This option allows you to select attributes that define which groups to form.

 Network ID Attribute

 Linear input features that are connected will be assigned the same network ID in the Network ID Attribute.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Network

 Related Transformers

 NetworkFlowOrientor

 ShortestPathFinder

 StreamOrderCalculator

 StreamPriorityCalculator

 FME Licensing Level

 FME Professional edition and above

 Transformer History

 This transformer has been renamed from NetworkTopologyBuilder.

 Keywords: Network, NetworkTopologyBuilder

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: network networktopologybuilder

 NullAttributeMapper

 Maps specified attributes on a feature to specified values. This transformer is capable of mapping to and from null values, empty strings, and missing attributes.

 This transformer can be used to ensure that the representation of null, empty, and missing attributes on the feature matches the representation expected by the output format, or downstream transformer.

 In addition, some users might use a special value to represent null, missing, or empty. This transformer will allow you to map to and from that special value.

 Parameters

 Attributes To Map

 Map

 Whether to map All Attributes or Selected Attributes. All Attributes will operate on all attributes present on the feature, including format attributes. Please note that All Attributes will not operate on missing attributes. To map missing attributes, users must choose Selected Attributes.

 Selected Attributes

 Users must explicitly specify attributes to be mapped. Please note that checking ‘Select all’ within the ‘Select Selected Attributes Items’ dialog is not generally the same as choosing All Attributes for the Map parameter. For example, many existing attributes on the feature may not be exposed. In this case, All Attributes will process these unexposed attributes, while Selected Attributes will not be able to.

 Map To

 If Attribute Value Is

 For the specified attributes, check the value of the attribute in the input feature and if it is one of the specified values, then take the action specified by the Map To parameter. Values that can be matched are:

 	Empty – the attribute exists and has an empty string as its value.

 	Null – the attribute exists and has a value of null.

 	Missing (Selected Attributes Only) – the attribute does not exist. This choice does not apply if the Map parameter is set to All Attributes. We can only know that an attribute is missing if it has been explicitly specified through Selected Attributes.

 Or If Attribute Value Is

 If this parameter has a value, then this parameter specifies the value to match. If the attribute value matches the specified value, then the Map To action will be applied.

 Map To

 This parameter specifies how to map matching attributes. Possible actions are:

 	Null – this will cause the attribute to be set to a null value.

 	Missing – the attribute will be deleted.

 	Empty String – the attribute value will be set to an empty string (which has length 0).

 	New Value – the attribute will be set to the value specified by the New Value parameter.

 New Value

 This parameter specifies the value to set an attribute to if New Value is specified as the Map To action.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Strings

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 NumericRasterizer

 Draws input point, line and polygon features onto a numeric raster filled with the background value. The Z coordinates of the input vector features are used to generate pixel values. Features without Z coordinates will be discarded.

 Note: Only the Group By attributes are preserved by this transformer. The output feature will also be supplied with an fme_basename attribute equal to the transformer name.

 Parameters

 Group By

 If the Group By parameter is set to an attribute list, one raster per group will be produced.

 Parallel Processing Level

 How parallel processing works with FME: see About Parallel Processing for detailed information.

 This parameter determines whether or not the
transformer should perform the work across parallel processes. If it is enabled, a process will be launched for each group specified by the Group
By parameter.

 Parallel Processing Levels

 	Parameter
 	Number of Processes

 	No Parallelism
 	1

 	Minimal
 	cores1 / 2

 	Moderate
 	exact number of cores

 	Aggressive
 	cores x 1.5

 	Extreme
 	cores x 2

 For example, on a quad-core machine, minimal parallelism will result in two simultaneous FME processes. Extreme parallelism on an 8-core machine would result in 16 simultaneous processes.

 You can experiment with this feature and view the information in the Windows Task Manager and the Workbench Log window.

 Raster Properties

 Size Specification, Number of Columns (cells), Number of Rows (cells), X Cell Spacing, Y Cell Spacing

 To set the size of the output raster, specify either the dimensions or the cell size.

 To set the output raster size using dimensions, set the Size Specification to RowsColumns and specify values for both the Number of Columns and Number of Rows.

 To set the output raster size using cell size, set the Size Specification to CellSize and specify values for both the X Cell Spacing and Y Cell Spacing.

 Interpretation

 Interpretation Type

 Sets the interpretation of the output raster.

 Background

 Background Value

 Sets the background value of the raster.

 Fill Background with Nodata

 If this is set to Yes, the background value will also be flagged as the nodata value for the produced band.

 Anti-Aliasing

 Anti-Aliasing

 If the Anti-Aliasing parameter is Yes, the output lines will be smoothed using an anti-aliasing algorithm.

 Tolerance

 This parameter is the maximum normalized distance from a line segment or polygon vertex to a pixel to be rendered. For example a tolerance of 1.0 will draw all pixels touched by the input vector line, while a tolerance of 0.0 will draw only those pixels where the input vector line passes directly through their center. Tolerance can only be selected when anti-aliasing is off.

 Ground Extents

 Ground Extents

 If the Ground Extents parameter is set to Use input data ground extents, which means the extents are not explicitly specified, the output raster extents will be determined by the union of the bounding boxes of the valid input vector features. If the Ground Extents parameter is set to Specify ground extents, the remaining Ground Extents parameters are used to specify the extents of the output raster.

 Minimum X

 This specifies the minimum x value of the output raster. It is used when the Ground Extents parameter is set to Specify ground extents.

 Minimum Y

 This specifies the minimum y value of the output raster. It is used when the Ground Extents parameter is set to Specify ground extents.

 Maximum X

 This specifies the maximum x value of the output raster. It is used when the Ground Extents parameter is set to Specify ground extents.

 Maximum Y

 This specifies the maximum y value of the output raster. It is used when the Ground Extents parameter is set to Specify ground extents.

 Usage Notes

 This transformer is intended for producing elevation rasters. For producing color images, use the ImageRasterizer instead.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: MBR "minimum bounding rectangle"

 1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 OffsetCurveGenerator

 Offsets the segments of linear features, and if necessary, connects them using stroked arcs.

 Input Ports

 Lines

 Only 2D linear features are supported as input. Self intersecting lines are not supported, and may produce unpredictable results. Other types of geometry will result in undefined behavior.

 Output Ports

 Left and Right

 Each point in the output curve will be the specified offset, measured in ground units, away from the input linear geometry. The output ports Left and Right will produce offset curves on either side of the linear geometry.

 [image: offsetcurvegenerator.png]

 Parameters

 Offset

 This parameter, measures in ground units, specifies the distance by which the output curve is offset from the input curve.

 Interpolation Angle

 This parameter, measured in degrees, controls the smoothness of the stroked arcs in the output offset curve. As this parameter decreases in value, the smoothness of the arc connectors increases.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Offsetter

 Adds offsets to the feature's coordinates.

 After you connect the transformer, you can enter parameter values as a number or pick the value of a feature attribute by picking Set to Attribute Value from the Parameter menu.

 The feature will be shifted by the amounts specified.

 Parameters

 X Offset, Y Offset, and Z Offset

 A separate offset must be set for each of the X, Y, and Z axes. If the input feature is a raster, only X and Y offset values will cause coordinate location shifts. The Z offset will cause the values in the cells of the raster to be offset by the specified amount for each selected band.

 Point Cloud Component

 Specifies a component to offset on point cloud features. Note that the x, y, and z components can be offset using the generic Offset values. This parameter is intended for non-spatial components (e.g. intensity).

 Component Offset

 The offset that will be applied to the corresponding point cloud component.

 Usage Notes

 This transformer works with both raster and vector
 data.

 This transformer supports raster band and palette selection. The RasterSelector can be used to modify selection.

 Examples

 This example shows an image offset using the x and y parameters:

 [image: offsetter.png]

 This example shows an image offset using the x and y parameters:

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster vector coordinates offset

 OrientationExtractor

 Determines the feature's orientation and returns it in the specified
 Orientation Attribute. If the feature has area geometry which fits the
 right-hand or left-hand rule, the attribute will be set to the value right_hand_rule
 or left_hand_rule, respectively. Otherwise the attribute will be set to
 no_orientation.

 The right-hand rule requires that, on a walk of the area's coordinates,
 the area is on the right-hand side. Thus, outer boundaries must be clockwise
 and inner boundaries must be counterclockwise. The opposite is true for
 the left-hand rule.

 Note that the orientation will always be no_orientation for non-area
 features.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Orientor

 Adjusts the orientation of a polygonal feature or the direction of a
 linear feature.

 Parameters

 Orientation Type

 If the feature is an area, a RIGHT_HAND_RULE
 orientation causes the outer boundary to have its vertices arranged in
 a clockwise direction, and the holes to have their vertices in a counterclockwise
 direction.

 The opposite is true when LEFT_HAND_RULE
 is specified. When the LEFT_HAND_RULE
 is specified, the feature's outer boundary vertices are in a counterclockwise
 order and the holes have a clockwise ordering.

 When REVERSE is specified,
 the feature's coordinates are flipped so that the first coordinate becomes
 the last one, and vice-versa. This option is intended for use with features
 that are not polygonal. This transformer has no effect on solid geometries. Only the REVERSE option is available for surface geometries.

 Orientation Flag Attribute

 If this attribute is specified, then the attribute will be added to the resulting features and its value is set to Yes if the orientation of the geometry has been changed. Otherwise, the value of the attribute is set to No. An aggregate or multi geometry has its orientation changed if the orientation of at least one of its members is changed.

 Example

 [image: orientor.gif]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 ParameterFetcher

 Adds an attribute to the feature, supplying it the value of a previously
 published parameter.

 A parameter is a setting that you can pass values into when a translation
 is run. Parameters usually relate to a setting on a reader or transformer. The ParameterFetcher can be used to copy the value of one or more parameters
 to a corresponding number of attributes. The number of rows specified in the configuration dialog determine the number of exposed output attributes.

 Parameters

 Parameter Name

 When the ParameterFetcher is connected, the Parameter Name drop-down
 list shows the parameters that can be fetched from the workspace. The Parameter Name also exposes these additional parameters:

 FME_DATA_REPOSITORY

 FME_HOME

 FME_SECURITY_ROLES (FME Server)

 FME_SECURITY_USER (FME Server)

 FME_SERVER_NAME (FME Server)

 FME_JOB_ID (FME Server)

 FME_TOPIC (FME Server)

 FME_MF_DIR

 FME_BUILD_NUM

 These parameters may not be present in the workspace but they are applicable to the FME Server environment if the workspace is published to FME Server.

 See System Parameters for more information.

 Target Attribute

 The target attribute is the name of the attribute that will be created. When you select a parameter, this field is automatically filled with an appropriate name (for example, selecting a parameter named WIDTH will automatically name the target attribute _WIDTH). You can use the default name, or type a new name.

 Example

 This example describes a single parameter but you can fetch multiple parameters.

 The Creator transformer shown below has a published parameter called NUM. To publish this parameter, place the Creator transformer in the workspace. Then right-click on Number to Create and select Create Parameter.

 [image: creator_pubparam0.png]

 The dialog shows the Published Parameter properties, with the default value changed to 10:

 [image: creator_pubparam1.png]

 Choose the NUM parameter in the Parameter Name field, and type a Target Attributeresult.

 [image: parameterfetcher3.png]

 When the workspace is run, the ParameterFetcher fetches the value assigned
 to the "NUM" parameter and stores it in the "result"
 attribute. Now the feature has an attribute "result" which holds
 the value of the "NUM" parameter.

 [image: parameterFetcher1.gif]

 You
 can see the attribute and its value in the FME Universal Viewer.

 [image: parameterfetcher2.gif]

 For more information on Published Parameters, see the Workbench help topic Adding a Parameter.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 PartCounter

 Return the number of parts in the geometry. For multis and aggregates,
 this is the number of parts, and for paths, this is the number of segments.
 Otherwise, it is one. The Count Aggregates
 Recursively field specifies whether aggregates' parts should have
 their parts counted.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 PathBuilder

 Connects input linear (arcs and lines) features in the order they enter,
 forming path features.

 Note: For some datasets, it may be necessary to use a Sorter
 to order the data correctly before it enters this transformer.

 If the end point of one input segment does not match the following segment's
 start point, a two-point line will be inserted between these segments
 in the resulting path.

 The feature being created is output whenever a Connection
 Break Attribute value changes. When
 this happens, the feature with the differing attribute is not added to
 the current output feature; instead, it begins the next feature to be
 output.

 If consecutive input segments are lines, they will not be combined into
 a single line in the output path; they will remain as separate segments.
 Also, if
 only one segment is input for a set of Connection Break Attribute values,
 the output will still be a path (containing that single segment).

 If the optional List Name is
 supplied, a list is made of all the attributes of each feature that was
 connected when creating the output path.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 PathSplitter

 Decomposes a path feature into its component segments.

 Each output feature will contain a copy of the source feature's attributes.
 Non-path input features will be output untouched.

 The optional List Attribute is used to associate attributes with each
 segment of the path. If the feature has a list of attributes that are
 in parallel to the members of the aggregate, these can be decomposed onto
 the output features by specifying the List Attribute parameter.

 If the Segment Number Attribute is specified, then each output feature
 is given an attribute containing the part's segment index within the original
 path feature.

 Note that for an input feature to be affected, its geometry itself must
 be a path; that is, areas whose boundaries are paths and aggregates containing
 paths will be unaffected. The
 GeometryCoercer, DonutHoleExtractor,
 and Deaggregator may be used to prepare the geometries
 input to this transformer.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 PDFStyler

 Sets the common PDF style attributes for a group of features destined for the GeoSpatial PDF Writer.

 Parameters

 Identity

 Name

 Determines the name of the structure element associated with the incoming feature. Name must be set to a unique value per feature thus it is recommended this be set to an attribute containing unique string values.

 Tooltip

 Specifies the string that will be displayed when an user hovers over the feature with the mouse cursor in a PDF viewer application.

 URL

 Specifies the destination address to be resolved when a user clicks on the feature in a PDF viewer application that supports URI actions. In the common case of a URL, Adobe Acrobat Reader will open a web browser to resolve the address specified.

 Color

 Color

 Specifies the pen color of the feature used to render the feature in the set color. The pen color determines the color of points, lines, arcs, area boundaries, and annotations.

 Click the colored square to the right of the text field, edit the contents of the field directly. The color must be specified as r,g,b where each of r,g,b is a decimal number between 0.0 and 1.0.

 Fill Color

 Specifies the fill color for an area geometry on a feature used to render the interior feature in the set color.

 The Fill Color parameter can be edited by clicking the colored square to the right of the text field, or by editing the contents of the field directly. The color must be specified as r,g,b where each of r,g,b is a decimal number between 0.0 and 1.0.

 Opacity

 Specifies the opacity of the stroking color of the feature. A value of 1.0 is fully opaque, and 0.0 is completely transparent.

 Fill Opacity

 Specifies the opacity of the fill color of the feature. A value of 1.0 is fully opaque, and 0.0 is completely transparent.

 Line Style

 Line Width

 Specifies the line width in typographical points of line geometries and boundaries of area geometries. Points within half the line width perpendicular distance from the line path will be painted.

 Line Cap Style

 Specifies the cap style for the ends of lines. Valid values are:

 	Butt Cap: Lines are squared off at the end and do not project past the end of the line,

 	Round Cap: Semicircles with diameter equal to the line width cap the ends of lines, or

 	Projecting Square Cap: Lines project past the end by a distance equal to half the line width and are squared off.

 Line Join Style

 Specifies the shape of corners between segments of paths. Valid values are:

 	Miter Join: Outer edges of segments are extended until they meet,

 	Round Join: Arcs with diameter equal to the line width are drawn around corners, or

 	Bevel Join: Two adjacent segments are finished with butt caps, and the notch beyond the ends is filled with a triangle.

 Line Miter Limit

 Specifies a maximum on the ratio of the miter length to the line width. For example, a miter limit of 1.414 will bevel the ends of two segments meeting at an angle less than 90 degrees (the far corner will be at a distance sqrt(1^2+1^2)=sqrt(2) from the line).

 Line Dash Array/Line Dash Phase

 The Line Dash Array and Line Dash Phase control the pattern of dashes and gaps used to stroke lines. The elements of both the dash array and the dash phase are expressed in user space units. An empty dash array and zero phase can be used to draw a solid line.

 The Line Dash Array’s elements are numbers that specify the lengths of alternating dashes and gaps. The numbers must be nonnegative and not all zero. The Line Dash Phase specifies the distance into the dash pattern at which to start the dash.

 When drawing paths consisting of several subpaths, the dash pattern is applied independently to each subpath.

 Text

 Font

 Refers to any valid TrueType font name, which you can choose from the dialog or enter directly in the parameter field. The font name is case-insensitive, and can also include optional style parameters according to the syntax:

 <fontname>[,<fontsize>][,BOLD][,ITALIC][,STRIKEOUT][,UNDERLINE]

 The brackets [] enclose optional items.

 Usage Notes

 For more information regarding PDF styling, see the "GeoSpatial PDF Writer" in the FME Readers and Writers manual.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Stylers

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 PlanarityFilter

 Filters features based on their planarity. To be planar, a geometry must have all its points situated in the same plane.

 Input Ports

 Input

 Typically area-based or surface-based geometries.

 Output

 Planar

 If an area-based or surface-based geometry has all of its points situated in the same plane, its features are sent to the Planar output port.

 NotPlanar

 If an area-based or surface-based geometry is not planar, its features are written to the NotPlanar output port.

 Undefined

 All features with geometry types other than areas, multi-areas, surfaces, multi-surfaces, or composite surfaces will be sent to the Undefined output port.

 Parameters

 Specify Tolerance

 If Specify Tolerance is left unchecked, then the tolerance used will be one that should compensate for most small precision discrepancies in the geometry’s coordinates. Otherwise, the Tolerance parameter will be enabled and its value used instead.

 Tolerance

 Enter a value or choose an attribute. The tolerance is specified in ground units, and describes the maximum “thickness” a plane can have before it is considered non-planar. A planar polygon has a thickness of 0. A non-planar polygon will have its average surface normal computed using Newell’s method, and its thickness will be determined in the direction of the normalized surface normal.

 For example, consider a single, non-planar polygon. Imagine a plane that passes through the world origin, with its normal set to the average normal of the polygon. Then, every point along the polygon boundary would be a distance D to the world plane. Relative to the world plane, we find the closest point and the farthest point along the polygon boundary. The difference between the farthest and nearest distances give us the desired thickness.

 [image: facereplacer_input.png]

 [image: facereplacer_sideview.png]

 Specify Plane Normal

 If Specify Plane Normal is left unchecked, the average surface normal is determined using Newell’s method. The normal vector is then normalized. The effect is that coordinates must lie in the same plane, but that may be any plane.

 If Specify Plane Normal is checked, then all coordinates must lie in a plane with the normal vector given by the Normal X, Y, and Z parameters.

 Normal X, Y, Z

 Sets the x, y, and z components of the vector normal to the plan against which to test.

 Usage Notes

 This transformer works only on the following geometries:

 	areas (polygons, ellipses, and donuts)

 	multi-areas

 	surfaces

 	multi-surfaces

 	composite surfaces

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Filters

 Related Transformers

 FaceReplacer

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: planar planarity "flat plan"

 Player

 Retrieves features stored in an FME Feature Store file and outputs them
 into the workspace.

 FME Feature Store files can be created with the Recorder transformer,
 by the RecorderFactory in an FME mapping file, or with the FME Feature Store writer. See the FME Feature Store Reader/Writer chapter in the FME Readers and Writers manual for more details on this format.

 Features in an FFS file are stored along with a feature type string. The saved feature type will depend on the way the features were written to the FFS file.

 	If the features originate from a Recorder, this string will be __RECORDED__, unless a Feature Type Attribute was specified in that transformer.

 	If the features come from a RecorderFactory, the string will be whatever feature type was set on features entering that factory. If the features were created by the FFS writer, the string will be the name of the destination feature type to which the features were routed.

 Parameters

 Input Feature Store File

 Type or select the FME Feature Store (*.ffs) file to be played back.

 Playback Mode

 PLAYBACK: The features will be restored to the workspace before any other features created in previous transformers or read from an input data source.

 PLAYBACK_AT_END: The features will be restored to the workspace after any other features created in previous transformers or read from an input data source.

 Password

 The optional password must be provided if the FME Feature Store file
 being read was produced with a password. Before the file can be read,
 the password must match that used to create the file.

 Recorded Feature Type Attribute

 The saved feature type of each feature will be stored in the Recorded Feature Type Attribute, if one is specified

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Related Transformers

 Recorder

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 PointCloudCoercer

 Coerces point cloud geometries into points or multipoints. This transformer can be used to write a point cloud to a format that does not support point clouds.

 Input Ports

 Input

 This transformer accepts only point cloud features.

 Output Ports

 Coerced

 Point or multipoint features based on the selected Output Geometry.

 Parameters

 Output Geometry

 	
 Spatial Equal Points Multipoints: The input point cloud will be coerced into one or more multipoint geometries, each of which contains at most Maximum Points Per Multipoint. This mode guarantees that output multipoints will be spatially disjoint from each other, but performs slower than Sequential Equal Points Multipoints. This method attempts to split the point cloud into multipoints that have an equal number of points, as close as possible to the specified maximum size. Note that this option could result in memory errors if the input point cloud is very large.

 	Sequential Equal Points Multipoints: The input point cloud will be coerced into one or more multipoint geometries, each of which contains at most Maximum Points Per Multipoint. This method splits up the point cloud by making a multipoint from the first N points, then another multipoint from the next N points, etc. Note that output multipoints may overlap each other.

 	
 Nested Equal Area Multipoints: The input point cloud will be coerced into one or more multipoint geometries, each of which contains at most Maximum Points Per Multipoint. This mode guarantees that output multipoints will be spatially disjoint from each other, but performs slower than Sequential Equal Points Multipoints. This mode attempts to split the point cloud into a set of tiles that have an equal area. If a tile contains too many points, it is further subdivided. This method performs faster than Spatial Equal Points Multipoint and is not restricted by point cloud size, but likely will produce a greater number of multipoints containing a lower average number of points.

 	Single Multipoint: The input point cloud will be coerced into a single multipoint geometry. Note that this option could result in memory errors if the input point cloud is very large.

 	Individual Points: The input point cloud will be coerced into individual points.

 Maximum Points Per Multipoint

 Specifies the maximum number of points in output multipoint geometries.

 Point Components to Preserve

 Specifies which point cloud components should be preserved, either as attributes on output features or measures on output point geometries.

 Preserve Point Components As

 Specifies whether point cloud components should be preserved as attributes or measures.

 Preserve Attributes

 Specifies whether attributes of the input feature should be preserved on the output features.

 Part Number Attribute

 An attribute to be added to each output feature, indicating its part number. For each input feature, the first output feature will be part 0, the second will be part 1, and so on.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Point Cloud

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: point "point cloud" cloud PointCloud coerce LiDAR sonar

 PointCloudCombiner

 Combines multiple geometries into a single point cloud. Point cloud features will be accumulated as is.

 Point and linear features will be converted point for point. Polygonal, donut, surface and solid features will be converted into a grid of points lying inside the area on the 3D plane represented by the area’s calculated normal. Any existing component values stored as measures or attributes can be preserved as components.

 Rasters will be converted to point clouds as follows:

 	The x and y components will be created from the columns and rows.

 	The first selected numeric band will become the z component.

 	The first selected bands with red/green/blue/gray interpretations will become the color_red/color_green/color_blue components.

 	Additional selected bands will also be preserved. If the band has a name, the component name will be the band name. If the band has no name, the component name will be bandN, where N is the band index.

 Input Ports

 Input

 This transformer accepts all geometries. Area-based geometries will be converted to point clouds according to the spacing parameter.

 Output Ports

 Output

 A single point cloud feature.

 Parameters

 Transformer

 Group By

 Use this parameter to organize point clouds into groups. Each group of point clouds will have its own output point cloud.

 Attributes

 Accumulate Attributes

 If this parameter is set to Yes, the attributes from the original features will be merged onto the output point cloud features.

 Count Attribute

 If you specify a Count Attribute parameter (text string), an attribute with this name will be added to each output feature.

 The attribute contains the number of features that were combined to create the point cloud feature.

 Raster Parameters

 Extract Nodata

 This parameter specifies whether points should be created for nodata cells in rasters. When set to Yes, a point will be created for every cell in a raster, regardless of whether it is nodata. When set to No, points will not be created for nodata cells. A cell is considered to be nodata when, for each selected band, the value for that cell is equal to that band's nodata value. If any cell value is not equal to that band's nodata value, the cell will be considered data.

 Vector Feature Interpolation

 Point Interval

 This parameter controls the spacing between points in ground coordinates that will be used to generate the representative point grid used for surfaces, solids, polygons, and donuts. You can either enter a number or extract the value from a selected attribute.

 Measures to Preserve as Components

 Measures to Preserve as Components

 Specifies the measures on input vector geometries that should be preserved as components in the output point cloud. The type of the output component must also be specified.

 Attributes to Preserve as Components

 Attributes to Preserve as Components

 Specifies the attributes on input features that should be preserved as components in the output point cloud. The type of the output component must also be specified. Note that if the same component is specified as both a measure and attribute to preserve, the measure value will be preferred.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Point Cloud

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: point "point cloud" cloud PointCloud coerce LiDAR sonar

 PointCloudComponentAdder

 Adds new components with constant values to a point cloud.

 This is not generally necessary, but may be useful for setting a component to a specific value before writing out a point cloud.

 Input Ports

 Input

 All input features must have point cloud geometry.

 Output Ports

 Output

 The updated features are output through this port.

 Parameters

 Component

 The name of the component to add.

 Type

 The desired type of the added component.

 Value

 The value of the added component. This value will be used for all points.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Point Cloud

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 PointCloudComponentCopier

 Copies an existing component to a new component with the specified name. The existing component remains and a new component is created that has a different name, but the same values.

 Input Ports

 Input

 All input features must have point cloud geometry.

 Output Ports

 Output

 The updated features are output through this port.

 Parameters

 Source Component

 The source component to copy from.

 Target Component

 The target component to copy to. If this component already exists, it will be overwritten.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Point Cloud

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 PointCloudComponentKeeper

 Removes all components from a point cloud, except for the specified ones.

 Removing unnecessary components may improve performance.

 Input Ports

 Input

 All input features must have point cloud geometry.

 Output Ports

 Output

 The updated features are output through this port.

 Parameters

 Components to Keep

 The list of components to keep.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Point Cloud

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 PointCloudComponentRemover

 Removes specified components from a point cloud.

 Removing unnecessary components may improve performance.

 Input Ports

 Input

 All input features must have point cloud geometry.

 Output Ports

 Output

 The updated features are output through this port.

 Parameters

 Components to Remove

 The list of components to remove.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Point Cloud

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 PointCloudComponentRenamer

 Renames an existing component.

 Input Ports

 Input

 All input features must have point cloud geometry.

 Output Ports

 Output

 The updated features are output through this port.

 Parameters

 Source Component

 The source component name.

 Target Component

 The target component name. If this component already exists, it will be overwritten.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Point Cloud

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 PointCloudComponentTypeCoercer

 Converts the type of point cloud components.

 Input Ports

 Input

 All input features must have point cloud geometry.

 Output Ports

 Output

 The updated features are output through this port.

 Parameters

 Components to Coerce

 The components which should have their type converted.

 Component Type

 The desired type of the components.

 Conversion Type

 The method with which to perform the conversion.

 	Cast - Uses C-style casts.

 	Bounded cast - Uses C-style casts, but also validates that the source values fit into the destination type, effectively preventing underflow and overflow. If a source value does not fit, the corresponding destination value will either be set to its type's minimum or maximum value.

 	Scale by data type - Scales the source values while preserving all proportions in regard to the source and destination types' range. This is typically used when converting color components, e.g. from UInt8 to UInt16.

 	Scale by data values - Finds the minimum and maximum values of the source values and uses them to scale the values to the full range of the destination type.

 	Scale by data values, preserve values - Similar to Scale by data values, but also sets a scale and offset on the destination component so that the original values are preserved. This may be useful when you have floating point values but need to convert them to an integer type, while still preserving the original values. For example, this could be used when reading Real64 coordinates (e.g. from the POINTCLOUDXYZ reader) and writing to a format that only supports integer coordinates (e.g. the LAS writer).

 Rounding Type

 Specifies the action to perform when converting from a floating-point value to an integer.

 	Round - Rounds the floating-point value to the nearest integer.

 	Ceiling - Gets the next integer which is greater than or equal to the floating-point value.

 	Floor - Gets the next integer which is less than or equal to the floating-point value.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Point Cloud

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 PointCloudConsumer

 Requests the point(s) from the point cloud geometry but no actual operations are performed on the point(s).

 Input Ports

 Input

 All input features must have point cloud geometry.

 Output Ports

 Output

 Point or multipoint features based on the selected Output Geometry.

 Parameters

 Block Size

 Specifies the number of points to read from a point cloud geometry at once.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Point Cloud

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: point "point cloud" cloud PointCloud coerce LiDAR sonar

 PointCloudCreator

 Creates a new point cloud feature with the specified size and components and sends it into the workspace for processing.

 Output Ports

 Created

 Point cloud feature

 Parameters

 Point Cloud Properties

 X Component Type and
 Y Component Type

 Specifies the type of the x and y components. When an integer type is specified, the component values will be ascending integers (e.g. 0, 1, 2, ...), and the component will have a scale and offset value specified by other parameters (e.g. Average Spacing Along X and X Lower Left Coordinate). When a floating point type is specified, the component values will be multiplied out (e.g. min, min + 1*spacing, min + 2*spacing, etc.).

 Size Specification

 This parameter specifies how to create the points in the point cloud: either by using origin and size parameters, or extents parameters.

 X Lower Left Coordinate and
 Y Lower Left Coordinate

 The parameters
 specify the origin for the lower-left corner of the feature as a whole.

 Width and Height

 These parameters define the width and height of the point cloud, in ground units.

 Average Spacing Along X and Average Spacing Along Y

 These parameters specify how many points per ground unit should be in the output point cloud.

 X Upper Right Coordinate and Y Upper Right Coordinate

 These parameters specify the origin for the upper-right corner of the feature as a whole.

 Rotation

 The rotation angle is measured in degrees counterclockwise from horizontal, and measures the rotation of the primary axis from horizontal.

 Z Values

 Z Pattern

 This parameter specifies how the points in the cloud are given Z values. The Z values will be assigned as follows:

 	Flat: Every point in the cloud will have a z value specified by the minimum z.

 	Sloped: The points will have z values between minimum and maximum arranged in a gradient throughout the point cloud.

 	Trigonometric: The points will have z values between minimum and maximum arranged in a trigonometric pattern through the point cloud.

 	None: The point cloud will not have a z component.

 Z Component Type

 Specifies the type of the z component.

 Z Minimum and Maximum

 These parameters specify the minimum and maximum z value in the cloud.

 Component Values

 Value Pattern

 If the Value Pattern is:

 	Single Value: the component will have a value specified by its minimum

 	Checkered Pattern: the component will have values arranged in a gradient throughout the point cloud

 	Checkerboard: the component will have values alternating between its min/max

 Note: The point cloud must contain at least 8 rows and 8 columns in order for Checkered Pattern or Checkerboard to be used. Smaller point clouds will always be filled with a single value.

 Values

 Specifies each component to generate, the type of that component, and the minimum and maximum values for the component.

 Example Output

 [image: PointCloudCreator.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Point Cloud

 FMEpedia

 See FMEpedia for additional information about this transformer and point cloud scenarios.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: point "point cloud" cloud PointCloud coerce LiDAR split creator create sonar

 PointCloudExpressionEvaluator

 Evaluates expressions, such as algebraic operations or conditional statements, to set point cloud component values.

 Input Ports

 Input

 This transformer accepts only point cloud features.

 Output Ports

 Result

 The point cloud after evaluating the expressions.

 Parameters

 Component

 Specifies the component to be set by the corresponding expression.

 Type

 Specifies the type of the component in the output point cloud. Valid types are Real64, Real32, UInt64, UInt32, UInt16, UInt8, Int64, Int32, Int16, Int8, Auto and Preserve. Auto means that the output type should be automatically determined based on the types used to perform the calculations. Preserve means that the component should keep the same type as in the input point cloud. If the component did not exist in the input point cloud, Preserve is equivalent to Auto.

 Expression

 An expression describing how to calculate values for the corresponding component. See the Expression Syntax section below for a description of the structure of an expression.

 Expression Syntax

 An expression consists of a combination of operands, operators, and parentheses. For example, a simple expression might be:

 (@Component(x) + @Component(y) + @Component(z)) / 3.0

 This expression calculates the average of the x, y, and z components.

 White space may be used between the operands, operators, and parentheses as it is ignored by the expression processor.

 Operands

 Operands may be any of the following:

 	A component from an input point cloud, e.g. @Component(z). Note that if a component has a scale/offset, the "applied" value of the component will be used in the expression.

 	A numeric constant, either integer or floating-point. Where possible, numeric constants are interpreted as integer values; otherwise, operands will be treated as floating-point numbers. Floating-point numbers may be specified in any of the ways accepted by an ANSI-compliant C compiler, except that "f", "F", "l", and "L" suffixes are not permitted in most installations. For example, all of the following are valid floating-point numbers: 2.1, 3., 6e4, 7.91e+16.

 	The value of an attribute, using @Value() notation.

 	A function whose arguments have any of the above forms for operands, such as @sin(@Component(z)). See the Functions section for a list of defined functions.

 Operators

 The valid operators listed below are grouped in decreasing order of precedence:

 	
 Function

 	
 Description

 	
 - + ~ !

 	
 Unary
 minus, unary
 plus, bit-wise NOT, logical NOT.

 Bit-wise NOT is valid for integer operands only.

 	
 * / %

 	
 Multiply, divide, remainder.

 Remainder is valid for integer operands only. The remainder always has the same sign as the divisor and an absolute value smaller than the divisor.

 	
 + -

 	
 Add and subtract.

 	
 << >>

 	
 Left and right shift.

 Valid for integer operands only.

 	
 < > <= >=

 	
 Boolean less, greater, less than or equal,
 and greater than or equal.

 Each operator produces 1 if the condition is
 true, 0 otherwise.

 	
 == !=

 	
 Boolean equal and not equal.

 Each operator produces 1 if the condition is
 true, 0 otherwise.

 	
 &

 	
 Bit-wise AND.

 Valid for integer operands only.

 	
 ^

 	
 Bit-wise exclusive OR.

 Valid for integer operands only.

 	
 |

 	
 Bit-wise OR.

 Valid for integer operands only.

 	
 &&

 	
 Logical AND.

 Produces a 1 result if both operands are non-zero,
 0 otherwise.

 	
 ||

 	
 Logical OR.

 Produces a 0 result if both operands are zero,
 1 otherwise.

 Functions

 The following functions are available for use in expressions. Note that the math functions invoke the C math library function of the same name. Refer to the C Manual entries for the library functions for more details on what these functions do and what arguments are valid.

 	
 Function

 	
 Description

 	
 abs(arg)

 	
 Returns the absolute value of arg.

 	
 acos(arg)

 	
 Returns the arc cosine of arg, in the range [0,pi] radians. Arg should be in the range [-1,1].

 	
 asin(arg)

 	
 Returns the arc sine of arg, in the range [-pi/2,pi/2] radians. Arg should be in the range [-1,1].

 	
 atan(arg)

 	
 Returns the arc tangent of arg, in the range [-pi/2,pi/2] radians.

 	
 atan2(y,x)

 	
 Returns the arc tangent of y/x, in the range [-pi,pi] radians. x and y cannot both be 0.

 	
 ceil(arg)

 	
 Returns the smallest integer value not less than arg.

 	
 cos(arg)

 	
 Returns the cosine of arg, measured in radians.

 	
 cosh(arg)

 	
 Returns the hyperbolic cosine of arg. If the result would cause an overflow, an error is returned.

 	
 exp(arg)

 	
 	Returns the exponential of arg, defined as e**arg. If the result would cause an overflow, an error is returned.

 	
 floor(arg)

 	
 	Returns the largest integer value not greater than arg.

 	
 fmod(x,y)

 	
 Returns the floating-point remainder of the division of x by y. If y is 0, an error is returned.

 	
 if(c,x,y)

 	
 Returns x if c is 0, and y otherwise.

 	
 index()

 	
 Returns the point index. The first point in the point cloud is index 0, the second is index 1, etc.

 	
 log(arg)

 	
 Returns the natural logarithm of arg. Arg must be a positive value.

 	
 log10(arg)

 	
 Returns the base 10 logarithm of arg. Arg must be a positive value.

 	
 pow(x,y)

 	
 Computes the value of x raised to the power y. If x is negative, y must be an integer value.

 	
 sin(arg)

 	
 Returns the sine of arg, measured in radians.

 	
 sinh(arg)

 	
 Returns the hyperbolic sine of arg. If the result would cause an overflow, an error is returned.

 	
 sqrt(arg)

 	
 Returns the square root of arg. Arg must be non-negative.

 	
 tan(arg)

 	
 Returns the tangent of arg, measured in radians.

 	
 tanh(arg)

 	
 Returns the hyperbolic tangent of arg.

 Types and Overflows

 This transformer attempts to avoid overflows by changing data types through the course of evaluating an expression. For example, if two UInt8 values are added together, the internal computations will be performed with a UInt16 type; this ensures that no overflow will occur.

 For arithmetical computations, integers are used until some floating-point number is introduced. For example, consider the expression

 @Component(color_red)/255

 where color_red has type UInt8 (meaning values are between 0 and 255). In this case, the evaluated result will always have a value of either 1 (if a point value is equal to 255) or 0 (if a point has any other value). On the other hand, evaluating the expression

 @Component(color_red)/255.0

 will evaluate to floating point decimal values.

 Note that when converting between different data types, a Bounded Cast is used. As a result, when a calculated value does not fit in the destination data type, the corresponding destination value will either be set to the minimum or maximum value possible in the destination data type.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Point Cloud

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 PointCloudExtractor

 Serializes the geometry of the feature into the Blob Attribute based on the selected writer format.

 Parameters

 Format

 The point cloud format used to encode the blob.

 Format Name Attribute

 An attribute to preserve the specified format value for future use.

 Blob Attribute

 The attribute that will contain the resulting blob.

 Note that when writing the Blob Attribute, you may need to adjust the attribute type to an unbounded data type to avoid truncation of the blob.

 Usage Notes

 	The PointCloudReplacer may be used to do the reverse operation and convert the encoded blob back to the original data.

 	Alternatively if the point cloud is not required as a geometry on the feature for future processing, the AttributeFileWriter transformer can be used to dump the Blob Attribute directly to a file.

 	To carry out a similar operation on vector data, please use the GeometryExtractor transformer. For raster data, please use the RasterExtractor.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Point Cloud

 Related Transformers

 PointCloudReplacer

 GeometryExtractor

 GeometryReplacer

 RasterExtractor

 RasterReplacer

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 PointCloudFilter

 Filters a point-cloud feature into one or more parts, output via separate ports, based on evaluating expressions.

 One point cloud will be output for each expression, containing all the points that matched that expression (that is, the expression resulted in a non-zero value).

 Each point will only be filtered into a single point cloud. For example, if a point matches both the first and second expression, the point will only be placed in the point cloud for the first expression. An additional point cloud will be output that contains all the points that did not match any expression.

 Note: Empty point clouds will not be output.

 Input Ports

 Input

 This transformer accepts only point-cloud features.

 Output Ports

 You can specify an output port for each expression.

 <Unfiltered>

 Points that do not match any of the specified expressions are output via the <Unfiltered> port.

 Parameters

 Expression

 An expression describing which points to include in a point cloud.
Expressions are described in detail in the PointCloudExpressionEvaluator transformer.

 Output Port

 Specify the name of an output port for the point cloud.

 Output Unfiltered Points

 Whether to output a point cloud containing all the points that did not match any expression. When these points are not needed, setting this to No will improve performance.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Point Cloud

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: point "point cloud" cloud PointCloud coerce LiDAR sonar resample thin

 PointCloudOnRasterComponentSetter

 Sets point cloud component values by overlaying a point cloud on a raster. The component values for each point will be set from band values at the point location.

 For example, a potential use case is to colorize a point cloud using orthophotos.

 Input Ports

 PointCloud

 Point cloud features are input through this port.

 Raster

 Raster features are input through this port.

 Output Ports

 PointCloud

 Point cloud features with updated component values are output through this port.

 Parameters

 Group By

 If Group By attributes are selected, features with the same values in the Group By attributes are grouped together, and rasters are only used to set component values of point clouds in the same group.

 Components to Set

 Specifies which point cloud components should be set from the corresponding raster(s).

 	Color specifies that the color_red, color_green, and color_blue components of a point cloud should be set. In this case, the input rasters should have three selected bands.

 	Custom allows specification of an arbitrary list of components.

 When specifying a custom list, the following values must be specified for each component:

 	Band specifies the band index from which values will be taken.

 	Component specifies the component whose values will be set.

 	Default Value specifies the value that will be set for points that are disjoint from all rasters.

 Extract Raster Nodata

 This parameter specifies the behavior when a point lies on a raster nodata value. If set to Yes, the point component value will be set to the nodata value. If set to No, the raster will be skipped, and the next raster checked. If no rasters are found to cover the point, then the Default Values Overwrite Data parameter determines the behavior.

 Default Values Overwrite Data

 This parameter specifies the behavior when no value can be found for a point from any raster, but the component already existed on the input point cloud. If set to Yes, the component value from the input point cloud will be preserved. If set to No, the component value will be set to the default value, either from the default value list or the FME default.

 Interpolation Type

 Cell values are interpolated to arrive at point cloud component values.

 	Nearest Neighbor is the fastest but produces the poorest quality.

 	Bilinear provides a reasonable intermediate option.

 	Bicubic is the slowest but produces the best quality.

 	Average 4 and Average 16 have a performance similar to Bilinear and are useful for numeric rasters such as DEMs.

 Usage Notes

 This transformer accepts multiple input point clouds and rasters. One point cloud is output for each input point cloud.

 The component value for each point is taken from the first raster that can supply one (for example, if a point does not overlap a raster, the next raster will be tried), so the order of input for rasters can impact the result.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Point Cloud

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: point "point cloud" cloud PointCloud coerce LiDAR sonar expose extract extents orthophotos

 PointCloudPropertyExtractor

 Extracts the properties of a point cloud feature and exposes them as attributes. The attribute values are for reference only and may become out of date if the point cloud properties change.

 The following attribute is always exposed:

 _num_points

 Additional attributes may be exposed for each component.

 Input Ports

 Input

 This transformer accepts only point cloud features.

 Output Ports

 Output

 Features with the extracted properties are output through this port.

 Parameters

 Component Attribute Prefix

 The prefix to add to attributes related to point cloud components.

 Calculate and Update Extents

 Specifies whether the extents of the point cloud will be updated to reflect the true values in the point cloud. That is, the extents of a point cloud may change after certain operations (for example, clipping). When this happens, the extents are typically set to an approximation of the true bounds (e.g. when clipping, the output point cloud bounds are equal to the intersection of the input point cloud bounds and the clipper bounds). When this option is set to Yes, all the points of the point cloud will be read, and the point cloud extents will be updated to their exact values.

 Point Components to Extract

 Specifies the components for which to extract properties, and which properties to extract for each component.

 If Check Existence is enabled for a component, the following properties will be extracted:

 	_<component> (e.g. _intensity) - This will be set to Yes if the component exists, and No if it does not.

 If Retrieve Properties is enabled for a component, the following properties will be extracted:

 	_<component>_type - The type of the component. Valid types are Real64, Real32, UInt64, Int64, UInt32, Int32, UInt16, Int16, UInt8, Int8, String.

 	_<component>_scale - The scale factor for the component. Only set for numeric components.

 	_<component>_offset - The offset for the component. Only set for numeric components.

 	_<component>_encoding - The encoding of the component. Only set for string components.

 If Retrieve Min/Max is enabled for a component, the following properties will be extracted:

 	_<component>_min - The minimum value for the component in the point cloud.

 	_<component>_max - The maximum value for the component in the point cloud.

 Note that if a component does not exist, only the existence check attribute (_<component>) will be set. All other attributes will be ignored.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Point Cloud

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: point "point cloud" cloud PointCloud metadata LiDAR expose extract extents sonar

 PointCloudReplacer

 Replaces the geometry of the feature with the geometry held in the Blob Attribute. The blob is decoded according to the selected point cloud format.

 Parameters

 Format

 The point cloud format used to decode the blob.

 Blob Attribute

 The attribute from which the blob will be read.

 Usage Notes

 Note that this transformer only works with point cloud formats. Use the GeometryReplacer for vector formats or the RasterReplacer for raster formats.

 Related Transformers

 This transformer is typically used to restore a point cloud previously extracted into an attribute by the PointCloudExtractor.

 GeometryExtractor

 GeometryReplacer

 RasterExtractor

 RasterReplacer

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Point Cloud

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: geometry database extract replace blob serialize

 PointCloudSplitter

 Splits a single point cloud feature into multiple point cloud features, each having a homogeneous value for the point component that governs the split.

 Input Ports

 Input

 This transformer accepts only point cloud features.

 Output Ports

 Split

 Multiple point-cloud features as specified by the Split By parameter.

 Parameters

 Split By

 Specifies the component(s) on which the point cloud will be split. This may be any single component name, or one of the following special values:

 Color: The point cloud will be split on the color_red, color_green, and color_blue components.

 First Return Only: One point cloud feature is output containing all the points whose return number is 1.

 Last Return Only: One point cloud feature is output containing all the points which represent the last return (that is, where the return number is equal to the number of returns).

 Split Type

 Specifies whether to split by unique values or ranges. When splitting by unique values, one point cloud will be output for each unique value of the specified component found in the point cloud. When splitting by ranges, one point cloud will be output for each specified range of values, provided at least one point falls in the range.

 Output Attribute (optional)

 If Split Type is set to Range, this attribute will be set to the output value specified in the range list corresponding to each output point cloud.

 If Split Type is set to Unique, this attribute will be set to the value of the component for each output point cloud.

 If Split By is set to Last Return Only, this attribute will contain -1, since the last return value can vary from point to point.

 Ranges To Keep

 When splitting by ranges, this parameter specifies the ranges to keep.

 	From: The start value for the range that you are classifying. This field accepts numerical input only and must be less than the value in the To field. Colors should be specified as comma-delimited values (for example, 255,100,50). If a From value is not specified, it will be treated as an open-ended range.

 	To: The end value for the range that you are classifying. This field accepts numerical input only and must be less than the value in the To field. Colors should be specified as comma-delimited values (for example, 255,100,50). If a To value is not specified, it will be treated as an open-ended range.

 	Output Value: The value assigned to the output attribute for each range.

 Unique Values to Keep

 When splitting by unique values to keep, this which values should actually be kept. Values not included in this list will be discarded. Limiting a splitting operation to only desired values will improve performance.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Point Cloud

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: point "point cloud" cloud PointCloud split filter LiDAR sonar

 PointCloudThinner

 Outputs point cloud features that have fewer points than the original input features. This transformer is typically used to reduce data volume by identifying a set of points to keep and discarding the remaining points.

 Input Ports

 Input

 Point cloud features.

 Output Ports

 Thinned

 Point cloud features with a reduced number of points.

 Parameters

 Thinning Type

 Every Nth Point (Interval): Keeps every <interval>th point.

 Every Nth Point (Maximum Number of Points): Keeps at most <maximum number of points> points that are evenly spaced throughout the dataset.

 First/Last N Points: Keeps at most <maximum number of points> points from the start or end of the dataset. This likely will perform faster but produce a less even distribution of points than the Every Nth Point thinning type.

 Interval

 Specifies how often the points are retained. For example, an amount of 2 will result in every other point of the input cloud feature will be present in the output point cloud.

 Maximum Number of Points

 Specifies the maximum points in the output point cloud. For example, an amount of 100 will result in points in the input cloud being dropped so the maximum number of points in the output cloud is 100.

 Examples

 	Thinning Type
 	Amount
 	Result

 	Every Nth Point (Interval)
 	2
 	Every other point of the input cloud feature will be present in the output point cloud.

 	Every Nth Point (Maximum Number of Points)
 	100
 	The output cloud will have a maximum of 100 points, evenly spaced throughout the input.

 	First N Points
 	100
 	The first 100 points from the input will be kept.

 In this example, the output point cloud on the right keeps every 50th point from the source point cloud on the left:

 [image: PointCloudThinnerSource.png]
 [image: PointCloudThinner_dest.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Point Cloud

 Related Transformers

 The transformer can be used with PointCloudCombiner to make mosaics of large areas from smaller tiles.

 FMEpedia

 See FMEpedia for additional information about this transformer.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: point "point cloud" cloud PointCloud resample thin LiDAR sonar

 PointCloudTransformationApplier

 Applies transformations on a point cloud.

 Applying a transformation is primarily done for compatibility with other processing and writers that cannot support the transformation natively. For example, the LAS reader produces Int32 coordinates with a scale and offset. However, the POINTCLOUDXYZ writer cannot support component scale/offsets, so the transformation will be applied. The resulting coordinates will be Real64 with no transformation. Note that processing and writers that cannot support transformations will apply them automatically, but this transformer can be used to manually apply the transformation if desired.

 Input Ports

 Input

 All input features must have point cloud geometry.

 Output Ports

 Output

 The updated features are output through this port.

 Parameters

 Apply Transformation Matrix

 Whether to apply a transformation matrix. The resulting point cloud will have x, y, and z components that are of type Real64, with no scale/offset, and no transformation matrix. If the point cloud does not have a transformation matrix, the point cloud will not be modified.

 Apply Transformation to Components

 The list of components for which to apply the scale/offset. The resulting components will be Real64 with no scale/offset. If a named component does not have a scale/offset, it will not be modified.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Point Cloud

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 PointConnector

 Connects input point features in the order they enter, forming linear
 or polygonal features.

 For some datasets, it may be necessary to use a Sorter
 to order the data correctly before it enters this transformer.

 The feature being created is output whenever one of the Connection Break
 Attributes' values changes.

 When this happens, the feature with the differing attribute is not added
 to the current output feature; instead, it begins the next feature to
 be output.

 If only one feature was received with a given value for the connection
 break attribute, it will be output as a Point.

 If the feature output forms a ring (begins and ends at the same point),
 it is output as a Polygon.

 Anything else is output as a Line.

 If the optional List Name is supplied, a list is made of all the attributes
 of each point that was connected when creating the output feature. This
 allows later inspection of member point attributes. In addition, the feature
 itself will contain a merged set of attributes from all the features that
 were connected together, where the value for an attribute in the resulting
 feature comes from the first feature that had an attribute with that name
 that was part of the resulting feature.

 Example

 [image: pointconnector.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: "point joiner" "line creator"

 PointOnAreaOverlayer

 Performs an overlay of points on areas.

 Parameters

 Group By

 The Group By parameter specifies
 a series of attributes that must match on the point and polygon features
 before the attributes will be merged. This can be used to ensure that
 the overlay occurs only on certain groups of features.

 Overlap Count Attribute

 The Overlap Count Attribute added
 to output area features holds the number of point features that they contained.

 List Name

 If the optional List Name is
 supplied, the attributes of each area containing an output point are added
 to that point's list, and the attributes of each point contained by an
 output area are added to that area's list.

 Areas First

 If Areas First is set to Yes, then the PointOnAreaOverlayer assumes that all Area features will enter the transformer before any Point features. This can reduce memory use of the PointOnAreaOverlayer if you have many Point features to overlay. Any further Area features that arrive after the first Point feature will be logged with a warning and discarded.

 Usage Notes

 	Each point receives the attributes of the area(s) it is contained in,
 and each containing area receives the attributes of each point it contains.
 When attributes are merged between features, existing attributes are not
 replaced. Therefore, if the points and areas being overlaid have attributes
 with the same name, then the values will not be transferred from one to
 the other. You can avoid this problem by renaming (AttributeRenamer),
 prefixing (AttributeExpressionRenamer), or
 removing (AttributeRemover) attributes
 to avoid name collisions.

 	Note that intersections between area features are not computed.

 	If a point falls exactly on the line between polygons, FME always include points on the boundary as being in. So if a point is on the boundary of two polygons, it will be called "in".

 	If you have a lot of features to process, you can improve overlay performance by also using the Clipper transformer. The Clipper also provides different options for a point that falls exactly on a line. See the Clipper page in FMEpedia for information on how to use less memory using the Clippers First parameter.

 	If you have a lot of Point features in particular, you can reduce memory usage of the PointOnAreaOverlayer by using the Areas First parameter.

 	Aggregates are not supported by this transformer.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 PointOnLineOverlayer

 Performs an overlay of points on lines. Each input line is split at its closest place to any point within the
 specified point tolerance.

 Parameters

 Group By

 The Group By parameter allows
 you to choose a series of attributes that must match on the features before
 the attributes will be merged. This can be used to ensure that the overlay
 occurs only on certain groups of features.

 Overlap Count Attribute

 The Overlap Count Attribute added
 to output linear features holds the number of point features that were
 near to it. The Overlap Count Attribute added
 to output point features holds the number of linear features that the
 point was near to.

 Point Tolerance

 The Point Tolerance value is
 compared to the distance from the lines to the points, and the lines will
 be segmented if the distance is less than or equal to the Point Tolerance
 value. When such a match occurs, the attributes of the segmented lines
 are merged with the points and the attributes of the points are merged
 with the lines.

 List Name

 If the optional List Name is
 supplied, the attributes of each point used to segment an output line
 are added to that line's list, and the attributes of each line that a
 point segmented are added to that point's list.

 Usage Notes

 	Each resulting point receives the attributes of the point(s) it was
 paired with. When attributes are merged between features, existing attributes
 are not replaced. Therefore if the points and areas being overlaid have
 attributes with the same name, then the values will not be transferred
 from one to the other. You can avoid this problem by renaming (AttributeRenamer),
 prefixing (AttributeExpressionRenamer), or
 removing (AttributeRemover) attributes
 to avoid name collisions.

 	Note that intersections between linear features are not computed.

 	Aggregates are not supported by this transformer.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 PointOnPointOverlayer

 Performs an overlay of points on points.

 Parameters

 Group By

 The Group By parameter specifies a series of attributes that must match on the point and polygon features before the attributes will be merged. This can be used to ensure that the overlay occurs only on certain groups of features.

 Overlap Count Attribute

 The Overlap Count Attribute added
 to output point features holds the number of point features to which the
 point was near.

 Point Tolerance

 Each input point has the attributes from any other point within the
 Point Tolerance distance merged onto it.

 List Name

 If the optional List Name is
 supplied, each output point will also have an attribute list containing
 the attributes from each point that is within the Point Tolerance distance.

 Usage Notes

 When attributes are merged between features, existing attributes are
 not replaced. Therefore, if the points and areas being overlaid have attributes
 with the same name, then the values will not be transferred from one to
 the other. You can avoid this problem by renaming (AttributeRenamer),
 prefixing (AttributeExpressionRenamer), or
 removing (AttributeRemover) attributes
 to avoid name collisions.

 Aggregates are not supported by this transformer.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 PointOnRasterValueExtractor

 Extracts the band and palette values from a raster at the location of each input point and sets them as attributes on the feature.

 The following band and palette properties are exposed:

 _band{}.value

 _band{}.palette{}.value

 Note: Wherever "{}" appears, there will be one
 instance of the attribute for each band or palette. The first will appear
 with {0}, the second with {1}, and so on.

 Note that no attributes will be set for points outside the reference raster extents.

 Parameters

 Group By

 The points may be organized into groups with the Group
 By parameter, with each group of points having its own reference
 raster.

 Interpolation Type

 This parameter
 determines the interpolation method to be used when retrieving raster
 values from points.

 Nearest Neighbor interpolation is the fastest and
 least accurate, while Bilinear and Bicubic are slower but will weight
 surrounding data values into the final result. Average 4 and Average 16
 have a performance similar to Bilinear and are useful for numeric rasters
 such as DEMs.

 Example

 [image: pointonrastervalueextractor_small.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Transformer History

 This transformer was previously named PointOnRasterOverlayer.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster band palette vector overlay point interpolate vectorization vectorisation

 ProxixGeocoder

 Geocodes addresses using a Proxix Geospatial Enterprise Real-Time (GSERT) server.

 Dependencies

 Before you use this transformer, please ensure you have access to a Proxix PxPoint web service. See http://www.proxix.com/ for more details.

 Output Ports

 Succeeded

 If a feature has been successfully geocoded, it will be output through this port.

 Failed

 If the Proxix GSERT server indicates a feature could not be geocoded, it will be output through this port.

 Attributes

 Features that were successfully geocoded will contain attributes common to all datasets. For the complete list of attributes, see your Proxix representative.

 Matchcodes

 Features that were not successfully geocoded will have _px_matchcode and _px_error attributes added, where _px_error is a human-readable explanation of the matchcode.

 The PxPoint User's Guide (C API) provides full details on how to interpret match codes. This document is available through your Proxix representative. In general, the first character of each match code indicates a category of statuses:

 	Match Category
 	Meaning

 	U
 	Failed to find a match

 	M
 	Two or more matches with the same score

 	A
 	Matched a discrete address

 	B
 	A composite of multiple matching records has been created

 	C
 	No house number match, using closest range

 	F
 	No house number match, using closest range, and ignored a poorer matching street with a house number match

 	I
 	Intersection address

 	R
 	Interpolated in house number range

 Parameters

 Address Line, City Line

 Intersections may be geocoded with the following notation in the Address Line: "Fake St. & Imaginary St."

 Single line addresses may be passed through entirely on the Address Line; there is no need to manually split up street and city components.

 PxPoint URL

 The URL of the Proxix PxPoint web service that you wish to use. The default URL is https://www.proxixnetwork.com/gsert/PxPointGeocode.asmx, which requires a Proxix GSERT account.

 Proxix Username, Proxix Password

 The username and password of the relevant Proxix GSERT account.

 Replace With Point

 If this parameter is set to Yes, features will be converted to points in the LL84 coordinate system, replacing existing geometry. The coordinates of the converted points are retrieved from the values of _px_longitude and _px_latitude. Z values will be dropped.

 Reproject to Source

 If Reproject to Source is set to Yes, the new points will be reprojected into the source coordinate system. If the source feature have no coordinate system, the new point will be left in LL84. The "_px_latitude" and "_px_longitude" attributes will always be LL84.

 FME Licensing Level

 FME Professional edition and above

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Web Services

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: Proxix geocode

 PythonCaller

 Executes a Python script to manipulate the feature.

 When a specialized task is required, such as custom statistical analysis of an attribute, but Workbench does not provide a transformer suited to the task, a Python script can perform specialized and complex operations on a feature's geometry, attributes, and coordinate system.

 Using Python to perform arbitrary operations on features is a powerful aspect of Workbench. However, the logic introduced into a workspace is less visible and can therefore be more difficult to maintain than logic built using Workbench’s built-in transformers. It is recommended that other transformers be used when possible instead of Python scripts.

 Access to a feature’s attributes, geometry and coordinate system information is provided via the FME Objects Python API. To view the API documentation, navigate to the FME installation folder and go to this location: fmeobjects\python\apidoc\index.html.

 Interface Paradigm

 The PythonCaller can interface with a Python script in two different ways: by function or by a class:

 	Use the Function Interface when you intend to process a single feature at a time.

 	Use the Class Interface for more flexibility.

 The Class Interface is useful when you want to operate on a group of features together, such as collecting all the features received and then outputting them in a specific sort order. Another common use case is to accumulate all the features, perform an operation on the whole set, and then output all of the features with a calculated value as a new attribute.

 Function Interface Example

 The PythonCaller will call the Python function with exactly one argument: an FMEFeature object.

 The function will be called with each FMEFeature that comes into the input port. This feature will then continue through the workspace pipeline via the output port.

 The function’s return value will be ignored by the PythonCaller. Any raised exception will terminate the translation. Any raised FMEException will be logged as an ERROR and will terminate the translation.

 The example below adds a string attribute to each feature and sets it to the current time:
import fmeobjects
import time

def timestampFeature(feature):
curTime = time.ctime(time.time())
feature.setAttribute("timestamp", curTime)

 Class Interface Example

 The PythonCaller will call two methods on the class: input() and close(). The input() method will be called for each FMEFeature that comes into the input port. When no more FMEFeatures remain, the close() method will be called. Features that need to continue through the workspace for further processing must be explicitly written out using the pyoutput() method.

 The class interface can operate on a group of features, instead of processing incoming features one at a time. This is done by storing incoming features in a list, then processing them all at once before being output.

 The example below calculates the total area of all the features processed and then outputs all the features with a new attribute containing the total area:
import fmeobjects

class FeatureProcessor(object):
def __init__(self):
self.featureList = []
self.totalArea = 0.0

def input(self,feature):
self.featureList.append(feature)
self.totalArea += feature.getGeometry().getArea()

def close(self):
 for feature in self.featureList:
 feature.setAttribute("total_area", self.totalArea)
 self.pyoutput(feature)

 Script Editing

 A PythonCaller transformer can call scripts that are stored in the transformer itself or scripts that are stored globally for the entire workspace:

 	To store a Python script with a specific PythonCaller transformer, use the Python Script parameter in the transformer.

 	To store a Python script globally, click the Advanced Workspace Parameter in the Navigator, and double-click Startup Python Script. Storing scripts globally has the advantage of keeping the Python logic centralized, which makes editing and maintenance easier. This is useful when there are multiple PythonCaller transformers throughout the workspace that use the same script.

 FME can access .py modules that are stored on the file system, including modules in external Python libraries. Use the Python "import" command to load these modules. FME will search both the standard Python module locations and the workspace location to find the module to be imported.

 Parameters

 Python Script

 The Python script to be executed. When the Python script is stored as the Startup Python Script for the Workspace, leave this parameter blank.

 Class or Function to Process Features

 The name of the Python Function or Class within the script that PythonCaller will use to begin execution. For the above example, set this parameter FeatureProcessor.

 Attributes to Expose

 Exposes any attributes that are created by the Python script being executed so they can be used by other transformers.

 Attributes to Hide

 Hides any attributes that may be removed by the Python script being executed. Other transformers will not be able to use these attributes.

 Dependencies

 An FME installation includes a Python interpreter, which is used by default
for all Python processing.

 FME 2012 ships with Python version 2.7. The
FME Objects Python API supports Python 2.5 to 2.7.

 To choose a different Python interpreter for FME, change the FME Options:

 	Select Tools > FME Options, and click the Runtime icon:

 [image: runtime_icon_python.png]

 	Under Python Interpreter, check the box Use Custom Python Interpreter.

 	Browse to the location of the Python DLL that you wish to use (for example, python26.dll).

 	Click OK to save the changes.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 PythonCreator

 Creates features using the Python script supplied, and sends them into the workspace for processing. The Python script must be in the form of a Python class, with the code responsible for creating the features located in the close() method.

 Features are created via the FME Objects Python API. To view the API documentation, navigate to your FME installation folder and go to this location: fmeobjects\python\apidoc\index.html.

 Example Class

 The example below creates a random number of features, between 0 and 9.
import fmeobjects
import random

class FeatureCreator(object):
def __init__(self):
self.number = random.random()

def close(self):
for i in range(1, int(self.number*10)):
feature = fmeobjects.FMEFeature()
feature.setAttribute("feature_count", i)
self.pyoutput(feature)

 Script Editing

 A PythonCreator transformer can call scripts stored in the transformer itself or stored globally for the entire workspace:

 	To store a Python script with a specific PythonCreator transformer, use the “Python Script” property of the transformer.

 	To store a Python script globally, click the Advanced Workspace Parameter in the Navigator, and double-click Startup Python Script. Storing scripts globally has the advantage of keeping your Python logic centralized, which makes editing and maintenance easier. This is useful if you want to have multiple PythonCreator transformers throughout your workspace that use the same script.

 If you are using extensive Python libraries that you do not want to store inside a workspace: to avoid duplication, you can access .py files on the file system using Python’s import command. In addition to the standard Python module locations, FME will also search the location of the workspace for an imported Python module.

 Parameters

 Python Script

 This is the Python script to be executed. If the Python script is stored as the Startup Python Script for the workspace (as described above in Script Editing) you can leave this parameter blank.

 Class to Process Features

 The name of the Python Class within the script that PythonCreator will use to begin execution. For the above example, set this parameter to FeatureCreator.

 Attributes to Expose

 Exposes any attributes that are created by the Python script being executed so they can be used by other transformers.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Dependencies

 An FME installation includes a Python interpreter, which is used by default
for all Python processing.

 FME 2012 ships with Python version 2.7. The
FME Objects Python API supports Python 2.5 to 2.7.

 To choose a different Python interpreter for FME, change the FME Options:

 	Select Tools > FME Options, and click the Runtime icon:

 [image: runtime_icon_python.png]

 	Under Python Interpreter, check the box Use Custom Python Interpreter.

 	Browse to the location of the Python DLL that you wish to use (for example, python26.dll).

 	Click OK to save the changes.

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 RandomNumberGenerator

 Generates a uniformly distributed random number.

 The random number is x, where Minimum Value <= x <= Maximum Value.

 This random number will be rounded to the number
 of digits specified in the Decimal Places parameter.

 Note that in general, when the Minimum Value and Maximum Value is specified in an exponential form (for example, "1.0e+25"), the Decimal Places refer to the number of decimal places in the exponential form.

 If Minimum Value or Maximum Value have more decimal places than the Decimal Places requested for the result, the actual minimum value used will be rounded up and the actual maximum value used will be rounded down to the requested decimal places. This is to ensure that the generated random number will always fall between the Minimum Value and the Maximum Value.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 RasterAspectCalculator

 Calculates the aspect (direction of slope) for each cell of a raster. Aspect is measured in degrees from 0 to 360, starting clockwise from the north.

 Each selected input band will be converted to a Real64 band with output values that represent the aspect. If an input band does not have a nodata value, the output band nodata value will be set to -1.

 Input Ports

 Input

 Input features must contain raster geometries only.

 Output Ports

 Output

 Raster features with the calculated aspect values will be output through this port.

 Parameters

 Interpolate Nodata

 Whether to calculate values at raster edges and near nodata values.

 When this is set to No, there will be a one pixel border around the edge of the raster set to the nodata value. Additionally, when any pixel in the 3x3 window used to calculate the aspect value is equal to nodata, the output pixel will also be set to nodata.

 When this is set to Yes, values around the edge and near nodata values will be estimated by interpolating missing values. Note that holes will not be filled in. That is, cells that are nodata in the input image will remain nodata in the output.

 Algorithm

 The algorithm used to calculate the aspect. Some analyses have suggested that Horn's formula is better suited to rougher terrain, whereas Zevenbergen & Thorne's formula is better for smooth terrain.

 Usage Notes

 This transformer supports raster band selection. The RasterSelector can be used to modify this selection.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 RasterBandAdder

 Adds a new band to a raster. The added band will have the same value
 in all cells, and the same raster-level properties as other bands in the
 raster (that is, number of rows/columns, cell spacing, cell origin, etc.).

 Input Ports

 Input

 Input features must contain raster geometries only.

 Output Ports

 Output

 Features with the added band are output through this port.

 Parameters

 Interpretation

 Interpretation Type

 This parameter
 specifies the desired interpretation for the added band, including data
 type and bit depth.

 Data Values

 Cell Value

 This parameter specifies
 the value that will be used for all cells in the added band.

 Nodata Value

 This parameter sets
 the nodata value for the band.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster band grid "add band" "adding band" create

 RasterBandCombiner

 Merges multiple overlapping raster features into a
 single raster feature. It accepts a number of input raster features, each
 of which has one or more bands. The bands are removed from the input features
 and appended to a single output raster feature.

 Input Ports

 Input

 Input features must contain raster features only.

 Parameters

 Group By

 The rasters may be organized into groups, with each group of rasters having its own output
 raster.

 The properties of each raster within a group, such as the number of
 rows and columns, must match for the processing to proceed successfully.
 Each raster within a group must also overlap identically.

 Accumulate Attributes

 If
 set to Yes, then the attributes from the original features will be merged
 onto the output raster features.

 Count Attribute

 If a Count Attribute is given,
 then an attribute with this name will be added to each output feature,
 containing the number of features that were combined to create the raster
 feature.

 Usage Notes

 	The order of the input features and the order of the bands of the input
 features both determine the order of the bands in the output feature.
 A Sorter transformer may be used to enforce the
 order in which the features are processed.

 	This transformer is unaffected
 by raster band and palette selection.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 RasterBandInterpretationCoercer

 Alters the underlying interpretation of the selected bands of the raster geometry on the input features, using the specified conversion options.

 For example, an input raster feature with a single band of interpretation UInt8 could be converted to a single band of Gray8 or UInt16 data.

 Parameters

 Destination Interpretation Type

 This parameter selects the destination interpretation along with the bit depth. Different interpretations allow for different conversion options to be used. If bands selected for conversion contain palettes, then the destination interpretation is restricted to UInt8, UInt16 or UInt32.

 Convert from Color to Color, Convert from Numeric to Color, Convert from Color to Numeric, Convert from Numeric to Numeric

 These parameters select the action to undertake when the given conversion between different types occurs. The Cast option simply uses C-style casts to convert the values. The Bounded cast option uses C-style casts to convert the values too, but also validates that the source values fit into the destination type, effectively preventing underflow and overflow; if a source value does not fit, the corresponding destination value will either be set to its type's minimum or maximum value. The Scale by data values option finds the minimum and maximum values of the source values and uses them to scale the values to the full range of the destination type. The Scale by data type option scales the source values while preserving all proportions in regard to the source and destination types' range.

 Convert from Float to Integer

 This parameter specifies the action to perform when converting from a floating-point value to an integer.

 	Round: rounds to floating-point value to the nearest integer.

 	Ceiling: gets the next integer which is greater than or equal to the floating-point value.

 	Floor: gets the next integer which is less than or equal to the floating-point value.

 Usage Notes

 	Each RasterBandInterpretationCoercer performs a conversion on the input raster. If multiple RasterBandInterpretationCoercers are used in sequence, then multiple conversions will take place. Data quality and translation performance may suffer.

 	This transformer supports raster band selection. The RasterSelector can be used to modify the selection.

 Related Transformers

 	The RasterInterpretationCoercer performs similar operations on the raster as a whole, such as converting 4 bands directly to RGBA.

 	The RasterPaletteInterpretationCoercer performs similar conversions on palettes.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Transformer History

 This transformer replaces the RasterDataTypeCoercer
 and RasterColorModelCoercer transformers.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 RasterBandKeeper

 Removes all bands of a raster, except for those that are selected. The
 RasterSelector can be used to modify the selection.

 If all bands in the source raster are selected, the raster will remain
 unchanged.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 RasterBandMinMaxExtractor

 Extracts the band minimum and maximum values, palette minimum and maximum
 keys and palette minimum and maximum values of a raster feature and exposes
 them as attributes.

 The attribute values are for reference only at one point in the workspace
 and may become out of date if the raster properties change.

 The following band and palette properties are exposed:

 _band{}.min

 _band{}.max

 _band{}.palette{}.keyMin

 _band{}.palette{}.keyMax

 _band{}.palette{}.valueMin

 _band{}.palette{}.valueMax

 Note that wherever "{}" appears, there will be one instance
 of the attribute for each band or palette. The first will appear with
 {0}, the second with {1}, and so on.

 Related Transformers

 This transformer only extracts band and palette minimum and maximum
 properties. To extract other band properties, use the RasterBandPropertiesExtractor.
 To extract raster geometry properties, such as the number of rows and
 columns, use the RasterPropertiesExtractor.

 Usage Notes

 	This transformer accepts only
 raster features.

 	Note that the any nodata values that are present on the band are ignored
 in the minimum and maximum value calculations.

 	This transformer is unaffected
 by raster band and palette selection.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 RasterBandNameSetter

 Sets the name of selected bands on a raster.

 Input Ports

 Input

 Input features must contain raster features only.

 Parameters

 Input Type

 The band names may be specified in two ways depending on the parameter you choose for Input Type:

 	Single Name, which enables the Band Name parameter

 	List of Names, which enables the List Attribute parameter

 Band Name

 When Input Type is set to Single Name, a single band name must be specified in the Band Name parameter. This name will be set on all selected bands.

 List Attribute

 When Input Type is set to List of Names, a list attribute that contains band names must be specified. Then, the name for each selected band will be set to the value at the corresponding index in the list. The list attribute must contain at least as many elements are there are selected bands.

 For example, suppose you have the following list attribute:

 _bandnames{0} = 'red'

 _bandnames{1} = 'green'

 _bandnames{2} = 'blue'

 and the raster feature has three bands, where bands 0 and 2 are selected. Then, the name of band 0 will be set to 'red', the name of band 1 will be unchanged (since it is not selected), and the name of band 2 will be set to 'green' (since 'green' is the second element in the list and band 2 is the second selected band).

 Usage Notes

 	This transformer supports raster band selection: see the RasterSelector.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster grid band properties name

 RasterBandNodataRemover

 Removes the existing nodata identifier from the selected bands of a raster feature. That is, any values that were previously equal to the nodata value will now be considered valid data.

 If a nodata value was not present, this transformer will not perform any action on the feature.

 Input Ports

 Input

 Input features must contain raster geometries only.

 Parameters

 None.

 Usage Notes

 This transformer supports raster band selection: see the RasterSelector.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Transformer History

 This transformer was previously named RasterNodataRemover.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster grid band channel nodata null void value remove delete flag

 RasterBandNodataSetter

 Identifies a value to act as a nodata identifier on a raster feature at the band level. That is, values equal to the specified value will now be considered invalid, and will not be affected by many operations (e.g. offsetting or scaling).

 All selected bands on an input raster feature will receive the same specified nodata value.

 Input Ports

 Input

 Input features must contain raster geometries only.

 Parameters

 Nodata Value

 A numeric value specifying the nodata value to be set on the input raster. This parameter sets the nodata value and discards the original nodata value if it exists.

 If the raster's bands have palettes, the function will succeed in setting
 a new nodata value only if the value is of a key that already exists on
 the band. To replace all occurrences of the original nodata value with
 a new value, use the RasterCellValueReplacer.

 Replace Cell Values

 This transformer also supports tagging the nodata value and optionally replacing the cell values.

 Usage Notes

 	This transformer supports raster band selection: see the RasterSelector.

 	If different nodata values are desired on each band (for example, when setting nodata values on a color raster, where each of the red, green, and blue bands has a different value), then add multiple RasterBandNodataSetter transformers using either different band selections, or by using raster band splitting to separate the bands on which to set the nodata value.

 	This transformer does not set
 the nodata value on the palette level. To set the nodata value on the
 palettes of a raster, use the RasterPaletteNodataSetter.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster grid band channel palette key lookup LUT colormap colourmap nodata null void value set modify flag

 RasterBandOrderer

 Specifies the order of bands in a raster. Bands are reordered according
 to the input band indices.

 Parameters

 Band List

 This parameter is a
 list of band indices separated by spaces. It specifies the desired order
 of the bands. Indices
 are zero-based, so the first band is at index 0.

 Bands
 in the original raster that are not specified in the string will be appended
 after all the specified bands, in their original order. Note that bands
 may not be included in the list more than once.

 For example, given an RGBA input raster with four bands and a band list
 of "3 0 2", the resulting raster would have bands ARBG.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.
Keywords: raster grid band order sort

 RasterBandPropertiesExtractor

 Extracts the band and palette properties of a raster feature and exposes
 them as attributes.

 The following band and palette properties are exposed:

 _band{}.band_name

 _band{}.band_interpretation

 _band{}.band_bit_depth

 _band{}.band_interleaving

 _band{}.band_num_tile_rows

 _band{}.band_num_tile_columns

 _band{}.band_nodata

 _band{}.band_num_palettes

 _band{}.palette{}.palette_name

 _band{}.palette{}.palette_key_interpretation

 _band{}.palette{}.palette_value_interpretation

 _band{}.palette{}.palette_bit_depth

 Wherever "{}" appears, there will be one instance of the attribute
 for each band or palette. The first will appear with {0}, the second with
 {1}, and so on.

 Input Ports

 Input

 Input features must contain raster geometries only.

 Parameters

 None.

 Usage Notes

 	This transformer extracts only band and palette properties. To extract
 raster geometry properties, such as the number of rows and columns, use
 the RasterPropertiesExtractor.

 	This transformer is unaffected
 by raster band and palette selection.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster grid band channel palette lookup LUT colormap colourmap properties metadata expose extract interpretation nodata bitdepth tile

 RasterBandRemover

 Removes the selected band(s) of a raster. To modify the selection, see the RasterSelector.

 If the source raster has no selected bands, the raster will remain unchanged.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.
Keywords: raster grid band remove delete destroy

 RasterBandSeparator

 Separates the bands and palettes from each input raster feature into
 one or more output raster features based on the number of input bands
 and palettes.

 Input Ports

 Input

 Input features must contain raster features only.

 Parameters

 Split By

 Band and Palette: The bands are split in the same way as
 the Band Only case, and additionally bands are constrained to having only
 one palette per band. Thus
 each output raster feature will have no more than one band and no more
 than one palette.

 Band Only: Each band on the input raster feature will
 be placed onto a unique output raster feature. Thus each output raster
 feature will have no more than one band, but each band may have multiple
 palettes.

 Palette: Each palette on each of the input raster
 feature bands is placed on a unique band on the raster. Only one raster
 feature will be produced per input feature. Each output raster feature
 may have multiple bands but will have no more than one palette per band.

 Raster Index Attribute,
 Band Index Attribute, Palette Index Attribute

 The attributes are added to the output raster to specify
 which raster/band/palette it originated from. To disable this functionality,
 delete the default text from the parameter(s). This mode only works with Band Only and
 Band and Palette Split By options.

 Usage Notes

 	The order of the input features and their bands and palettes will determine
 the order of the output features. A Sorter transformer
 may be used to enforce the order in which the features are processed.

 	This transformer is unaffected
 by raster band and palette selection.

 Example

 [image: rasterbandseparator_small.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 Transformer History

 This transformer was previously known as the RasterBandSplitter.

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster grid band channel palette lookup LUT colormap colourmap divide separate split

 RasterCellCoercer

 Decomposes all input numeric raster features into individual points or polygons. One vector feature is output for each cell in the band.

 Parameters

 Output Cell Geometry

 Points: one point feature will be created for each of the raster's cells, positioned at the cell's origin.

 Polygons: polygon features will be output, each one covering one of the raster's cells.

 Extract Band Values As

 Attributes: One feature will be output per cell in the raster. Band and palette values will be stored in attributes named _band{}.value and _band{}.palette{}.value. The output geometry will be 2D.

 Z Values: One feature will be output per band per cell in the raster. The output geometry will be 3D, where the z value is the band value.

 Extract Nodata Values

 Specifies whether point features will be output for nodata cells in the raster. When set to yes, a point feature will be output for each nodata cell. When set to no, point features will not be output for nodata cells in the raster.

 Preserve Attributes

 Specifies whether each point will retain the attributes from the input raster.

 Raster ID Attribute, Band ID Attribute

 When specified, each point or polygon receives a raster ID and a band ID which correspond to the raster and band from which the vector feature originated.

 Column Attribute, Row Attribute

 When specified, each point or polygon receives a row and a column attribute, specifying the cell for which the feature was created. Row 0, Column 0 corresponds to the upper-left corner.

 Usage Notes

 This transformer supports raster band selection. The RasterSelector can be used to modify this selection.

 When Extract Band Values is set to Z Values, each selected band must not contain a palette.

 Example

 [image: rastercellcoercer.png]

 FMEpedia

 See FMEpedia for additional information about this transformer.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Transformer History

 This transformer was previously known as the RasterToPointCoercer, RasterPointExtractor, or GridPointExtractor.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 RasterCellOriginSetter

 Sets the raster's cell origin.

 Input Ports

 Input

 Input features must contain raster geometries only.

 Parameters

 X Cell Origin, Y Cell Origin

 These parameters specify whether each cell's data point is at the lower-left or center (or somewhere else) within the cell. Enter a number between 0.0 and 1.0, or choose the value from an attribute in the pull-down list.

 Usage Notes

 This transformer is unaffected by raster band and palette selection.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster grid cell origin properties

 RasterCellValueCalculator

 Performs an arithmetic operation on a pair of rasters.

 The first selected band of raster A is combined with the first selected band of raster B, the second selected band of raster A is combined with the second selected band of raster B, and so on.

 Input Ports

 Input features have the following restrictions:

 	All input features must have raster geometry.

 	Paired rasters must have the same number of rows and columns.

 	Paired rasters must have the same number of selected bands.

 	Paired bands must both have the same nodata value, or they both must have no nodata value.

 	Bands may not contain a palette.

 Output Ports

 Output

 Unselected bands are appended to the output raster, unchanged. The unselected bands of raster A are appended first, followed by the unselected bands of raster B.

 Parameters

 Group By

 To perform a calculation on more than one pair of rasters, a set of Group By attributes must be specified. Each group must contain one A raster and one B raster.

 Group By attributes are always added to the output feature.

 Operation

 This parameter sets the operation that will be performed:

 	+
 	add

 	-
 	subtract

 	*
 	multiply

 	/
 	divide

 	
 Minimum

 Maximum

 Average

 	takes the minimum, maximum or average of A and B

 For example, if you select the plus sign (+), the two input rasters A and B will be added together (and therefore, the output raster will be A+B).

 Preserve Interpretation

 If Preserve Interpretation is set to Yes, each output band will have the same interpretation as its input bands when the input bands share the same interpretation. If the input bands have different interpretations, or Preserve Interpretation is set to No, the interpretation of each output band will be automatically determined.

 Note that when converting between different data types, a Bounded Cast is used. As a result, when a calculated value does not fit in the destination interpretation, the corresponding destination value will either be set to the minimum or maximum value possible in the destination data type.

 Accumulate Attributes

 If Accumulate Attributes is set to Yes, then the attributes from the original features will be merged onto the output feature. Group By attributes are always added to the output feature.

 Example

 [image: rastercellvaluecalculator.png]

 Related Transformers

 	You can modify band selection with the RasterSelector.

 	Nodata values can be set with the RasterBandNodataSetter or removed with the RasterBandNodataRemover.

 	Palettes may be resolved using the RasterPaletteResolver or removed using the RasterPaletteRemover.

 	You can use the RasterSingularCellValueCalculator to operate on a raster and a scalar.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster "bounded cast" palette band

 RasterCellValueReplacer

 Replaces a range of values in the source raster with a new single value.

 Parameters

 Replace Values >=, Replace Values <=

 Replace Values >= specifies a range bounded by a minimum value, where
 all values greater than or equal to the supplied value will be replaced
 by the replacement value.

 Replace Values <= specifies a range bounded by a maximum value, where
 all values less than or equal to the supplied value will be replaced by
 the replacement value.

 If both parameters are specified, both are applied. If the >= value
 is less than the <= value, then the bounds define a range of values
 bounded on both ends that will be replaced. For example, >= 100 and
 <= 200 replace with -999. Alternatively, if the >= value is greater
 than the <= value, then the bounds define two distinct ranges or everything
 outside the range provided. For example, >= 200 and <= 100 with
 -999 replaces all values in both the range >= 200 and the range <=
 100, and leaves the values 101-199 unchanged.

 To specify a single value to be replaced, set both Replace Values parameters to the same value to be replaced.

 To specify that all values except a single value should be replaced,
 supply two distinct ranges above and below the exempted value. For example,
 to replace all values except 100 with 0, specify >= 101 and <= 99.

 New Value

 Specifies the new value that will replace the specified
 range.

 Replace Nodata

 Specifies whether nodata values will be replaced.
 If set to Yes, nodata values will be replaced just as any other values.
 If set to No, then nodata values will not be replaced, even if they fall
 within the specified bounds.

 Usage Notes

 	This transformer supports raster
 band and palette selection. The RasterSelector
 can be used to modify selection.

 	RGB and RGBA color models are
 not supported by this transformer.

 	Rasters that contain bands with
 palettes are not supported by this transformer.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 RasterCellValueRounder

 Rounds off raster cell values.

 Note that floating point decimal values usually cannot be exactly represented. For example, the value 727.27 may actually be represented as 727.27002 when stored as a 32-bit floating point value. This property of floating point numbers may cause unexpected results when writing to text-based formats such as ESRIASCIIGRID. To avoid this, consider coercing floating point bands to real64 before using this transformer.

 Parameters

 Decimal Places

 Controls the number of decimal places to which the cell values are rounded.

 A value of 0 causes the cell values to be rounded to the nearest integer. A value of 1 causes rounding to the nearest tenth. Negative values are allowed. A value of -1 causes rounding to the nearest 10.

 Round-off Direction

 Controls how the rounding will take place:

 	Up: The cell values will always be rounded up.

 	Down: The cell values will always be rounded down.

 	Nearest (default): The cell values will be rounded up or down to the nearest value.

 Usage Notes

 This transformer supports raster band selection.

 The RasterSelector can be used to modify selection.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 RasterCheckpointer

 Sets a checkpoint in the raster processing which forces previous processing
 to occur immediately. Once complete, it saves the current state to disk.

 Parameters

 None.

 Usage Notes

 This transformer is unaffected by raster band and palette
 selection.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 RasterConsumer

 Requests the tile(s) from the raster geometry but no actual operations
 are performed on the tile(s).

 Input Ports

 Input

 All input features must have raster geometry.

 Parameters

 Tile Request Order

 Tile: The raster data is read one tile at a time until all tiles
 are consumed. Several bands may be read for a given tile.

 Band: The raster data is read one
 band at a time until all bands are consumed.

 Tile Size

 Use source tile size: The default tile size reported by the band will be used when tiles or bands are consumed.

 Specify source tile size: The raster will be consumed using the specified Number of Tile Rows and Number of Tile Columns.

 Number of Tile Rows, Number of Tile Columns

 In conjunction with Specify source tile size, specify the number of rows and columns.

 Usage Notes

 	Tiles may be used to partition each band into manageable chunks. Some
 raster sources may perform better using different patterns.

 	This transformer is unaffected
 by raster band and palette selection.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 RasterDEMGenerator

 Constructs a Delaunay triangulation based on input points and breaklines. That triangulation is then uniformly sampled to produce a raster digital elevation model (DEM raster).

 Input Ports

 Points/Lines

 These input features may be 2D or 3D, and may reside inside a raster, a point cloud, or other aggregate structures. 2D features will be forced to 3D by adding a z value of 0. In most cases, all points extracted from this port will be found in the vertex pool of the underlying surface model. A minimum of 3 unique points are required to construct a surface model. Points with duplicate x and y values will be dropped.

 Breaklines

 These input features may be 2D or 3D, and may reside inside an aggregate structure. 2D features will be forced to 3D by adding a z value of 0. Breakline edges will be found in the edge pool of the underlying surface model. Sometimes, a breakline edge will be split up to allow an optimal triangulation of the surface model. Points with duplicate x and y values will be dropped.

 Output

 DEMRaster

 This output port samples the underlying surface model according to the sampling rates specified in Output DEM X Cell Spacing, and Output DEM Y Cell Spacing, and produces a single raster feature consisting of evenly spaced 3D points arranged by rows and columns.

 Parameters

 Group By

 This parameter allows groups to be formed by attribute values. Zero or more attributes may be specified.

 Input features with the same attribute values are placed into the same group. The transformer then operates independently on each group of input features.

 If this parameter is left blank, the transformer will treat the entire set of input features as one group.

 Parallel Processing Level

 How parallel processing works with FME: see About Parallel Processing for detailed information.

 This parameter determines whether or not the
transformer should perform the work across parallel processes. If it is enabled, a process will be launched for each group specified by the Group
By parameter.

 Parallel Processing Levels

 	Parameter
 	Number of Processes

 	No Parallelism
 	1

 	Minimal
 	cores1 / 2

 	Moderate
 	exact number of cores

 	Aggressive
 	cores x 1.5

 	Extreme
 	cores x 2

 For example, on a quad-core machine, minimal parallelism will result in two simultaneous FME processes. Extreme parallelism on an 8-core machine would result in 16 simultaneous processes.

 You can experiment with this feature and view the information in the Windows Task Manager and the Workbench Log window.

 Surface Tolerance

 This parameter is used to determine which input points to add to the surface model as vertices. Specifying a value of 0 turns off vertex filtering.

 Tip: A larger value will speed up surface model construction. The larger the value, the more input points will be filtered out. For input files with millions – or even billions – of points, it becomes essential to increase this value.

 When a positive value for surface tolerance is specified, it works as follows. For each vertex that is being added to the model:

 	If the x,y location is outside the 2D convex hull of the existing surface model, it is added to the model.

 	If the x,y location is inside the 2D convex hull of the existing surface model:	The difference between the z value from the existing surface model and the z value of the vertex is calculated.
	This difference is compared to the surface model tolerance.
	The vertex is only added to the surface model if the difference is greater than the surface tolerance; otherwise, the vertex is discarded.

 Interpolation Method

 This parameter is used for the output ports DEMPoints and DEMRaster when these output ports exist on the transformer. It is also used if DrapeFeatures are input to the model.

 	AUTO: The transformer will calculate each output point automatically. The PLANAR method is used if the output point is within a surface triangle in xy and the CONSTANT method is used otherwise.

 	PLANAR: Barycentric interpolation is used to determine the z value for each output point. If an output point is outside the 2D convex hull of the surface model, the output z value will be set to NaN (Not a Number).

 	CONSTANT: The z value of each output point is set to the z value of the closest vertex in the underlying model.

 Output DEM X Cell Spacing, Output DEM Y Cell Spacing

 These parameters specify the x and y sampling intervals for the output DEMPoints.

 Output DEM Raster Nodata Value

 This parameter is used only when Interpolation Method is set to PLANAR, and it only affects the output port DEMRaster.

 All output raster cells that fall outside the underlying surface model’s boundaries will be assigned the value of this parameter.

 When this parameter is blank, it is interpreted as NaN (Not a Number).

 Note: To ensure consistent raster output, it is highly recommended that you do not leave this parameter blank.

 Usage Notes

 	If a set of individual 3D points
 comprising a DEM is required, you should use the DEMGenerator.

 	This transformer is unaffected
 by raster band and palette selection.

 Example

 [image: rasterdemgenerator.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Surfaces

 FME Licensing Level

 FME Professional edition and above

 Transformer History

 This transformer was previously named DEMGridGenerator.

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.
Keywords: MBR "minimum bounding rectangle" raster grid generate DEM elevation numeric create point
1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 RasterExpressionEvaluator

 Evaluates expressions on each cell in a raster, such as algebraic operations or conditional statements.

 Input Ports

 Features are input through ports A and B. The cardinality of the input is required to be one of the following cases:

 	one or more As, no Bs

 	one A, one or more Bs

 Note that the B port is only visible if Two Rasters is specified in the Mode parameter.

 When both A and B features are provided, the single A input will be paired with each B input.

 Note the following restrictions on input features:

 	Input features must have raster geometry.

 	All paired rasters must have the same number of rows and columns.

 	Either all bands used in the same expression must have the same nodata value, or all bands used in the same expression must have no nodata value.

 	No band may have a palette.

 Output Ports

 Result

 The output of the transformer will be a single raster feature per input pair. The output rasters will have n bands, where n is the number of interpretation/expression pairs, specified through the Band Expression(s) parameter.

 Parameters

 Mode

 This parameter specifies how many types of input features are allowed. If One Raster is selected, then only A input features are permitted. If Two Rasters is selected, then A and B input features are permitted.

 Group By

 If any Group By attributes are given, then each group will be treated independently. This allows a single transformer to operate on multiple pairs of As and Bs. Note that this parameter is not applicable when the Mode is One Raster; in that case, each raster is considered individually and there are no groupings.

 Band Expression(s)

 This table is used to specify how to calculate and interpret one or more bands in the output raster. Each row of the table represents a different band in the output raster.

 The first column of the table indicates how each band is to be interpreted. Valid interpretations are Preserve, Auto, Gray8, Gray16, Red8, Red16, Green8, Green16, Blue8, Blue16, Alpha8, Alpha16, UInt8, Int8, UInt16, Int16, UInt32, Int32, UInt64, Int64, Real32, Real64.

 The second column of the table indicates the expression used to calculate each output band. A simple expression might be something like "(A[0] + B[0])/2", which calculates the average of the first band of input A and input B. Note that this parameter is case-sensitive.

 When pairs of inputs are being operated on (i.e., the expression references both input A and B), the output feature will have all the attributes from both feature A and B. If the same attribute exists on both input features, then the attribute value from feature B will be preferred. Similarly, the output raster will have the properties of raster B. When only a single input is being operated on (i.e., the expression only references input A), the feature attributes and raster properties will remain unchanged.

 Usage Notes

 Note that when converting between different data types, a Bounded Cast is used. As a result, when a calculated value does not fit in the specified destination interpretation, the corresponding destination value will either be set to the minimum or maximum value possible in the destination data type.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 FMEpedia

 See FMEpedia for additional information about this transformer.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 RasterExtentsCoercer

 Replaces the geometry of input raster features with a polygon covering the extents of the raster.

 Parameters

 Extents Type

 Raster Extents: The polygon covers the entire extents of the raster. If the raster is rotated, the rotated corners of the raster are used for the polygon.

 Data MBR Extents and Data Extents: These modes examine the data in the raster to more accurately determine the extents. A cell is considered to be nodata when, for each selected band, the value for that cell is equal to that band's nodata value. If any cell value is not equal to that band's nodata value, the cell will be considered data. In these modes, this transformer will only operate on selected raster bands, and each selected band is required to have a nodata value.

 In Data MBR Extents mode, the polygon will be an axis-aligned bounding rectangle that covers all data cells in the raster. This is more computationally expensive than finding the Raster Extents.

 In Data Extents mode, the output geometry will be either a single polygon or an aggregate of polygons that exactly cover only the data cells in the raster. This is more computationally expensive than finding the Data MBR Extents.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.
Keywords: raster grid band channel vector spatial extent extract polygon vectorisation vectorization nodata footprint

 RasterExtractor

 Serializes the geometry of the feature into the Blob Attribute based on the selected writer format.

 Parameters

 Format

 The raster format used to encode the blob.

 Format Name Attribute

 An attribute to preserve the specified format value for future use.

 Blob Attribute

 The attribute that will contain the resulting blob.

 Note that when writing the Blob Attribute, you may need to adjust the attribute type to an unbounded data type to avoid truncation of the blob.

 Please choose an appropriate attribute type depending on the destination format. For example, an appropriate attribute type for SQL Server is "image".

 Usage Notes

 	Writer parameters may be controlled by setting format attributes on the feature. For example, when writing to JPEG, the compression level may be set via the jpeg_compression_level format attribute. Consult the writer format documentation for a complete list of supported attributes.

 	The RasterReplacer may be used to do the reverse operation and convert the encoded blob back to the original data.

 	Alternatively if the raster is not required as a geometry on the feature for future processing, the AttributeFileWriter transformer can be used to dump the Raster Blob Attribute directly to a file.

 	To carry out a similar operation on vector data, please use the GeometryExtractor transformer. For point cloud data, please use the PointCloudExtractor.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 Related Transformers

 RasterReplacer

 GeometryExtractor

 GeometryReplacer

 PointCloudExtractor

 PointCloudReplacer

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 RasterGCPExtractor

 Extracts the coordinate system and the Ground Control Points (GCP) from the raster feature
 and exposes them as attributes.

 Input Ports

 This transformer accepts only
 raster features.

 Output

 The output attribute of this transformer
 is encoded as follows:

 pixel line x y z;pixel line x y z etc.

 The following raster properties are exposed:

 _gcp_coordsys

 _gcp_value

 Parameters

 None.

 Usage Notes

 This transformer is unaffected
 by raster band and palette selection.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 RasterGCPSetter

 Sets the Ground Control Points (GCP) on a raster with the specified
 Column (pixel), Row (line), X Coordinate, Y Coordinate and Z Coordinate.

 If the raster has already set GCPs, the old GCPs will be overwritten.

 Parameters

 Source Coordinate System

 This parameter indicates the coordinate system
 that would be effective if the Ground Control Points were applied. This
 is not necessarily equivalent to the coordinate system of the feature.

 GCP Value

 A string value specifying the GCP(s). Each GCP is separated with a semicolon and each value of a 5-value GCP is separated by a space.

 To set a GCP

 	Set the source coordinate system.

 	In GCP Value, you must enter 5 values, separated
 with a space: Column(pixel) Row(line) X-Coordinate Y-Coordinate Z-Coordinate.
 For example,

 1 10 50 -20 0

 	To set multiple GCPs, you can use a semicolon
 to separate each GCP. For example,

 1 10 50 -2.5 0; 2 4 6 8 10; 1 2 3 4 5

 Usage Notes

 This transformer is unaffected
 by raster band and palette selection.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 RasterGeoreferencer

 Georeferences a raster using the specified parameters.

 Parameters

 The Parameter Type determines which parameters are required in this transformer.

 Parameter Type

 Point And Angle: X Upper Left Coordinate, Y Upper Left Coordinate, X Cell Spacing, Y Cell Spacing and Rotation will be used.

 In this case, the raster's origin will be set to the upper left coordinate and X Cell Spacing, Y Cell Spacing and Rotation are stored as input, untouched.

 Extents: X Upper Left Coordinate, Y Upper Left Coordinate, X Upper Right Coordinate, Y Upper Right Coordinate, X Lower Right Coordinate, Y Lower Right Coordinate, X Lower Left Coordinate and Y Lower Left Coordinate will be used.

 In this case, all input coordinates are validated to be unique, to form a rectangle which can be rotated, and to be clockwise. The rotation and spacing are then calculated from these coordinates and stored. The raster's origin will be set to the upper left coordinate.

 Usage Notes

 	If the raster is already georeferenced, this will overwrite the old
 georeferencing information.

 	This transformer is unaffected by raster band and palette selection.

 Example

 [image: rastergeoreferencer.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 RasterHillshader

 Generates a shaded relief effect, useful for visualizing terrain.

 Each selected input band will be converted to a GRAY8 band with hillshade values between 0 and 255. Additionally, if Interpolate Nodata is set to No or if the band has a nodata value, an additional ALPHA8 band will be generated, with a value of 0 where the input was nodata and a value of 255 where the input was data.

 Note that the horizontal and vertical units are expected to be equal. If this is not the case, the Scaler may be used prior to this transformer to apply an appropriate scale factor.

 Input Ports

 Input

 Input features must contain raster geometries only.

 Parameters

 Azimuth

 Azimuth angle of the light source, expressed in positive degrees from 0 to 360, measured clockwise from north. The default value, 315, is generally used to generate shaded maps.

 Altitude

 Altitude angle of the light source above the horizon, expressed in positive degrees, with 0 degrees at the horizon and 90 degrees directly overhead.

 Interpolate Nodata

 Whether to calculate values at raster edges and near nodata values.

 When this is set to No, there will be a one pixel border around the edge of the raster set to the nodata value (i.e. the alpha band value will be set to 0). Additionally, when any pixel in the 3x3 window used to calculate the hillshade value is equal to nodata, the output pixel will also be set to nodata.

 When this is set to Yes, values around the edge and near nodata values will be estimated by interpolating missing values. Note that holes will not be filled in. That is, cells that are nodata in the input image will remain nodata in the output.

 Algorithm

 The algorithm used to calculate slope and aspect. Some analyses have suggested that Horn's formula is better suited to rougher terrain, whereas Zevenbergen & Thorne's formula is better for smooth terrain.

 Usage Notes

 This transformer supports raster band selection. The RasterSelector can be used to modify this selection.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 RasterInterpretationCoercer

 Alters the underlying interpretation of the bands of the raster geometry on the input features, using the specified conversion options.

 For example, an input raster feature with three bands of interpretation (UInt16, Gray8, and Real64) could be converted to a raster feature with three bands of interpretation (Red8, Green8, and Blue8) or four bands of interpretation (Red16, Green16, Blue16, and Alpha16) in a single operation.

 Parameters

 Interpretation

 Destination Interpretation Type

 This parameter selects the destination interpretation along with the bit depth. Different interpretations allow for different conversion options to be used. If any bands on the raster contain palettes, then the destination interpretation is restricted to UInt8, UInt16 or UInt32.

 Conversion Options

 RGBA to RGB

 When converting to an interpretation with multiple components, such as RGB and RGBA, the raster will be expected to have exactly 1, 3, or 4 bands. If only one band is supplied, it will be cloned and converted to the appropriate interpretation. When converting to a single color or numeric interpretation, multiple input bands will be averaged into a single one.

 The RGBA to RGB parameter selects the action to perform when converting four bands representing an RGBA raster to three bands representing an RGB raster.

 	Drop the alpha band discards the alpha band.

 	Apply the alpha band multiplies all RGB values with their corresponding, normalized alpha value.

 RGB to RGBA

 This parameter selects the action to perform when converting three bands representing an RGB raster to four bands representing an RGBA raster.

 	Create opaque alpha band adds a new alpha band which has the maximum value for the data type in all cells.

 	Create alpha band from nodata creates a new band which has the maximum value for the data type only in data cells. A cell is considered to be nodata when, for each selected band, the value for that cell is equal to that band's nodata value. If any cell value is not equal to that band's nodata value, the cell will be considered data. Note that when this option is selected, it is required that all input bands have a nodata value.

 Convert from Color to Color, Convert from Numeric to Color, Convert Color to Numeric, and Convert Numeric to Numeric

 These parameters select the action to undertake when the given conversion between different types occurs.

 	Cast is very efficient and is lossless if the data values are contained within the destination data range. If outside the range, the Cast option allows overflow and rolls over the data values at the min and max of the destination data range, thus all values are contained in the destination range but if they rolled over may not reflect the source values very well.

 	Bounded cast improves the basic Cast by also validating that the source values fit into the destination type, effectively preventing underflow and overflow; if a source value does not fit, the corresponding destination value will either be set to the minimum or maximum value possible in the destination data type.

 	Scale by data values finds the minimum and maximum values of the source values and uses them to scale the values to the full range of the destination type.

 	Scale by data type scales the source data range directly to the destination data range regardless of where the data values lie.

 Convert from Float to Integer

 This parameter specifies the action to perform when converting from a floating-point value to an integer.

 	Round rounds to floating-point value to the nearest integer.

 	Ceiling gets the next integer which is greater than or equal to the floating-point value.

 	Floor gets the next integer which is less than or equal to the floating-point value.

 Usage Notes

 Each RasterInterpretationCoercer performs a conversion on the input raster. If multiple RasterInterpretationCoercers are used in sequence, then multiple conversions will take place; data quality and translation performance may suffer.

 This transformer is unaffected by raster band and palette selection.

 Example

 [image: rasterinterpretationcoercer.png]

 Related Transformers

 	The RasterBandInterpretationCoercer performs similar conversions on individual bands.

 	The RasterPaletteInterpretationCoercer performs similar conversions on palettes.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Transformer History

 This transformer replaces the RasterDataTypeCoercer and RasterColorModelCoercer transformers.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 RasterMosaicker

 This transformer mosaics multiple raster features into a single raster
 feature.

 The transformer accepts a number of input raster features, each of which
 has one or more bands. All the raster features have the same number of
 selected bands, which, in turn, have the same number of selected palettes.
 Each selected band from each input raster feature will be removed, mosaicked
 together, and then appended to a single output raster feature. As a result,
 the output raster feature will also have the same number of selected bands
 and palettes.

 Input Features

 	This transformer accepts only raster features.

 	The order of the input features determines the order in which rasters will be drawn. The first raster to enter will be drawn first, then each subsequent raster will be drawn on top of any previous overlapping rasters. You can use a Sorter transformer to enforce
 the order in which the features are processed.

 	When there are no selected palettes or Merge Palettes is No, each band in a set must have the same band interpretation and nodata value.

 	When there are selected palettes and Merge Palettes is Yes, each band must have one selected palette, and all palettes must have the same value interpretation.

 Output Ports

 Output

 The output feature created by mosaicking the input features.

 Parameters

 Group By

 The rasters may be organized into groups with the Group By parameter,
 with each group of rasters having its own output raster.

 Snapping Type

 The Snapping Type is used if the rasters are not perfectly aligned. The first input feature defines the reference grid. The following rasters can be Resampled to this grid. For better performance, they can also be Offset to match the grid.

 Interpolation Type

 If the input rasters do not line up correctly or if they have different
 spacings, this transformer will use the selected Interpolation Type to
 snap and/or resample the input rasters. Nearest Neighbor is the fastest
 but produces the poorest image quality. Bicubic
 is the slowest but produces the best image quality. Bilinear provides
 a reasonable intermediate option. Average 4 and Average 16 have a performance
 similar to Bilinear and are useful for numeric rasters such as DEMs.

 Nodata Overwrites Real Data

 This option specifies whether nodata values should overwrite data values in rasters that have been previously drawn. If set to Yes, any nodata overlapping real data values will overwrite the real data values. If set to No, nodata overlapping real data will not be drawn, and the real data values will be preserved.

 Note that data values will always overwrite both nodata and data values.

 Composite Using Alpha Band

 If Composite Using Alpha Band is set to Yes, rasters will be expected to have an alpha band selected and cannot contain any palettes. Rasters will be blended according to the alpha values with the rasters they overlap instead of just being copied over them. This parameter overrides the Nodata Overwrites Data parameter because nodata values are considered completely transparent.

 Merge Palettes

 This parameter specifies how palettes will be treated when present.

 When set to Yes, selected palettes in each input band set will be merged to create a single palette for the output band. When set to No, selected palettes in each input band set will be accumulated on the output band without modification.

 Accumulate Attributes

 If Accumulate Attributes is
 set to Yes, then the attributes from the original features will be merged
 onto the output raster features.

 Count Attribute

 If a Count Attribute is given,
 then an attribute with this name will be added to each output feature,
 containing the number of features that were combined to create the raster
 feature.

 Usage Notes

 This transformer supports raster band and palette selection. The RasterSelector can be used to modify selection.

 Example

 [image: rastermosaicker.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 RasterNumericCreator

 Creates a feature with a raster of the specified size with a numeric
 value and sends it into the workspace for
 processing. It is useful for creating a very large image with a user-specified width and height.

 Parameters

 Raster Properties

 Size Specification

 When specifying the size of the output raster, either the desired dimensions or the desired extents can be provided. The choice you make here will determine which additional parameters are enabled in the transformer.

 To set the output raster size using dimensions, set this parameter to RowsColumns.

 To set the output raster size using extents, set this parameter to Extents.

 Number of Columns and Number of Rows

 These parameters specify the
 number of columns and rows the raster will have. This must be at least
 one.

 X Cell Origin and Y Cell Origin

 The X Cell Origin and Y Cell Origin parameters specify the
 origin for each cell. This can be used to specify whether each cell's
 data point is at the lower-left or center (or somewhere else) within the
 cell.

 X Cell Spacing and Y Cell Spacing

 These parameters specify the
 spacing between cell elements. This must be greater than zero.

 X Upper Left Coordinate and
 Y Upper Left Coordinate

 The parameters
 specify the origin for the upper-left corner of the raster as a whole.

 X Lower Right Coordinate and Y Lower Right Coordinate

 These parameters specify the origin for the lower-right corner of the raster as a whole.

 Rotation

 This parameter specifies the rotation of the raster.

 Interpretation

 Interpretation

 This parameter sets the type of data stored at each cell in the raster and number of bits used for that type.

 Data Values

 Min. Numeric Value and Max. Numeric Value

 The parameters specify
 the range of values each cell in the raster can take.

 Nodata Numeric Value

 The parameter
 specifies the nodata value (0-1) for this raster.

 Data Pattern

 This parameter specifies
 which type of raster should be created:

 	Single Value means each cell in the raster will
 be set to the maximum raster value.

 	Checkered Pattern means alternating cells in the
 raster will be set to values between the minimum and maximum raster values.

 	Checkerboard means alternating blocks of data
 in the raster will be set to the minimum and maximum raster values, in
 a standard eight-by-eight checkerboard pattern. The sizes of these blocks
 of data are variable, and dependent on the number of rows and columns
 specified. If the number of rows and columns are not multiples of eight,
 the remaining data will be set to either nodata values or the minimum
 value.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 RasterPaletteAdder

 Creates a palette from an attribute, and adds this palette to all selected bands on a raster.

 Selected bands are required to have an interpretation of UINT8, UINT16, or UINT32. Note that palette entries will be discarded if they do not fit within the interpretation of a selected band. For example, when adding a palette to a UINT8 band, all keys that are greater than 255 will be dropped.

 Parameters

 Palette Attribute

 The attribute from which the palette will be read.

 Format of Palette Attributes

 See Format of Palette Attributes in the RasterPaletteExtractor.

 Usage Notes

 This transformer supports raster band selection. Selected bands are required to have an interpretation of UInt8, UInt16, or UInt32. The RasterSelector can be used to modify selection.

 Related Transformers

 This transformer may be used in combination with the AttributeFileWriter to read a palette from a file. The AttributeFileWriter can read a palette file into an attribute, and this transformer can then create a palette from that attribute.

 The RasterPaletteExtractor may be used to do the reverse operation and create a palette from a string attribute.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster grid band channel palette lookup LUT colormap colourmap attribute add append read create

 RasterPaletteExtractor

 Creates a string representation of an existing palette and saves it to an attribute.

 Parameters

 Palette Attribute

 The attribute to which the palette will be written.

 Format of Palette Attributes

 The general format of a palette attribute is as follows:

 <value interpretation> [<string length>]

 <key 0> <value 0>

 <key 1> <value 1>

 ...

 <key n> <value n>

 The first line of the palette must contain the value interpretation. Valid values for the value interpretation are RGBA32, RGB24, RGBA64, RGB48, GRAY8, GRAY16, and STRING.

 When an interpretation of STRING is specified, the first line may optionally specify the maximum string length of the palette values. This value must be a positive integer. If no string length is explicitly specified, a default of 32 will be assumed.

 RGBA and RGB palette values consist of comma-delimited strings of integers between 0 and the maximum value of the datatype. For example, a valid RGBA32 value would 64,128,255,255, and a valid RGB48 value would be 16384,32768,65535.

 GRAY palette values consist of a single integer between 0 and the maximum value of the datatype.

 STRING palette values may consist of any arbitrary text, except for the newline character.

 All lines after the first are key-value pairs. Palette keys must be organized in ascending order, but they are not required to be contiguous. For example, you can have palette entries for keys 0, 2, and 4, but not 1 or 3. All missing palette entries are assumed to look up to 0 or an equivalent value, such as 0,0,0 for RGB or an empty string for string palettes.

 Palette Examples

 This is an example of a color palette:

 RGB24

 0 0,49,190

 1 50,255,50

 2 172,0,255

 3 255,0,0

 And this is an example of a string palette:

 STRING 10

 0 Water

 1 Forest

 2 Commercial

 3 Urban

 Usage Notes

 This transformer supports raster band and palette selection. Exactly one palette must be selected on each input raster feature. The RasterSelector can be used to modify selection.

 Related Transformers

 This transformer may be used in combination with the AttributeFileWriter to write a palette to a file. This transformer can create an attribute from a palette, and then the AttributeFileWriter can be used to write that attribute to a file.

 The RasterPaletteAdder may be used to do the reverse operation and create a palette from a string attribute.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster grid band channel palette lookup LUT colormap colourmap attribute extract write

 RasterPaletteGenerator

 Generates a palette out of the selected band(s) of a raster. The output
 raster will have the selected band(s) replaced by a new band with a palette.

 Palette Key Interpretation Type

 This
 parameter allows the choice of the interpretation of the keys in the resultant
 palette and supports the three possible palette key interpretations: UInt8,
 UInt16, and UInt32.

 Maximum Number of Palette Entries

 This
 parameter allows the optional specification of a maximum number of palette
 entries. If left as the default blank value, the number of unique keys
 in the bands specified by the interpretation in Palette Key Interpretation
 Type will will determine the number of palette entries.

 For example, if Palette Key Interpretation Type is set to UInt8 and
 Maximum Number of Palette Entries to 87, the generated palette will only
 have Uint8 keys and a maximum of 87 unique entries.

 This operation may be lossy if an explicit maximum number of entries
 is used that is less that the number of unique band entries. In this case,
 the data values in the palette may not capture all the original band data
 values.

 Usage Notes

 This transformer supports raster band and palette selection. The RasterSelector can be used to modify selection.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 RasterPaletteInterpretationCoercer

 Alters the underlying interpretation of the palettes of the raster geometry on the input features, using the specified conversion options.

 For example, an input raster feature with a single band with a single palette of interpretation RGB24 could be converted to a single band with a single palette of RGB64 or String data.

 Parameters

 Destination Interpretation Type

 Selects the destination interpretation along with the bit depth. Different interpretations allow for different conversion options to be used.

 RGBA to RGB

 Selects the action to perform when converting an RGBA palette to an RGB palette. The Drop the alpha band option simply discards the alpha component from the palette. The Apply the alpha band option multiplies all RGB values with their corresponding, normalized alpha value.

 RGB to RGBA

 Selects the action to perform when converting an RGB palette to an RGBA palette:

 	Create opaque alpha adds a new alpha component which has the maximum value for the data type in all palette entries.

 	Create alpha component from nodata adds a new alpha component which has the maximum value for the data type in all palette entries except the nodata entry. Note that when this option is selected, all selected input bands have a nodata value.

 Convert from Color to Color

 Selects the action to undertake when a conversion between different color types occurs.

 	Cast: Uses C-style casts to convert the values.

 	Bounded cast: Uses C-style casts to convert the values too, but also validates that the source values fit into the destination type, effectively preventing underflow and overflow; if a source value does not fit, the corresponding destination value will either be set to its type's minimum or maximum value.

 	Scale by data values: Finds the minimum and maximum values of the source values and uses them to scale the values to the full range of the destination type.

 	Scale by data type: Scales the source values while preserving all proportions in regard to the source and destination types' range.

 Convert from Float to Integer

 Specifies the action to perform when converting from a floating-point value to an integer.

 	Round rounds to floating-point value to the nearest integer.

 	Ceiling gets the next integer which is greater than or equal to the floating-point value.

 	Floor gets the next integer which is less than or equal to the floating-point value.

 Usage Notes

 Each RasterPaletteInterpretationCoercer performs a conversion on the input raster. If multiple RasterPaletteInterpretationCoercers are used in sequence, then multiple conversions will take place; data quality and translation performance may suffer.

 This transformer supports raster band and palette selection. The RasterSelector can be used to modify selection.

 Related Transformers

 The RasterInterpretationCoercer performs similar operations on the raster as a whole, such as converting 4 bands directly to RGBA.

 The RasterBandInterpretationCoercer performs similar conversions on individual bands.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Transformer History

 This transformer replaces the RasterDataTypeCoercer
 and RasterColorModelCoercer transformers.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster grid band channel palette lookup LUT colormap colourmap datatype convert coerce adjust interpretation colormodel colourmodel bitdepth rescale scale

 RasterPaletteNodataSetter

 Identifies the nodata value on a raster feature at the palette level.

 The transformer will succeed in setting the specified nodata value only
 if the input raster band(s) have at least one palette and a nodata key
 has already been set on the band.

 Input Ports

 Input

 Input features must contain raster geometries only.

 Output Ports

 Output

 Features with the specified nodata value are output through this port.

 Parameters

 Nodata Value

 A numeric value specifying the nodata value to be set on the palette. Multi-part interpretations (e.g. RGB) may be specified as a comma-delimited value (e.g. "10,20,30"). The original nodata value is discarded if it exists.

 Usage Notes

 	RGB and RGBA color models are supported by this
 transformer.

 	This transformer supports raster band and palette selection. The RasterSelector can be used to modify selection.

 Related Transformers

 This transformer does not set the nodata value on the band level. To
 set the nodata value on the bands of a raster, use the RasterBandNodataSetter.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster grid band channel palette lookup LUT colormap colourmap null void value set modify flag

 RasterPaletteRemover

 Removes the selected palette(s) of a raster. If the source band has
 no palettes, the raster will remain unchanged.

 Parameters

 None.

 Usage Notes

 This transformer supports raster band and palette selection. The RasterSelector can be used to modify selection.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster grid band channel palette lookup LUT colormap colourmap remove delete destroy

 RasterPaletteResolver

 Resolves the palettes of the selected bands of the input raster features
 by using the band cell values to look up the corresponding palette values,
 which then replace the original band cell values in the raster.

 The output
 raster will have no palettes on the selected bands and the band data values
 will reflect the original the palette values.

 If the selected band has more than one palette to resolve, the first
 palette will be resolved into the original band and subsequent palettes
 will be resolved into clones of the original band, which will be added
 to the raster. If
 the palette value interpretation is a color model, there may be multiple
 bands generated on the raster for each palette. Palette resolving is not
 possible for palettes containing String values.

 For example, one band with a single RGB24 palette will become three
 bands: a RED8 band, a GREEN8 band, and a BLUE8 band, each without a palette.

 Once processing is complete, the palette will not be present on the
 remaining bands.

 Usage Notes

 This transformer supports raster band selection only. Either all or
 none of the palettes must be resolved for each band. The RasterSelector
 can be used to modify selection.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster grid band channel palette lookup LUT colormap colourmap resolve apply enhance

 RasterPropertiesExtractor

 Extracts the geometry properties of a raster feature and exposes them
 as attributes.

 The following geometry properties are exposed:

 _num_bands

 _num_rows

 _num_columns

 _spacing_x

 _spacing_y

 _origin_x

 _origin_y

 _rotation_x

 _rota

 _min_x

 _min_y

 _max_x

 _max_y

 _cell_origin_x

 _cell_origin_y

 _upper_left_x

 _upper_left_y

 _upper_right_x

 _upper_right_y

 _lower_right_x

 _lower_right_y

 _lower_left_x

 _lower_left_y

 Parameters

 None.

 Usage Notes

 	Input features must contain raster geometries only.

 	This transformer is unaffected
 by raster band and palette selection.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 Related Transformers

 This transformer does not extract band or palette properties such as
 interpretation and nodata. To extract the band and palette properties
 of a raster, use the RasterBandPropertiesExtractor.

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster grid band channel properties metadata expose extract rows columns width height extents origin spacing cell

 RasterPyramider

 Creates a series of pyramid levels for each input raster feature by
 specifying either the smallest pyramid level size or the number of pyramid
 levels to generate. Pyramid levels are created by resampling input rasters
 to various different resolutions.

 Output Ports

 Pyramids

 Output raster features that comprise the levels of the pyramid generated for each input feature.

 Parameters

 Smallest Level Size

 If you choose Smallest Level Size, the
 Number of Columns and Rows in the Smallest Level fields are enabled.

 Number of Levels

 If you choose Number of Levels,then the Number of Levels field is enabled.

 Number of Columns and Rows in
 the Smallest Level

 If the Number of Columns and Rows in
 the Smallest Level is specified, then the smallest pyramid level
 generated will have the specified size. Each subsequent level will increase
 the number of rows and columns by a factor of two, until the size of the
 input raster is reached.

 Number of Levels

 If the Number of Levels is specified,
 then the largest pyramid level generated will have half the number of
 rows and columns of the input raster. Each subsequent level will decrease
 the number of rows and columns by a factor of two, until the specified
 number of levels has been generated.

 Force Level Sizes to be Powers of
 Two

 If Force Level Sizes to be Powers of
 Two is set to Yes, then the number of rows and columns in all generated
 levels will be powers of 2. When the smallest pyramid level size is
 specified, the number of rows and columns in the smallest level will actually
 be the smallest powers of 2 that are greater than or equal to the specified
 values. When
 the number of levels is specified, the number of rows and columns in the
 largest pyramid level will be the greatest powers of 2 that are less
 than or equal to the number in the input raster.

 Note that pyramid levels will not be generated if either the number
 of rows or the number of columns is less than 2.

 Interpolation Type

 Cell values
 are interpolated in order to change the raster to the specified sizes.

 Interpolation methods:

 	Nearest Neighbor: fastest but
 produces the poorest image quality

 	Bilinear: provides a reasonable balance
 of speed and quality

 	Bicubic: slowest but produces the best image
 quality

 	Average 4: performs similar to Bilinear and useful
 for numeric rasters such as DEMs

 	Average 16: performs similar to Bilinear and useful
 for numeric rasters such as DEMs

 Raster Index Attribute

 If a Raster Index Attribute
 is specified, an attribute will be added to each output feature that identifies
 which raster it was created from. This index is zero-based, so all pyramid
 levels created from the first input raster will have a value of 0, all
 pyramid levels created from the second input raster will have a value
 of 1, etc.

 Pyramid Level Attribute

 If a Pyramid Level Attribute
 is specified, an attribute will be added to each output feature that identifies
 its level in the pyramid. The input raster is considered to be the base
 of the pyramid (level 0), so the largest level that is output for a given
 input raster will have a value of 1, the second largest will have a value
 of 2, etc.

 Number of Pyramid Levels Attribute

 If a Number of Pyramid Levels Attribute
 is specified, an attribute will be added to each output raster indicating
 the number of levels in the pyramid to which it belongs

 Usage Notes

 This transformer is unaffected by raster band and palette selection.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 Licensing Level

 FME Professional edition

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster grid band channel pyramind level resample downsample "nearest neighbor" "nearest neighbour" bicubic average interpolate resize

 RasterReader

 Reads and outputs raster features from the specified format and dataset.

 Each feature that
 enters creates another reader.

 The attributes from the incoming feature are added to the read raster
 features. If they both have the same name, the incoming feature's
 attributes will prevail, except if they start with fme_ (in which case
 the raster's attributes prevail).

 Features leaving the transformer will have the fme_feature_type and
 fme_basename attributes as read from the raster reader.

 Parameters

 Raster Reader Type

 Select the format of the raster reader.

 Dataset Location

 Typically the dataset is taken from an attribute in the incoming feature.

 Continue on Reader Error

 If an error occurs and this parameter is set to No, the translation will fail.

 If an error occurs and this parameter is set to Yes, an error message will be logged, but the translation will continue. In this case, the original query feature will be output with no geometry and the last error message issued by the reader stored in the _reader_error attribute. Note that the _reader_error attribute will not be added to the schema by this transformer; this can be done using an AttributeExposer if desired.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster grid band channel palette lookup LUT colormap colourmap generic "raster reader"

 RasterReplacer

 Replaces the geometry of the feature with the geometry held in the Blob Attribute. The blob is decoded according to the selected raster format.

 Parameters

 Format

 The raster format used to decode the blob.

 Blob Attribute

 The attribute from which the blob will be read.

 Remove Attribute

 If this parameter is set to Yes, the Blob Attribute will be removed from the resulting feature.

 Usage Notes

 Note that this transformer only works with raster formats. Use the GeometryReplacer for vector formats or the PointCloudReplacer for point cloud formats.

 Related Transformers

 This transformer is typically used to restore a raster previously extracted into an attribute by the RasterExtractor.

 GeometryExtractor

 GeometryReplacer

 PointCloudExtractor

 PointCloudReplacer

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster geometry database extract replace blob serialize

 RasterResampler

 Resamples an input raster using the desired dimensions, the desired cell size in ground units, or a percentage of the size.

 Parameters

 Raster Size

 Size Specification

 To resize the input raster by dimensions, select RowsColumns.

 To resize the input raster by cell size, select CellSize.

 To resize the input raster by percentage, select Percentage.

 Number of Columns/Number of Rows

 Enter values when RowsColumns is selected.

 X Cell Spacing/Y Cell Spacing

 Enter values when CellSize is selected.

 Percentage

 Specify a percentage. For example, if the input raster is 1000 rows by 800 columns and this is set to 50 percent, the resulting raster will be 500 rows by 400 columns.

 Interpolation

 Interpolation Type

 Cell values are interpolated in order to change the raster to the specified
 size. You can choose from these interpolation methods.

 	Nearest Neighbor
 is the fastest but produces the poorest image quality.

 	Bilinear
 provides a reasonable intermediate option.

 	Bicubic
 is the slowest but produces the best image quality.

 	Average 4
 and Average 16 have a performance
 similar to Bilinear and are useful for numeric rasters such as DEMs.

 Usage Notes

 This transformer is unaffected by raster band and palette
 selection.

 Example

 [image: rasterresampler_small.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster grid band channel reproject resample upsample downsample "nearest neighbor" "nearest neighbour" bilinear bicubic average interpolate resize

 RasterRGBCreator

 Creates a feature with a raster of the specified size with an RGB
 value and sends it into the workspace for
 processing.

 Parameters

 Raster Properties

 Size Specification

 When specifying the size of the output raster, either the desired dimensions or the desired extents can be provided. The choice you make here will determine which additional parameters are enabled in the transformer.

 To set the output raster size using dimensions, set this parameter to RowsColumns.

 To set the output raster size using extents, set this parameter to Extents.

 Number of Columns and Number of Rows

 These parameters specify the
 number of columns and rows the raster will have. This must be at least
 one.

 X Cell Origin and Y Cell Origin

 The X Cell Origin and Y Cell Origin parameters specify the
 origin for each cell. This can be used to specify whether each cell's
 data point is at the lower-left or center (or somewhere else) within the
 cell.

 X Cell Spacing and Y Cell Spacing

 These parameters specify the
 spacing between cell elements. This must be greater than zero.

 X Upper Left Coordinate and
 Y Upper Left Coordinate

 The parameters
 specify the origin for the upper-left corner of the raster as a whole.

 X Lower Right Coordinate and Y Lower Right Coordinate

 These parameters specify the origin for the lower-right corner of the raster as a whole.

 Rotation

 This parameter specifies the rotation of the raster.

 Interpretation

 Create Palette

 Specifies whether this raster will contain a palette.

 Band Interpretation

 Specifies the data type each cell will contain if the raster does not
 contain a palette.

 Palette Key Interpretation

 Specifies the key data type for each palette entry if the raster contains
 a palette.

 Palette Value Interpretation

 The Palette Color Type parameter
 specifies the value data type for each palette entry if the raster contains
 a palette.

 Data Values

 Data Pattern

 This parameter specifies
 which type of raster should be created:

 	Single Value means each cell in the raster will
 be set to the maximum raster value.

 	Checkered Pattern means alternating cells in the
 raster will be set to values between the minimum and maximum raster values.

 	Checkerboard means alternating blocks of data
 in the raster will be set to the minimum and maximum raster values, in
 a standard eight-by-eight checkerboard pattern. The sizes of these blocks
 of data are variable, and dependent on the number of rows and columns
 specified. If the number of rows and columns are not multiples of eight,
 the remaining data will be set to either nodata values or the minimum
 value.

 Min. Color Value, Max. Color Value

 These parameters
 specify the range of values each cell in the raster can take. For grayscale
 color models (Gray8 and Gray16), only the red component value will be
 used.

 Note: The Color Value parameters can be edited by clicking the colored square to the right of the text field, or by editing the contents of the field directly. The color must be specified as <red>,<green>,<blue> where each of <red>, <green>, and <blue> is a number between 0 and 1.

 Nodata Color Value

 This parameter
 specifies the nodata value for this raster. For grayscale color models
 (Gray8 and Gray16), only the red component value will be used.

 Note: The Color Value parameters can be edited by clicking the colored square to the right of the text field, or by editing the contents of the field directly. The color must be specified as <red>,<green>,<blue> where each of <red>, <green>, and <blue> is a number between 0 and 1.

 Min. Alpha Value, Max. Alpha Value

 The parameters specify
 the range of values for the alpha channel (0-1) that each cell in the raster
 can take.

 Nodata Alpha Value

 This parameter
 specifies the alpha channel value (0-1) for the nodata value for this raster.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 RasterRotationApplier

 Applies the raster rotation angle on the input raster properties to
 the rest of the raster properties and data values.

 The expected input is a raster with a non-zero rotation angle and the
 expected output is a rotated raster with a rotation angle of 0.0. It
 is expected that the input raster properties will be modified to conform
 the output raster properties for a raster rotated by the given angle.

 Applying a rotation angle is primarily done for compatibility with other
 processing and writers that cannot handle a rotation angle.

 Parameters

 Interpolation Type

 Cell values
 are interpolated in order to change the raster to the specified sizes.

 Interpolation methods:

 	Nearest Neighbor: fastest but
 produces the poorest image quality

 	Bilinear: provides a reasonable balance
 of speed and quality

 	Bicubic: slowest but produces the best image
 quality

 	Average 4: performs similar to Bilinear and useful
 for numeric rasters such as DEMs

 	Average 16: performs similar to Bilinear and useful
 for numeric rasters such as DEMs

 Usage Notes

 	This transformer is unaffected by raster band and palette
 selection.

 	It
 is suggested that the input raster also contain a nodata value since applying
 the rotation often has the effect of adding nodata areas around the corners
 of the rotated raster. These
 nodata areas will be filled with 0 or black values in the absence of an
 input raster nodata value.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster grid band channel rotate rotation apply "nearest neighbor" "nearest neighbour" bilinear bicubic average interpolate

 RasterSelector

 Selects specific bands and palettes of a raster for subsequent transformer
 operations.

 The bands and palettes are selected using the band and palette indices,
 specified in a string. The string may either be specified explicitly or through an attribute. The format of the string is B P (separated with a space), where B is the band index and P is the palette index of the band and palette to be operated on. Indices are zero-based, so the first band or palette is at index 0.

 Parameters

 Band and Palette List

 The function will only accept alphanumeric characters and
 valid symbols in the code string. The code string accepts the symbols
 ",", ";", and ":".

 Multiple palettes for a band can be specified, delimited by commas.

 Multiple
 band-palette pairs can be specified delimited by semicolons.

 The keyword
 ALL can be used in place of band and palette numbers to select all bands
 or all palettes on a certain band. Specific palettes cannot be selected
 on ALL bands.

 Example

 	all bands
 	ALL

 	all bands and all palettes
 	ALL ALL

 	first palette of the first band of a raster
 	0 0

 	first palette of the first band and first palette of the third band
 	0 0;2 0

 	the first three bands of the raster (without their palettes)
 	0;1;2

 	the first three bands of the raster (with their palettes)
 	0
 ALL;1 ALL;2 ALL

 Usage Notes

 	This function overrides any existing selection on the raster. All unspecified
 bands and palettes on a raster after selection are treated as unselected
 for future operations. Selection is not considered by writers, so use the
 RasterBandSeparator and filtering to write subsets
 of the bands and palettes as individual features.

 	It is possible to select bands without selecting
 the attached palettes.

 	It is NOT possible to select palettes without selecting the owning band.

 	Specific palettes cannot be selected on ALL bands; for example, ALL 2.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster grid band channel palette lookup LUT colormap colourmap selection select modify

 RasterSingularCellValueCalculator

 Performs an arithmetic operation on two operands: the cell values of a raster and a numeric value. The numeric value may either be a constant or an attribute.

 Input Ports

 Input features have the following restrictions:

 	All input features must have raster geometry.

 	Bands may not contain a palette.

 Parameters

 Operation

 This parameter sets the operation that will be performed:

 	+
 	add

 	-
 	subtract

 	*
 	multiply

 	/
 	divide

 For example, if you select the plus sign (+), the two input rasters A and B will be added together (and therefore, the output raster will be A+B).

 Operand Order

 This parameter specifies the order of the operands. This parameter only impacts non-commutative operations such as subtraction.

 Preserve Interpretation

 If this parameter is set to Yes, each output band will have the same interpretation as the corresponding input band. If Preserve Interpretation is set to No, the interpretation of each output band will be automatically determined.

 Note that when converting between different data types, a Bounded Cast is used. As a result, when a calculated value does not fit in the specified destination interpretation, the corresponding destination value will either be set to the minimum or maximum value possible in the destination data type.

 Usage Notes

 This transformer supports raster band selection. The RasterSelector can be used to modify the selection.

 Related Transformers

 	Nodata values can be set with the RasterBandNodataSetter or removed with the RasterBandNodataRemover.

 	Palettes may be resolved using the RasterPaletteResolver or removed using the RasterPaletteRemover.

 	You can use the RasterCellValueCalculator to operate on a pair of rasters.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 RasterSlopeCalculator

 Calculates the slope (maximum rate of change in z) for each cell of a raster.

 Each selected input band will be converted to a Real64 band whose output value represents the slope.

 Note that the horizontal and vertical units are expected to be equal. If this is not the case, the Scaler may be used prior to this transformer to apply an appropriate scale factor.

 Input Ports

 Input

 Input features must contain raster geometries only.

 Output Ports

 Output

 Raster features with the calculated slope values will be output through this port.

 Parameters

 Output Measurement

 The measurement units of the output slope data.

 When set to Degrees, the slope will be calculated in degrees. Values will range from 0 to 90.

 When set to Percent Rise, the slope will be calculated as percent rise. Values will range from 0 to infinity. A flat surface will have a slope of 0 percent, a 45 degree surface will have a slope of 100 percent, and as the surface becomes more vertical the slope gets progressively larger.

 Interpolate Nodata

 Whether to calculate values at raster edges and near nodata values.

 When this is set to No, there will be a one pixel border around the edge of the raster set to the nodata value. Additionally, when any pixel in the 3x3 window used to calculate the slope value is equal to nodata, the output pixel will also be set to nodata. If the input band does not have a nodata value, the output band nodata value will be set to -1.

 When this is set to Yes, values around the edge and near nodata values will be estimated by interpolating missing values. Note that holes will not be filled in. That is, cells that are nodata in the input image will remain nodata in the output.

 Algorithm

 The algorithm used to calculate the slope. Some analyses have suggested that Horn's formula is better suited to rougher terrain, whereas Zevenbergen & Thorne's formula is better for smooth terrain.

 Usage Notes

 This transformer supports raster band selection. The RasterSelector can be used to modify this selection.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 RasterSubsetter

 Reduces a raster to a subset of its original size. This is essentially
 a clipping operation using pixel bounds instead of ground coordinates.

 Parameters

 Start Column, Start Row

 These parameters specify the position in the input raster from which
 the subset will be taken.

 Number of Columns, Number of Rows

 These parameters specify the
 size of the subset in cells to be taken from the raster. They do not
 include any padding values. These values must be greater than 0 for the
 input to be valid.

 Padding Parameters

 The padding parameters specify how many rows and columns of padding
 in cells should be placed around the subset portion of the raster.

 Usage Notes

 This transformer is unaffected by raster band and palette
 selection.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster grid band clip subset

 RasterToPolygonCoercer

 Creates polygons from input raster features. One polygon is output for each contiguous area of pixels with the same value in the input raster.

 Parameters

 Extract Nodata Values

 Specifies whether polygons will be output for nodata areas in the raster.

 A cell is considered to be nodata when, for each selected band, the value for that cell is equal to that band's nodata value. If any cell value is not equal to that band's nodata value, the cell will be considered data.

 Preserve Attributes

 Specifies whether the output vector features should retain attributes from the input raster feature.

 Label Attribute

 Specifies the name of an attribute that will be created on every output feature describing the polygon.

 The label will be a comma-separated list of the band values covered by that polygon. For example, the label for a raster with three bands might be something like 64,128,255.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 RasterTiler

 Splits each input raster into a series of tiles by specifying either
 a tile size or a number of tiles.

 Parameters

 Tile Size or Number of Tiles

 Choose how the input raster should be split.

 Seed Column and Row

 These parameters specify a "seed" location from which tiling will start. That is, tile boundaries will align with the specified location. By default this is (0,0), meaning tiling starts from the upper-left corner of the raster.

 Number of Columns, Number of Rows

 These parameters specify the
 size of the subset in cells to be taken from the raster. They do not
 include any padding values. These values must be greater than 0 for the
 input to be valid.

 Number of Horizontal Tiles, Number of Vertical Tiles

 These parameters specify the number of tiles into which the input rasters will be split. These values must be greater than 0.

 Force Equal Sized Tiles

 This parameter controls behavior when the raster size is not a multiple of the requested tile size or number of tiles.

 No: Tiles on the right or bottom edge of the raster may be smaller than other tiles.

 Yes: All tiles will be the same size.

 Tiles that go off the edge of the raster will be padded with the nodata value if one is set on the band; if no nodata value is set, RGB rasters will have an alpha band added to identify the padding regions.

 For example, suppose you have a raster of size 1000 columns and a selected column tile size of 256. When this option is No, three tiles of 256 columns and one tile of 232 columns will be generated. When this option is Yes, four tiles of 256 columns will be generated, where the last tile contains 24 columns of padding.

 Raster Index Attribute

 An attribute will be added to each output tile that identifies
 which raster it was created from. This index is zero-based, so all tiles
 created from the first input raster will have a value of 0, all tiles
 created from the second input raster will have a value of 1, and so on.

 Tile Column Attribute, Tile Row Attribute

 Attributes will be added to each output tile that identify the position
 of that tile in the input raster. These indices are zero-based.

 Tile row
 0, tile column 0 corresponds to the upper-left tile.

 Number of Horizontal and Vertical Tiles Attributes

 Attributes will be added to each output tile that identify the number of horizontal and vertical tiles in the input raster.

 Usage Notes

 This transformer is unaffected by raster band and palette
 selection.

 Example

 [image: rastertiler.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster grid band clip tile subset

 Recorder

 Saves a copy of all the features that enter to a disk file.

 This disk file can later be "played back" in the subsequent
 workspace by using the Player, or viewed using the FME Universal Viewer.

 Parameters

 Output Feature Store File

 Specifies the output .ffs file.

 Recording Mode

 	If the mode is RECORD_PASS_THROUGH, the transformer
 will record each feature it receives and immediately pass it through to
 the rest of the FME for further processing.

 	If the mode is RECORD, the transformer will record
 each feature it receives but wait until the end of translation before
 it sends all recorded features through to the rest of the FME for processing.
 This method is useful because if one of the features causes the FME translation
 to fail, the feature file will be complete and usable, whereas if a failure
 occurs when using the RECORD_PASS_THROUGH mode, the feature file may not
 be usable.

 Compression Level

 Indicates
 how much compression will be applied to the output recording. The higher
 the number, the more compression, the smaller the output file, and the
 more CPU that will be expended to make it.

 Output Byte Order

 Specifies
 how the bytes of the features will be laid out in the disk file. If the
 file is only going to be used on the same platform where it was produced,
 the NATIVE choice is the best. Otherwise,
 it can be forced to use BIG or LITTLE
 endian.

 Store Scanned Schema

 When this option is set to Yes, schemas will be recorded and stored in the output FFS file. If it is set to No (default), schemas will not be passed along to the output file.

 Password

 Provides a level of password protection for the created file. Before
 the file can be read, the password will have to be reentered.

 Feature Type Attribute

 Sets the feature type for the feature inside the FFS file. If no
 attribute is given, a default feature type is provided.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Related Transformers

 Player

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 ReframeReprojector

 Reprojects feature coordinates from one coordinate system to another using the REFRAME library.

 This transformer handles the usual planimetric and altimetric reference frame change for Switzerland.

 The following Swiss reference frames are supported:

 	Plane coordinates LV03 (CH1903)

 	Plane coordinates LV95 (CH1903+)

 	National levelling network LN02 (levelled heights)

 	National height network LHN95 (orthometric heights, CHGeo2004)

 	Ellipsoidal heights (Bessel)

 Source planimetric reference frame

 Specifies the reference frame used for source ground measurements.

 Destination planimetric reference frame

 Specifies the reference frame used for destination ground measurements.

 Source altimetric reference frame

 Specifies the reference frame used for source height measurements.

 Destination altimetric reference frame

 Specifies the reference frame used for destination height measurements.

 Cell Size (Raster Only)

 The Cell Size applies only to raster features.

 Stretch Cells: The cell size of the raster will be adjusted to maintain the same number of rows and columns
 in the reprojected raster as there were in the input raster.

 Square Cells: The number of rows and columns as well as the spacing will be changed to maintain approximately the same cell ground area and form square cells where the horizontal and vertical cell sizes are equal. Like the Square Cells option, Preserve Cells will change both the number of rows and columns and the spacing to maintain cell ground area, but will also try to preserve the original cell aspect ratio, taking into account any warping caused by the reprojection.

 Preserve Cells: Like
 the Square Cells option, this option will change both the number of
 rows and columns and the spacing to maintain cell ground area, but will
 also try to preserve the original cell aspect ratio, taking into account
 any warping caused by the reprojection.

 Interpolation Type (Raster Only)

 The Interpolation Type affects only raster data. Cell values are interpolated in order to change the raster to the specified size.

 Nearest Neighbor is the fastest but produces the poorest image quality.

 Bilinear provides a reasonable balance of speed and quality.

 Bicubic is the slowest but produces the best image quality.

 Average 4 and Average 16 have a performance similar to Bilinear and are useful for numeric rasters such as DEMs.

 Usage Notes

 To perform a reference frame change, select the planimetric and altimetric input and output frames.

 The input and output reference frames can be the same (or empty): it allows you to perform only a planimetric or only an altimetric transformation.

 For more information about REFRAME, please refer to the documentation available (PDF) or to swisstopo website:

 http://www.swisstopo.ch/geosoftware

 For more information about Swiss reference frames:

 http://www.swisstopo.admin.ch/internet/swisstopo/en/home/topics/survey/sys/frames.html

 If you are experiencing problems, please check that the following components are installed on your computer:

 	Microsoft Visual C++ 2010 Redistributable Package (x86 or x64)

 	Microsoft .NET Framework 4

 Version 2.4 (02.2012) © swisstopo

 ReprojectAngleCalculator

 Converts a given angle from one coordinate system to another. The transformer uses the first coordinate of the passed-in feature and returns the angle of the specified line at the determined angle in the destination coordinate system. It is useful for converting data such as text rotations
 that are established in many systems in the destination coordinate system
 units.

 To calculate the new angle, the transformer uses the:

 	input length

 	input angle

 	input point

 	source (reader) coordinate system

 	destination (writer) coordinate system

 and then calculates a second point in the source coordinate system by taking the first point and advancing length units in the angle heading. It then reprojects both points to determine the new angle.

 Usage Notes

 This function assumes all coordinate systems are Cartesian.

 Parameters

 Original Line Length

 Distance specified in source coordinate system coordinates. You should enter a length that is small enough to avoid distortion, but large enough to get meaningful results (for example, 1 m might be a good choice, although a range of 1 cm to 100 m would be acceptable). If your source system is in degrees, you will have to adjust the length to produce measurable results.

 Original Line Angle

 Angle of distance in source coordinate system. The angle is measured counterclockwise from horizontal and is specified in degrees.

 Source and Destination Coordinate Systems

 The name of the reader and writer coordinate systems.

 Reprojected Angle Attribute

 The calculated value is put into the attribute specified by the Reprojected Angle Attribute parameter.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Coordinate Systems

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 ReprojectLengthCalculator

 Converts a given distance from one coordinate system to another. The
 transformer calculates the reprojected length of a line starting at the
 first coordinate in the feature, with the given length and angle. Both
 the length and angle parameters are specified in the source coordinate
 system.

 This transformer is useful for converting data such as text heights
 and widths that are measured in many systems in the destination coordinate
 system units.

 Parameters

 Original Line Length

 Distance specified in source coordinate system coordinates.

 Original Line Angle

 Angle of distance in source coordinate system. The angle is measured counter clockwise from horizontal and is specified in degrees.

 Source and Destination Coordinate Systems

 The name of the reader and writer coordinate systems.

 Reprojected Length Attribute

 The calculated value is put into the attribute specified by the Reprojected Length Attribute parameter.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Coordinate Systems

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 Reprojector

 Reprojects feature coordinates from one
 coordinate system to another.

 Parameters

 Source and Destination Coordinate System

 If the feature had a coordinate system, that system is used as the source
 of the reprojection, and the Source Coordinate System parameter to this
 transformer is ignored.

 If the feature did not have a source coordinate system, and the Source
 Coordinate System parameter was unset, then the transformer only sets
 the coordinate system of the feature to the destination coordinate system,
 and the coordinates of the feature remain unchanged.

 Note: If the source coordinate system is not fixed and may
 change from feature to feature, and the features themselves have been
 tagged with a coordinate system from the reader that produced them, then
 a single Reprojector may still be able to be used. In such a case, both
 the source and destination coordinate system can be set to the same value
 – the
 destination coordinate system –
 and the desired behavior will be accomplished.

 Allow Arc and Ellipse Stroking

 If this parameter is set to No, then only the center points of the arcs or ellipses
 will be reprojected. Otherwise, if the feature came from a reader which
 supported this option, the arcs are converted to lines and ellipses to
 polygons and then reprojected. This option is has no effect on advanced geometry
 arcs and ellipses.

 Interpolation Type (Raster)

 The Interpolation Type affects only raster data. Cell values are interpolated in order to change the raster to the specified size.

 	Nearest Neighbor is the fastest but produces the poorest image quality.

 	Bilinear provides a reasonable balance of speed and quality.

 	Bicubic is the slowest but produces the best image quality.

 	Average 4 and Average 16 have a performance similar to Bilinear and are useful for numeric rasters such as DEMs.

 Cell Size (Raster)

 The Cell Size applies only to raster features.

 	 Stretch Cells: The cell size of the raster will be adjusted to maintain the same number of rows and columns
 in the reprojected raster as there were in the input raster.

 	Square Cells: The number of rows and columns as well as the spacing will be changed to maintain approximately the same cell ground area and form square cells where the horizontal and vertical cell sizes are equal. Like the Square Cells option, Preserve Cells will change both the number of rows and columns and the spacing to maintain cell ground area, but will also try to preserve the original cell aspect ratio, taking into account any warping caused by the reprojection.

 	Preserve Cells: Like
 the Square Cells option, this option will change both the number of
 rows and columns and the spacing to maintain cell ground area, but will
 also try to preserve the original cell aspect ratio, taking into account
 any warping caused by the reprojection.

 Dynamic Coordinate Systems

 If the destination coordinate system is specified as "_AZMEA_"
 or "_AZMED_", each input feature is reprojected to either an
 equal area or equal distance projection appropriate for that feature,
 respectively. In
 general, this causes a new coordinate system to be defined for each input
 feature.

 Each feature remembers which specific equal distance or equal area coordinate
 system it has, and can be safely reprojected back to a normal (non-dynamic)
 coordinate system.

 As an example:

 	There is an input feature representing a point
 on the earth in LL-WGS84 (normal lat/long).

 	The point is reprojected to _AZMED_ via a Reprojector
 with source LL-WGS84 and destination _AZMED_.

 	The x and y coordinates of the point are extracted
 into x1, y1.

 	Set x2 = x1 + 1000, and y2 = y1.

 	Add a vertex to the point to make the line (x1,y1)
 -> (x2,y2).

 	Reproject back to LL-WGS84 via a Reprojector with
 source _AZMED_ and destination LL-WGS84.

 Note that the source is ignored here. We
 just chose _AZMED_ to help remember what is going on. Sometimes
 people prefer to set the source and destination both to LL-WGS84.

 	Now we have changed our point into a line extending
 1 km east of the original point, in lat/long.

 Dynamic coordinate systems have the following limitation:

 •	Z is not considered, so areas or distances are best preserved for geometry at an ellipsoid height of 0 meters.

 Example

 [image: reprojector.gif]

 Usage Notes

 	This transformer works with both
 raster and vector data.

 	This transformer is unaffected by raster band and palette selection.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Coordinate Systems

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Rotator

 Rotates features in a counterclockwise direction about the specified
 point by the Rotation Angle parameter (measured in degrees).

 The rotation is around the Z axis, and does not impact any elevations
 that may be present on the feature.

 Parameters

 Each of the parameters may either be entered as a number, or can be
 taken from the value of a feature attribute by selecting the attribute
 name from the pull-down list.

 Rotation Angle

 Specifies the angle that the feature will be rotated, measured in degrees counterclockwise.

 X Origin, Y Origin

 The x- and y-coordinates about which features are rotated. The specified coordinates are global and are not relative to individual features. These parameters do not apply when rotating raster geometries.

 Note: Raster geometries do not use the supplied origin for
 rotation. Rasters always rotate around the upper left corner, which is the implied origin.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 RubberSheeter

 Performs warping operations on the spatial coordinates of features.
 It is used to adjust a set of observed features so they more closely match
 some set of reference features. This transformer applies a different transformation
 to each Observed vertex, depending
 on its distance to nearby Control
 vectors. It produces good corrections when the distortions in the Observed data are not constant.

 Input Features

 Two sets of features must be routed into this transformer:

 	Features
 that enter through the Control port
 represent the control features used to compute the corrections.

 	Features
 that enter through the Observed port
 are the features that will be corrected.

 Each Control feature represents
 a control vector whose start point is at some location in the original
 Observed data space, and whose
 end point is at the corresponding location in the desired output data
 space. The control vector represents the correction required to go from
 the observed vertex to the desired vertex. (Control vectors with only
 one point are interpreted as a requirement that this location not change
 from the observed dataset to the reference dataset. This is often referred
 to as a tie point.)

 Optionally, lines may be input as Constraint features to this transformer. These lines will be treated as boundaries, across which control vectors will have no influence on points of observed features. If the "line of sight" from a point on an Observed feature to the starting point of a Control vector crosses a Constraint line, that control vector will not affect the resulting warped position of the point in question. If the line of sight touches the end of a Constraint line, or either the Control vector or Observed point is actually located on the Constraint line, then the Control vector will still influence the observed point.

 Note: this transformer does not currently support raster geometry.

 Output Ports

 The modified Observed features
 are output via the Corrected
 port.

 Parameters

 Distance Exponent

 Specifies how the strength of a correction will be affected
 by its distance from an observed point. A value of 2 will cause the strength
 to be decreased proportional to the square of the distance.

 Max Distance

 Indicates the influence
 of control vectors. Any control vector start point farther than the specified
 distance from the point being operated on will have no effect in the correction
 computation. If Max Distance is not specified (or is 0), then all control
 vectors will be used for correcting every point.

 Max Number of Influencing Vectors

 Indicates that only the closest given number of vectors will have an effect
 on any point being warped. If not specified (or if 0), then all control
 vectors will be used for correcting every point.

 Comparison to the AffineWarper

 The AffineWarper
 transformer provides similar functionality but computes an affine (scale,
 rotation, and offset) transformation based on Control
 vector features and applies this transformation to the Observed features to generate output.
 This makes the AffineWarper
 more appropriate for cases when the entire set of Observed
 data requires a single transformation.

 Case Study

 Click here to read how FME’s RubberSheeter was
 used to combine Manukau City Council’s existing parcel-dependent cadastral
 data with a newer “survey accurate” national digital cadastre.

 Common Questions

 I have a line feature only some of whose points fall inside the Max
 Distance. How will it be warped? Only vertex points that lie inside
 the Max Distance will get warped. Therefore, part of your line will be
 warped, part of it will not.

 Why doesn't FME warp the entire feature when one of its points falls
 inside the Max Distance? Because this could causes topological networks
 to become broken. Working on a point-by-point basis, connections will
 never be broken because the common point on the connecting feature will
 also get warped (even if the rest of that feature doesn't).

 Example

 [image: rubbersheeter_precorrection.gif] [image: rubbersheeter_postcorrection.gif]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 S3Downloader

 Using the Amazon Simple Storage Service (S3), downloads data from an object in an S3 bucket.

 Input Ports

 Input

 This transformer accepts any feature.

 Output Ports

 Output

 Features which have successfully downloaded their contents from S3 are output through this port.

 <Rejected>

 Features which have not successfully downloaded their contents from S3 are output through this port. Additionally, a message stored in an attribute specified in ‘Error Attribute’, will contain details about the failure.

 Parameters

 AWS Credentials

 Access Key ID

 An access key associated with a user with permission to download data from the specified bucket. If a pairing of an access key and a secret access key is not given, credentials will be searched in various locations listed here.

 	In a file titled AwsCredentials.properties located in the Java classpath

 	For the properties aws.accessKeyId and aws.secretKey in the Java system properties

 	In the environment variables AWS_ACCESS_KEY_ID and AWS_SECRET_KEY

 If credentials are still not found, the client will act as if it is in anonymous mode, where requests aren’t signed. This is useful if accessing a publicly accessible object or bucket.

 Secret Access Key

 A secret key paired with the access key provided. See the Access Key ID parameter for credential searching.

 S3 Download Options

 Bucket Name

 The name of the bucket which contains the object to download.

 Object Key

 The object key of the data that will be downloaded.

 Output Options

 Target Attribute

 Specify the output attribute that will store the downloaded object’s contents. The data will be read in as the raw bytes as provided by S3.

 The default value is _s3_object_contents.

 Error Attribute

 Specify the output attribute that will store any messages from errors during the download process.

 The default value is _s3_error.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Web Services

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 S3Uploader

 Using the Amazon Simple Storage Service (S3), uploads data to an Amazon S3 bucket.

 Input Ports

 Input

 This transformer accepts any feature.

 Output Ports

 Output

 Features which have successfully uploaded their contents to S3 are output through this port.

 <Rejected>

 Features which have not successfully uploaded their contents to S3 are output through this port. Additionally, a message stored in an attribute specified in ‘Error Attribute’, will contain details about the failure.

 Parameters

 AWS Credentials

 Access Key ID

 An access key associated with a user with permission to upload data to the specified bucket. If a pairing of an access key and a secret access key is not given, credentials will be searched in various locations listed here.

 	In a file titled AwsCredentials.properties located in the Java classpath

 	For the properties aws.accessKeyId and aws.secretKey in the Java system properties

 	In the environment variables AWS_ACCESS_KEY_ID and AWS_SECRET_KEY

 If credentials are still not found, the client will act as if it is in anonymous mode, where requests aren’t signed. This is useful if accessing a publicly accessible object or bucket.

 Secret Access Key

 A secret key paired with the access key provided. See the Access Key ID parameter for credential searching.

 S3 Upload Options

 Bucket Name

 The name of the bucket to upload data to.

 Object Key

 The object key of the data uploaded to the bucket that will be used.

 Data to Upload

 The data to store in the specified object key. These will be read in as raw bytes. An attribute can be used to specify the contents of the data.

 Upload Content Type

 The Content-Type HTTP header to send along with the request. S3 will store this information beside the object uploaded.

 The default value is application/octet-stream.

 Permissions

 The predefined set of grantees and permissions to store with each uploaded object. For more information, please see http://docs.aws.amazon.com/AmazonS3/latest/dev/ACLOverview.html#CannedACL

 The default value is Private.

 Output Options

 Object URI Attribute

 Specify the output attribute that will store the uploaded object’s URI.

 The default value is _s3_object_uri.

 Error Attribute

 Specify the output attribute that will store any messages from errors during the upload process.

 The default value is _s3_error.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Web Services

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Sampler

 Preserves either a total number of features or a sampling of features, depending on the
 Sampling Type selection. The remainder of the input features are discarded.

 This transformer is typically used during testing to reduce data volume
 by arbitrarily discarding data.

 Parameters

 Group By

 When specified, this parameter affects the behavior of the two sampling types. For example, say the Sampler receives a set of 15 features. Using the Group By parameter, the Sampler breaks the features into 3 groups.

 	Group 1 has 3 features

 	Group 2 has 5 features

 	Group 3 has 7 features

 This table shows how sampling amount and type affect the Group By results:

 	Sampling Amount
 	Sampling Type
 	Result

 	4
 	Every Nth Feature
 	

 	0 features from Group 1 will be sampled

 	1 feature from Group 2 will be sampled: the 4th feature

 	1 feature from Group 3 will be sampled: the 4th feature

 	4
 	First N Features
 	

 	3 features from Group 1 will be sampled

 	4 features from Group 2 will be sampled: the first 4 features

 	4 features from Group 3 will be sampled: the first 4 features

 Sampling Type

 Sampling Type determines whether to keep a set number of features, or a sampling of features.

 Sampling Amount

 The Sampling Amount is the number of features to keep: either a total number of features, or a sampling of features.

 If you enter 1, no data will be discarded: the same number of features will be the same for input and output.

 If you enter 0, all input data will be discarded.

 Example

 	Sampling Amount
 	Sampling Type
 	Result

 	2
 	Every Nth Feature
 	Every second feature will be kept.

 	10
 	First N Features
 	Only the first 10 features will be kept. All subsequent features will be consumed by the transformer.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Filters

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Scaler

 The Scaler scales objects to make them bigger or smaller.

 Parameters

 Scale Factors

 A separate multiplier must be set for each of the X,
 Y, and Z axes. For two-dimensional
 features, the Z multiplier is ignored.

 Text Scaling

 If Text Scaling is set to "Location and Size", any text
 features will have their height scaled in addition to their location.

 Raster Scaling

 If Raster Scaling is set to "Spacing Only", then only the spacing of raster features will be scaled (e.g. the x spacing will be multiplied by the x scale factor). Otherwise when set to "Extents", all raster properties (spacing, origin, and rotation) may be affected by the scaling operation. Extents mode means scaling a raster will behave similarly to scaling all other geometries.

 Scale Origin

 The value of Scale Origin specifies the location. The geometry is scaled relative to Scale Origin.

 	0,0: A data shift may occur.

 	Center Point: The location of the feature's center point after scaling will be the same as the center point of the input feature. If the input feature is a raster, only X and Y scale factors will cause coordinate location shifts. The Z scale factor will cause the values in the cells of the raster to be scaled by the specified amount for each selected band.

 Point Cloud Component

 Specifies a component to scale on point cloud features. Note that the x, y, and z components can be scaled using the generic Scale Factors. This parameter is intended for non-spatial components (e.g. intensity).

 Point Cloud Scale Factor

 The multiplier that will be applied to the corresponding point cloud component.

 Usage Notes

 	This transformer supports raster band and palette selection. The RasterSelector can be used to modify selection.

 	This transformer simply multiplies all coordinate values
 with the specified scale factors. If the object
 being scaled is not on or near the 0,0 point of the coordinate system,
 using the Scaler will also introduce a shift to your data.

 	This transformer works with both raster and vector
 data.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 SchemaMapper

 Converts the existing schema (data model) of features to a new structure, based on mappings defined in an external lookup table.

 This technique is very useful when the mappings are potentially complex or when they need to be maintained by someone who is not familiar with FME. Using an external lookup table to define these mappings simplifies the completion of these tasks.

 The schema mapping lookup table, used by the SchemaMapper transformer, defines a series of conditions that are to be met (filters), and a series of actions that will be executed when the conditions are met.

 The lookup table may come in different formats such as: a comma-separated or plain text file; a spreadsheet (Excel or Google); or a database such as Oracle, PostGRES, Informix, SQL Server, etc.

 If an incoming feature matches the rules in any row of the table, the potential actions of the transformer on that feature are listed by type as follows:

 Map Feature Types:

 Feature types – as defined by fme_feature_type – are mapped from their existing value, to one which defines the new feature type. For example:

 Roads 		→ 	Center Lines

 Map Attributes:

 One or more attributes on the feature are mapped by renaming their existing attribute name (s) to a new one. For example:

 Name_of_Road	→ 	RoadName

 Set New Attributes:

 A new attribute is created whose name and value are defined in a lookup table.

 Transformer Ports

 Features that have an action carried out on them are output via the Mapped port. Otherwise, they are output via the Unmapped port.

 In addition to the feature type, the geometry of each feature is left untouched.

 SchemaMapper Uses

 You can use the SchemaMapper for:

 Domain Mapping: where attributes values can be remapped according to a well-defined domain or lookup table. For example:

 	Primary Route		→	US Highway

 	Secondary Route	 →	Interstate Highway

 	Primary Route 		→	County Road

 Dynamic Translations: where workspaces are created to handle any data structure

 Automated Schema Mapping: where the manual connections between source and destination schemas are done automatically using an external lookup table.

 Note: A schema mapping table (domainSchema.csv) is often derived from a database metadata document such as Esri's XML database schema description, which can be exported from ArcCatalog for any selected geodatabase (Export > XML Workspace Document > Schema Only).

 Example: Using the SchemaMapper transformer

 The following example describes a typical scenario

 Feature Type Mapping

 Using an external lookup table (.csv file), you can map feature types to simplify a schema by mapping the old feature type to a new feature type:

 	Old Feature Type
 	New Feature Type

 	River
 	Water

 	Lake
 	Water

 	Canal
 	Water

 	Road
 	Transportation

 	Railway
 	Transportation

 	Airport
 	Transportation

 Attribute Mapping

 Using an external lookup table, you can map attributes to new names:

 	Old Attribute
 	New Attribute

 	River_Name
 	WaterName

 	River_Alt_Name
 	AltWaterName

 	River_Country
 	WaterCountry

 	River_Length
 	WaterSize

 	River_Owner
 	WaterOwner

 Filters

 You can use filters to set your mapping rules. For example, if you want to map an “old pipe type” to a “new pipe type” You can set the rule (filter) according to the size of the pipes:

 	Old Pipe Type
 	Pipe Size Attribute
 	Pipe Size
 	New Pipe Type

 	Gas
 	PipeSize
 	6
 	GasSmall

 	Gas
 	PipeSize
 	12
 	GasMedium

 	Gas
 	PipeSize
 	24
 	GasLarge

 	Water
 	Diameter
 	6
 	WaterSmall

 	Water
 	Diameter
 	12
 	WaterMedium

 	Water
 	Diameter
 	24
 	WaterLarge

 	Sewage
 	PipeDiam
 	6
 	SewageSmall

 	Sewage
 	PipeDiam
 	12
 	SewageMedium

 	Sewage
 	PipeDiam
 	24
 	SewageLarge

 Example Using Feature Type Mapping and Filtering

 You can use the SchemaMapper wizard to define the filters and the type of mapping that you need. You accomplish this task by creating actions to be executed on the source schema.

 To open the SchemaMapper wizard, click the Properties button of the transformer. The SchemaMapper Parameters dialog opens.

 	Specify the format and location of the schema mapping table (lookup table) to be used. You may want to edit format parameters but you can use the defaults that Workbench provides. Click Next.

 	If a dataset has more than one table, specify the table to be used. Click Next.

 	On the Create Actions pane, click Add and select the action type. For this example, we'll select Feature Type Map.

 	Select the Source and Destination Feature Type Fields. You can show/hide the table columns, and refresh the contents.

 [image: 03000002.png]

 	 Click OK to return to the Create Actions pane, which now shows the Feature Type Map action you just set.

 Note: To transform your source schema to a new schema, you can create more than one action depending on the mapping rules that you want to apply to the existing schema.

 	To add another action, select from the Add drop-down menu. In this example, we'll select Filter to display the Create Filter dialog:

 [image: addfilter.png]

 	Select the table columns in the Attribute Name and Value Fields. By default, Blank Attribute Values are ignored but you can choose to include them.

 	Click OK to return to the Create Actions dialog. The Action column now shows two actions: Map Feature Types and Filter Features:

 [image: 03000005.png]

 	Click Finish to set the SchemaMapper parameters.

 Usage Notes

 This transformer
 usually requires implementation help from our Professional Services department.

 FMEpedia

 	For a good basic introduction to the SchemaMapper, see Crouching Schema Hidden Dragon.

 	This FMEpedia page contains descriptions and examples.

 	One of our user conference workshops contained a lot of additional information about the SchemaMapper: see from page 22.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Database

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 SecondOrderConformer

 Performs a second-order conformal transformation on the feature's geometry. Depending on the input geometry, a 2D or 3D transformation is performed. Transformed features are passed to the Transformed port.

 The transformation results in the x and y coordinates being modified by:

 x' = C + E(x-A) - F(y-B) + G((x-A)^2 - (y-B)^2) - 2H(x-A)(y-B)

 y' = D + E(y-B) + F(x-A) + H((x-A)^2 - (y-B)^2) + 2G(x-A)(y-B)

 z' = z + I

 This transformation is non-linear. Thus, to maintain the integrity of the data, we only perform transformations on the points defining geometries. For example, a 4-point quadrilateral polygon will remain a 4-point polygon after transformation, although a pure transformation would convert its lines into curves. If curve approximates from lines are desired, use a Densifier before this transformer.

 Due to the non-linear nature of the transformation, true 3D geometries (such as Box and EnclosedSurface) are not supported by this transformer. All true-3D geometries are passed to the Invalid port.

 Each of the parameters may either be entered as a number, or can be taken from the value of a feature attribute by selecting the attribute name from the pull down list.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 SectorGenerator

 Outputs circular sectors of influence for point features that have directions defined by azimuths.

 This transformer creates a number of sectors for each set of point features (collectively called a site), depending on each point’s direction of influence (defined in degrees clockwise from North). Each sector fans out from the center point (called site point) of the site it belongs to, and has a user-defined radius. Sectors generated for a site will not overlap each other, but they may overlap with sectors of other sites. If you want to avoid overlaps between different sites, use the VoronoiCellGenerator transformer instead.

 Input Ports

 Input

 This transformer only accepts points as input. All other geometries are rejected.

 2D points are completely supported, but 3D points may result in incorrect Azimuth lines. If you have points with z values, try removing the z values by using the 2DForcer transformer first.

 Output Ports

 Sectors

 Resulting sectors are output via this port. The sectors are output as rich geometry
 polygons with arcs or ellipses.

 AzimuthLines

 These are lines showing the direction each input point is facing (or influencing). Each line starts from an input point, has a length equal to its input radius, and goes to the direction of its input azimuth.

 SitePoints

 For each site, a point is created with coordinates that are the average of the coordinates of all points accepted for that sector. This point is the center of all sectors generated for a site.

 ExtraPoints

 If a Sector Name Attribute is specified and there are points with the same sector and site names, only the first point meeting all requirements is considered for creating sectors and the rest are output via this port.

 DistantPoints

 Upon entering transformer, if a point is found to be farther from any of the other points in its site than the specified Maximum Distance Between Site Points, it will be dropped from sector generation and output from this port.

 IncompletePoints

 These are output points that are missing or have invalid values for required attributes.

 IllegalGeom

 Non-point features are left untouched and output via this port.

 Parameters

 Group By

 This option allows you to select attributes that define which groups to form. Each set of features that have the same value for all of these attributes will be processed as an independent group.

 The Group By parameter cannot be used if the Input is Ordered by Site Name parameter is set to Yes.

 Site Name Attribute

 This is the attribute that determines the site to which an input point belongs.

 Azimuth Attribute

 The direction each input point faces (or influences).

 For an Azimuth Attribute value to be valid, it should be nonnegative and less than 360.

 Sector Name Attribute

 If a Sector Name Attribute is specified, then each feature entering the SectorGenerator will be checked to see if its sector name is already in use within its site. If it is, then it will be output on the ExtraPoints port.

 Radius

 Radius of influence for each sector. This determines radius of each sector in a site. It is also the length of each input point’s Azimuth Line.

 Maximum Distance Between Site Points

 The maximum distance a point can have from any of the other points in its site and still be considered in sector creation. Points are considered in the order they enter the transformer, with each new point tested against all other points already accepted as a part of its site.

 If a nonconstant value is specified for this parameter (e.g., an attribute value, which may differ from feature to feature), then when comparing the distance between two features, the maximum distance will be calculated from the feature that entered the transformer earlier.

 Input is Ordered by Site Name

 If this option is set to Yes, the SectorGenerator assumes that each site’s input features occur consecutively in its input. Processing will occur on each site as it is input, instead of waiting for all features before starting. Setting this parameter to Yes can conserve the use of resources.

 Note that setting this parameter to Yes will cause the translation to fail if any Group By attributes are specified.

 Example

 In the telecommunications industry, directional antennas are used in conjunction with each other for better coverage and stronger signal reception. These antennas each cover a sector of a complete circle an antenna tower covers, with some areas of overlap between each two sectors. This transformer can be used to determine the “Nominal” (assuming a whole circle is covered and there are no overlaps between sectors in one site) coverage field of directional antennas and receivers.

 Input points of a site are received and their azimuth lines are generated:

 [image: sectorgenerator0.png]

 A center point is created for each site:

 [image: sectorgenerator1.png]

 Please note that after this step, the locations of input points play no part in the generation of sectors, and the values that determine sectors are the input points’ azimuths and radii.

 In this diagram, azimuth lines are drawn from the center point for a better visual understanding of how SectorGenerator computes sectors.

 Polygon sectors are generated. The sector corresponding to each point will span an area determined by the radius set and

 (The point's azimuth + adjacent azimuth (in degrees))/2

 Two sides of a sector are found by one time choosing the closest azimuth clockwise and the next time counter-clockwise. Resulting sectors will look like this:

 [image: sectorgenerator2.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Surfaces

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: "cellular phone" phone tower antenna coverage "cell phone" cel

 SherbendGeneralizer

 Uses the Sherbend algorithm to simplify lines by reducing unnecessary details based on the analysis of the line’s bends.

 Sherbend is a constraint-based algorithm that preserves the spatial relationship of the lines and points in the input data. The Sherbend algorithm iteratively generalizes the bends in a line by using the Diameter parameter to select bends for generalization. The generalization process may eliminate, reduce, or combine bends, while resolving conflicts.

 The strategy for generalizing bends in a line is as follows:

 	Calculate the area of a reference circle whose diameter is specified by the Diameter parameter.

 	For each line, determine the locations of the bends.

 	For each bend, calculate its circumference. Next, construct a circle with the same circumference. Finally, determine the adjusted area of the bend, which is taken to be 75% of the area of that circle.

 	For each bend, generalize the bend if its adjusted area is below the area of the reference circle and spatial constraints are met.

 	Repeat the above steps until there are no more bends to generalize.

 Input Ports

 Lines

 Input lines for generalization. They are assumed to not self-intersect or intersect with another line or point.

 Points

 Input points for the sidedness constraint. When the “Sidedness” constraint is enabled, these points will prevent a bend generalization if that would change the spatial relationship between the bend and the points.

 Output Ports

 Lines

 The generalized lines.

 Lines

 Bends that, if generalized, would violate the selected constraint.

 Lines

 Invalid input features will be output to the Invalid port.

 Parameters

 Group By

 Only lines and points in the same group are subject to constraint checking. If no group is specified, all lines and points are placed in the same group.

 Diameter

 This parameter specifies the diameter of the reference circle described at the beginning of this documentation, which roughly describes the width of a bend below which the bend will be generalized. Different lines can have different diameters specified as an attribute. The bigger the diameter, the more likely bends will be generalized.

 Spatial Constraints

 Enables spatial constraints, which are only applied to lines and points in the same group.

 	None: constraints will not be applied.

 	Self Intersection prevents a line from intersecting with itself, with the assumption that input lines do not self-intersect when entering SherbendGeneralizer.

 	 Self, Line-Line Intersection prevents a line from intersecting with itself or another line, with the assumption that no input line self-intersects or intersects another line when entering SherbendGeneralizer.

 	Self, Line-Line Intersection, Sidedness, in addition to maintaining non-intersecting lines, maintains the relative positioning of all lines and points. For example, if a line is entirely on the right side of another line, that line will remain entirely on the right side of that other line after the generalization process.

 In this diagram, the blue bend cannot be generalized as it would violate the “Sidedness” constraint:

 [image: 03000006.png]

 In this diagram, the blue bend cannot be generalized as it would violate the “Self Intersection” constraint:

 [image: 03000007.png]

 [image: 03000008.png]

 Preserve Endpoints in Closed Lines

 This parameter, if set to No, will re-order (rotate) the coordinate list of each closed line in an attempt to improve the quality of generalization. To preserve juncture connectivity, the transformer must ensure that the starting and end coordinates of every line are kept stationary. Therefore, if it is important to keep the positions of the first and last coordinates in a closed line (perhaps because they are on a juncture), this parameter should be set to Yes.

 If this parameter is set to Yes, the endpoints of a line will not be moved. This behavior allows the preservation of juncture connectivity.

 Examples

 In this example, a bend is reduced (green = input, red = output):

 [image: 03000001.png]

 In this example, a bend is eliminated:

 [image: 03000002.png]

 In this example, three bends are combined into one:

 [image: 03000003.png]

 The following diagram illustrates the generalization process on a single line in a real-world dataset:

 [image: 03000004.png]

 This example illustrates the generalization process on a set of contours:

 [image: 03000005.png]

 Additional Information

 The aim of line generalization is to reduce the details on a line for representation at a smaller scale. While the well-known Douglass-Peucker algorithm is good at reducing the number of points in a line, it is not very good at preserving the shape or the spatial relationship of the line relative to other entities. In comparison, the Sherbend algorithm is well suited for the generalization of natural features (contours, lakes, rivers, wooded areas, etc.) because it preserves the general shape and, if spatial constraints are enabled, also the spatial relationship between the input entities. The Douglas-Peucker algorithm with a small tolerance is often used before or after Sherbend to further reduce the number of points to further fulfill the goals of generalization.

 Performance and Usage Notes

 	The Sherbend algorithm iteratively detects and generalizes bends, and then detects and resolves spatial conflicts. The generalized lines from one iteration are passed to the next iteration until the lines cannot be generalized further. Due to this iterative process, the algorithm is time-intensive, which is a tradeoff to improved accuracy and quality of generalization.

 	Constraint checking is a highly time-intensive operation. Disabling constraints should greatly improve the performance.

 	To generalize each feature independently, consider using the Generalizer transformer.

 External Resources

 See also: http://www.FMEpedia.com/index.php/SherbendGeneralizer

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 ShortestPathFinder

 Computes the shortest path of a line or lines containing a source and destination node in a network based on the length of the input or the cost (specified in an attribute) of each of the edges.

 Input Ports

 Network

 Lines defining the network in which to find a path or paths.

 From-To

 The From-To line contains vertices that define the source and destination nodes in the network. It can contain intermediate stops before the final destination. For example, a From-To line may be used to find the path from A to B to C to D. This can also be read as “the path from A to D that also passes through B and C.” From-To lines can be created by connecting points together to form a line, using the PointConnector or VertexCreator transformers.

 Output Ports

 Path

 For each From-To line, if a path is found it will be output as a single feature through the Path port. This output feature contains the attributes and coordinate system of the original From-To line. The geometry of the output feature is made up of all the parts of network that form the shortest path. Note that if Cost Type is set to By One Attribute or By Two Attributes then the “shortest path” is the one where the sum of the values of the applicable Cost Attribute values is the least.

 Nopath

 If a path is not found for a given From-To line, then this From-To line will be output through the Nopath port as a feature that preserves the original From-To attributes but has no geometry.

 Unused

 All other linear features that are not used as part of the shortest path are output through the Unused port.

 <Rejected>

 All non-linear features from either input port are output through the <Rejected> port, as are any From-To lines that have a negative cost(when Cost Type is set to By One Attribute or By Two Attributes).

 Parameters

 Group By

 The default behavior is to use the entire set of features as the group. This option allows you to select attributes that define which groups to form.

 Parallel Processing Level

 How parallel processing works with FME: see About Parallel Processing for detailed information.

 This parameter determines whether or not the
transformer should perform the work across parallel processes. If it is enabled, a process will be launched for each group specified by the Group
By parameter.

 Parallel Processing Levels

 	Parameter
 	Number of Processes

 	No Parallelism
 	1

 	Minimal
 	cores1 / 2

 	Moderate
 	exact number of cores

 	Aggressive
 	cores x 1.5

 	Extreme
 	cores x 2

 For example, on a quad-core machine, minimal parallelism will result in two simultaneous FME processes. Extreme parallelism on an 8-core machine would result in 16 simultaneous processes.

 You can experiment with this feature and view the information in the Windows Task Manager and the Workbench Log window.

 Cost Type

 If Cost Type is set to By Length or By One Attribute, then the cost of each input line is set to the length of the line or the attribute value specified in the Forward Cost Attribute. In this case, the algorithm will only consider the original orientation of the lines when finding the shortest path.

 If Cost Type is set to By Two Attributes, then the shortest path algorithm will consider both directions of the input lines. The original orientation of the input line has the cost specified in the Forward Cost Attribute and the reversed orientation of the input line has the cost specified in the Reverse Cost Attribute.

 Forward Cost Attribute

 This parameter is used when Cost Type is set to By One Attribute or By Two Attributes.

 Reverse Cost Attribute

 This parameter is used when Cost Type is set to By Two Attributes.

 Segment Attribute List

 When specified, this attribute list that will hold the attributes for each input Network feature that make up Path output features.

 This list also contains a _direction attribute that stores the direction of the segment of the shortest path as compared to its original Network feature. It will either be “same” or “opposite”, depending if the original Network feature had to be reversed or not.

 Snap Options

 From-To and Network Snapping

 Select Yes to snap the points of the From-To line to the closest end points of the Network lines. The points are only snapped to the network lines if they are within the tolerance specified in Snapping Tolerance.

 Snapping Tolerance

 The tolerance used when From-To and Network Snapping is set to Yes. Points of the From-To line will be snapped to the Network lines if they are within this tolerance.

 Usage Notes

 Only linear features with non-negative cost attribute values are allowed if the Cost Type is set to By One Attribute or By Two Attributes. If a feature does not have the attribute specified in the Forward Cost Attribute or the Reverse Cost Attribute, a zero cost is used for the line. Any features with a negative cost will be output through the <Rejected> port.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Network

 Related Transformers

 NetworkFlowOrientor

 NetworkTopologyCalculator

 StreamOrderCalculator

 StreamPriorityCalculator

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 SliverRemover

 Cleans up feature geometries by forming a 2D planar partition with no gaps or overlaps between polygons.

 The transformer creates a triangulation of input polygons and donuts and assigns each overlapping region or gap region to one of the adjacent areas.

 Output Ports

 Invalid

 Any invalid features, such as non-area geometries, are output through this port.

 Repaired

 Features that have been cleaned up are output through this port.

 Parameters

 Repair Method

 Longest Boundary: The polygon with the longest border length to the conflict will be chosen.

 Random: The polygon to merge a conflicting region into will be selected at random.

 Priority (Edge Preserving): Allows control of the priority of individual polygons in the repair process. This method is used in conjunction with the Priority Attribute parameter.

 Priority (Area Enlarging): Allows control of the priority of individual polygons in the repair process. This method is used in conjunction with the Priority Attribute parameter.

 Priority Attribute (Numeric)

 Priority (Edge Preserving): The Priority Attribute should be a non-negative integer value, with 0 meaning highest priority. The boundary of the higher priority polygon is preserved in this mode. Gaps between polygons will be assigned to the lower priority neighboring polygon, and overlaps will be assigned to the higher priority neighboring polygon.

 Priority (Area Enlarging): The Priority Attribute should be a non-negative integer value, with 0 meaning highest priority. The area of the higher priority polygon will be enlarged in this mode. Gaps and overlaps between polygons will be assigned to the higher priority neighboring polygon.

 Usage Notes

 This transformer requires clean, valid data. For example, self-intersecting, or degenerate polygons will not be properly repaired.

 Example

 [image: sliverremover.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 Snapper

 Brings end points or vertex points of features together if they are within a certain distance of each other and (optionally) if they have one or more attributes in common.

 The difference between the AnchoredSnapper and the Snapper is that anchor features are considered to be accurate and consequently do not move.

 Output Ports

 Snapped

 Features whose geometry is changed by the transformer.

 Untouched

 Features that leave the transformer without being changed.

 Parameters

 Group By

 If Group By attributes are selected,
 features are only snapped to other features with the same values in the
 group by attributes.

 Snapping Type

 When this parameter is set to End Point
 Snapping, the transformer:

 	Snaps lines together if the distance between their end points are within the specified tolerance.

 	Snaps point features to points or lines if their distances are within the specified tolerance.

 	Area features will not be altered by the transformer
 when run in this mode.

 	When two features are snapped together, the feature
 that entered the factory most recently is the one that is modified.

 When this parameter is set to Vertex
 Snapping, the transformer does the following:

 	Snaps vertices of lines together if their distances are within the specified tolerance.

 	Snaps point features to points or lines if their distances are within the specified tolerance.

 	Area features are altered by this operation
 as its vertices are snapped.

 	When two features are snapped together, the feature that
 entered the factory most recently is the one that is modified.

 When this parameter is set to Segment
 Snapping, the transformer does the following:

 	Snaps vertices of lines together if their distances are within the specified tolerance.

 	Snaps vertices of segments to other segments if their distances are within the specified tolerance at any point along the segment. New vertices will be introduced to the segment where the new snapped vertex has been moved to.

 	Segment snapping may cause duplicate points, where segments have degenerated to a point.

 	Segments which cross other segments will have new vertices introduced at the point of intersection, but the segments will remain unbroken.

 	Area features are altered by this operation as its vertices and segments are snapped.

 Snapping Tolerance

 Snapping Tolerance specifies the distance, in ground units, that the snapping occurs between features.

 Add Additional Vertex

 This parameter applies only when the end point of a feature is being snapped. It controls how
 lines are modified when they are snapped.

 	NEVER:
 the endpoint of a line is moved when it is snapped and no additional
 vertex is added.

 	ALWAYS: the
 original end point (start point) of the line becomes the second from the
 end (start) and a new vertex is added to complete the snap.

 	FORWARD_ONLY: a new vertex is added only when
 doing so creates an angle greater than 90 degrees with the original line
 segment. In this case, if adding the vertex would cause a less than 90-degree
 angle, the old end point is still moved.

 Save Short Lines

 Any features entering the transformer whose length is less than or equal to the tolerance
 will be treated specially: they will be output as Untouched, and other
 features (but not other short features) will not be able to snap to them.
 If the option is not selected, features like this will collapse to a single
 point and will be dropped.

 Usage Notes

 A short cleanup step is performed after snapping. This step will remove duplicate points, and may create aggregates to preserve overlapping, directed segments.

 Any feature that undergoes dimensional collapse as a result of being
 snapped will be logged as "degenerate" and dropped. Dimensional
 collapse refers to a line or area that becomes a point, or an area
 that becomes a line.

 Related Transformers

 	The Snapper seems to snap to the first suitable candidate that is found and then ignores the other possible candidates. If this is not what you're looking for, the CoordinateRounder may be useful instead.

 	You can clean up a dataset by using a Snapper before trying more complex actions, such as building polygons. Other transformers that are often used in this context are the Extender and Intersector.

 	The AnchoredSnapper
 transformer provides slightly different functionality by identifying a
 set of features which will not be moved and will be snapped to by another
 set of features.

 Example

 [image: snapper.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 FME Licensing Level

 FME Base edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Snipper

 Shortens the geometry of a line feature by snipping off specified distances, indices or measure values from the ends. It operates on features with simple line geometry and polygons without holes.

 The parameters specify a starting and ending point for the snipping. After execution, the feature's geometry will be a line representing the portion of the original line between those two positions, inclusive of the endpoints. New coordinates will be generated at the beginning or end of the line, if there are not already coordinates at exactly the specified positions. If the line contains three-dimensional coordinates, the Z value at each endpoint will be interpolated linearly from the original feature's coordinates between which the endpoint exists.

 Parameters

 Mode

 The mode you choose determines which parameters are available and how they are interpreted. Therefore, only the mode parameters are listed here.

 In all modes, features containing geometry other than polygons or lines (for example, points and donut polygons) will be passed through this transformer untouched.

 Snipping Mode

 Distance (Value) or Distance (Percentage): The amount to snip from the beginning and end of the line can be specified as either a measurement in ground units or a percentage of the line's entire length, starting from the first coordinate. The placeholder value "-1" may be used to specify an ending position corresponding to the original line's final vertex. Each of these parameters may either be entered as a number, or can be taken from the value of a feature attribute by selecting the attribute name from the pull-down list.

 If the measurement mode is 3D, and the linear feature has Z coordinates, all measurements will be taken as a distance from one vertex to the next in 3D space. Otherwise, only the X and Y coordinates will be considered, and measurements will be planar distances between vertices.

 Measure (Relative to Start Point): The values specified in the Starting Location and Ending Location parameters refer to the absolute difference in the measure value of the start point of the original line and the start or end points of the resulting line respectively. These parameters must have values greater than or equal to zero. If Measure Name field is blank, the default measure values are used. Otherwise, the measure values with the name specified in Measure Name field is used instead.

 Measure (Value): The values specified in Starting Location and Ending Location parameters refer to the measure values at the start and end points of the resulting line. If Measure Name field is blank, the default measure values are used. Otherwise, the measure values with the name specified in Measure Name field is used instead.

 Vertex: The vertices from the original line which are to form the first and last vertices of the resulting line are specified as a numeric index, with "0" being the first vertex of the line. Negative numbers measure vertices relative to the last point in the line, with the value "-1" used to specify the vertex which is the last vertex of the line's geometry, "-2" the second last vertex, and so on. Each of these parameters may either be entered as a number, or can be taken from the value of a feature attribute by selecting the attribute name from the pull- down list.

 Usage Notes

 The Measurement Mode parameter does not have any effect on two-dimensional lines, or when the Mode is Vertex.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Linear Referencing

 Transformer History

 This transformer replaces the DistanceSnipper and VertexSnipper.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: DistanceSnipper VertexSnipper

 SNSSender

 Using the Amazon Simple Notification Service (SNS), sends messages to an Amazon SNS topic.

 Input Ports

 Input

 This transformer accepts any feature.

 Output Ports

 This transformer has no output ports.

 Parameters

 Amazon Simple Notification Service Parameters

 Topic Amazon Resource Name (ARN)

 The Amazon Resource Name (ARN) of the topic where messages are to be sent.

 AWS Access Key ID

 An access key associated with a user with permission to send messages to the topic.

 AWS Secret Access Key

 A secret key paired with the access key provided.

 Message Parameters

 Message Attribute

 The attribute containing the message to be sent.

 Subject Attribute

 The attribute containing the subject of the message to be sent.

 Working with SNS

 For more information about sending messages using the Simple Notification Service (SNS), see the Amazon Simple Notification Service Subscriber in the FME Server Reference Manual.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Workflow

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 SolidBuilder

 Constructs solids from surfaces and cuts hollow regions, or voids, in solid features with other solid features. A solid that is cut by another solid must contain that second solid.

 Input Ports

 Input

 Surface and simple solid features

 Output Ports

 Solid

 Solid features

 Unused

 This port outputs surface features that were not used in creating closed solids.

 Also, when there is a set of geometrically identical solids, all but one of these solids will be rejected. Two solids are considered geometrically identical if their geometries match exactly. Non-geometry properties like coordinate systems, measures, traits, and geometry names are not considered when matching input geometries.

 <Rejected>

 Non-surface or non-solid features

 Parameters

 Group By

 Leaving this parameter blank causes the entire set of input solids to form a single group. Alternatively, this parameter allows you to select attributes on which to form groups of solid features – each set of features that have the same value for all of these attributes will be processed independently in a group.

 No attributes other than Group By attributes will be carried across from the Input features to the output features.

 List Name

 If a list name is specified, all attributes of all input features that created the outer shell of this solid will be output here.

 Drop Voids

 The Drop Voids parameter indicates whether or not solid features used to cut voids in containing features should be dropped or output.

 Void Flag Attribute

 This parameter will be added to each output feature and will contain "yes" if that feature was used to cut a void inside some other feature, and "no" if that feature did not cut into any other features.

 Void List Name

 If a List Name and a Void List Name are specified, all attributes of all features that participated in creating the voids of this solid are stored here.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Sorter

 Sorts features by a selected attribute's value. The features leave the transformer
 in the order specified, and are output through the Sorted port.

 This transformer tries to balance speed and memory usage by storing some features in memory and some in a temporary disk file.

 Parameters

 Sorting Attributes

 After you place and connect the transformer, choose the attribute(s) to sort.

 Each
 attribute can
 be sorted alphabetically or numerically and can be sorted either in ascending or descending order. By default, the sort direction is in ascending order. Alphabetic
 ordering will sort according to ASCII ordering rules.

 Attributes are sorted according to their position in the list. You can reorder the list using the Move Up and Move Down buttons.

 If an attribute name is specified but is not present on a feature, the sorting algorithm will consider that feature to have a null or zero value for that attribute.

 In Alphabetic mode, missing and null attribute values are treated as the empty string when they are sorted. In Numeric mode, non-numeric attribute values are treated as the value 0 when they are sorted. For example, missing, null, the empty string, and the string "apple" are all treated as the value 0 in Numeric mode.

 Related Transformers

 ListSorter

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Collectors

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 SpatialFilter

 Filters features based on spatial relationships. Each input Candidate
 feature is compared against all Filter features, based on the given spatial
 tests to meet. Features that pass any test are output through the Passed port;
 all other features are output through the Failed port.

 Note: If you need to determine the relationships between the Filter and Candidate
 features, or if you have many Filter features, you should use the SpatialRelator
 transformer. To determine relationships based on proximity, use the NeighborFinder transformer.

 For example, if you have a group of features that you want to check against a polygon to isolate those that are inside, the polygon feature would be directed into the Filter port and the group of features would be directed into the Candidate port. Tests to Perform would be set to CONTAINS. Those features that are inside the polygon would come out the Passed output port and those which were not inside would come out the Failed output port.

 Input Ports

 Filter

 Features against which Candidates will be compared. These features are not output.

 Candidate

 Features that will be used to compare with Filter input.

 Output Ports

 Passed

 Candidate features where at least one of the specified predicates was TRUE with at least one of the Filter features.

 Failed

 Candidate features where all of the specified predicates were FALSE with all of the Filterfeatures.

 Parameters

 Group By

 If Group By attributes are specified, candidates are only compared against filters with the same values in these attributes.

 Tests to Perform

 Defines which tests to perform. In addition to the predefined predicates, you may also test relationships
 using arbitrary 9-character masks. Such masks consist of the rows of a
 Dimensionally Extended 9 Intersection Matrix. Note
 that in order use these masks with the SpatialFilter, you must assign
 them to an attribute on the Candidate features, and include the value of that attribute in the Tests
 to Perform clause (you cannot specify them directly). Multiple predicates may be specified in one attribute by separating them with a space.

 For more information about predicates, see Spatial Relations Defined.

 Use Bounding Box

 Defines whether the tests are performed using the features' true coordinates or its bounding boxes.

 Filter Type

 Defines whether a single filter or multiple filters will be given, as well as clarifies the feature order that is expected.

 If this parameter is set to Multiple Filters, the SpatialFilter assumes Candidate and Filter features may come in any mixed order, and must wait until all features have entered before performing any filtering.

 If this parameter is set to Filters First, the SpatialFilter assumes that all Filter features enter before any Candidate features, and will be able to process the Candidate features immediately as they arrive.

 When set to Single Filter, the SpatialFilter assumes that after the first and only Filter feature has entered, only Candidate features will enter, and will be able to process the Candidate features immediately as they arrive.

 Merge Attributes

 Defines whether attribute merging will take place. If this is set to Yes, every Candidate that matches a Filter receives that Filter's attributes. The result is an operation known as a Spatial Join.

 Attribute Prefix

 Defines a prefix to add onto all attributes that are merged from Filters to Candidates.

 Predicate Attribute

 Specifies an attribute that will be added onto all output Passed features, which will contain the name of the spatial test that the feature passed.

 Pass Criteria

 This parameter
 specifies whether a candidate must have a predicate match against all
 Filters or against at least one Filter.

 Curve Boundary Rule

 This attribute specifies how to determine the boundary of curve and multicurve geometries. The Default Rule is that any curve endpoints that occur an odd number of times in the geometry as a whole will be considered its boundary – that is, a linear loop (a line whose start point equals its endpoint) will not have any boundary. The other rule specifies that the curve's or multicurve's boundary is the set of all its endpoints.

 Usage Notes

 See Spatial Relations Defined for more information on spatial predicates and an illustration of spatial relationships.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Filters

 Licensing Level

 FME Base Edition

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: MBR "minimum bounding rectangle"

 SpatialRelator

 Determines topological (spatial) relationships between sets of features.
 It tags – but does not otherwise change – features when they have certain relationships,
 such as touches, overlays, intersects, and so forth. Use this
 transformer when you need to determine the relationships
 between features or if you have many Requestor features. If
 you only need to determine if the features are related and you only have
 a few Requestor features, the SpatialFilter transformer is more efficient.

 All Requestor features are output through the Output port, with a new list
 attribute appended. Each
 input Supplier feature is compared against the Requestor features, based on
 the spatial tests specified in the Tests to Perform parameter. When
 one of the comparisons is true, an entry is added to the Requestor’s
 list attribute as follows:

 <LIST_NAME>{i}.de9im =
 [DE9IM string]

 <LIST_NAME>{i}.pass{0} = [true PREDICATE 1]

 <LIST_NAME>{i}.pass{1} = [true PREDICATE 2]

 ...

 <LIST_NAME>{i}.pass{n} = [true PREDICATE n+1]

 Additionally, all attributes of the matching Supplier will be added
 to the list.

 As well, each Requestor receives the attributes of the Suppliers that
 passed the relationship, resulting in an operation referred to as a Spatial Join When
 attributes are merged down from Supplier to Requestor features, existing attributes
 are not replaced. Therefore if the Suppliers and Requestors have attributes
 with the same name, then the values will not be transferred down. This
 can be worked around by renaming (AttributeRenamer), prefixing (AttributeExpressionRenamer),
 or removing (AttributeRemover) attributes to avoid name collisions.

 Input Ports

 Requestor

 Features that will be compared and then output with a tagged list describing the relationships.

 Supplier

 Features that will be used to compare with Requestor features, but not output.

 Output Ports

 Output

 These are the Requestor features with the new attributes added. One list entry is made for each of the Suppliers that has at least one matching predicate.

 Parameters

 Group By

 This parameter is used to indicate that only Requestors and Suppliers that have the same value for certain attributes should be compared. That is, if Group By attributes are specified, candidates are only compared to requestors that have the same values in these attributes.

 Tests to Perform

 This parameter
 lists the spatial predicates that will be used for comparisons between
 the requestor and supplier features. These can either be selected directly
 from the list, or taken from attribute values.

 In addition to the predefined predicates, you may also test relationships
 using arbitrary 9-character masks. Such masks consist of the rows of a
 Dimensionally Extended 9 Intersection Matrix. Note
 that in order use these masks with the SpatialRelator, you must assign
 them to an attribute on the Supplier features, and include the value of that attribute in the Tests
 to Perform clause (you cannot specify them directly). Multiple predicates may be specified in one attribute by separating them with a space.

 For more information about predicates, see Spatial Relations Defined.

 List Name

 This parameter specifies the name of the list attribute that will be added to the Requestor features.

 Related Suppliers Count Attribute

 This attribute specifies the name of an attribute that will be added to each
 requestor, which stores the number of suppliers with which the requestor had at
 least one true relationship.

 Attributes that Must Differ

 This attribute controls which attributes must have different values before a match is declared.

 Curve Boundary Rule

 This parameter specifies
 how to determine the boundary of curve and multicurve geometries. The
 Default Rule is that any curve endpoints that occur an odd number of times
 in the geometry as a whole, will be considered its boundary – that is, a
 linear loop (a line whose start point equals its endpoint) will not have
 any boundary. The other rule specifies that the curve or multicurve's
 boundary is the set of all its endpoints.

 Calculate Cardinality of Intersections

 If this parameter is specified, then for each supplier that matches a requestor, three attributes
 will be added to the corresponding list entry: card_point, card_line,
 and card_area. These count the number of points, lines, and areas that
 comprise the intersection of the requestor and supplier. For instance, a
 point is counted if two polygons touch at a vertex, a line is counted if they
 touch at an edge, and an area is counted if they overlap.

 Usage Notes

 See Spatial Relations Defined for more information on spatial predicates and an illustration of spatial relationships.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Spatial Relations Defined

 This topic includes detailed information on how spatial predicates are defined:

 	Background

 	Boundary, Interior, and Exterior

 	String Representations of Intersection Matrices

 	Definitions of Predicate Attributes

 Click here to see an example that illustrates different spatial relationships.

 Spatial Predicates

 Background

 The definitions of each Predicate attribute are given in the tables included under this heading. This section also gives specific definitions of boundaries, exteriors, and interiors as they apply to specific feature types and explains the concept of an intersection matrix.

 Each feature – whether it's a point, line, or polygon – has a definition of an INTERIOR, BOUNDARY, and EXTERIOR. The EXTERIOR is everything that is not on the BOUNDARY or the INTERIOR.

 Boundary, Interior, and Exterior

 	BOUNDARY
 	Points
 	Empty set.

 	Lines
 	
 CURVE_BOUNDARY_RULE ENDPOINTS_MOD2

 The boundary is the set of all endpoints that occur an odd number of times. For a simple linear feature (that is, not a multicurve), this means the boundary is comprised of the start and end points, unless the line is closed (the start and end are the same point), in which case the boundary is the empty set. (This is the default if CURVE_BOUNDARY_RULE is unspecified.)

 CURVE_BOUNDARY_RULE ENDPOINTS_ALL

 The boundary is the set of all endpoints, regardless of the number of times they occur in the geometry.

 	Polygons
 	The border of a polygon, including the border of the holes.

 	INTERIOR
 	Points
 	The point location.

 	Lines
 	The entire line except its boundary as determined above.

 	Polygons
 	The inner surface of the polygon.

 Dimensionally Extended 9 Intersection Matrix

 The comparison of two features produces a 3 x 3 matrix known as the Dimensionally Extended 9 Intersection Matrix (DE-9IM), shown below:

 	
 	candidate

 	interior
 	boundary
 	exterior

 	base

 	interior
 	c0

 	c1

 	c2

 	boundary
 	c3

 	c4

 	c5

 	exterior
 	c6

 	c7

 	c8

 The value of each element of the matrix indicates the dimension of the geometry produced by intersecting the given parts of the two features. The dimension is one of the following:

 -1	there is no interaction

 0 	the intersection produces a point

 1	the intersection produces a line

 2 	the intersection produces a surface

 So for instance, if c1 is 1, then the intersection of the base's interior with the candidate's boundary produces a line. This could occur when both features are polygons and they overlap.

 Each of the predicates can be defined in terms of what the intersection matrix of the two features must look like. For this, use a pattern matrix. Each element of the pattern matrix can be one of the following:

 *	the value of this element may be anything (-1, 0, 1, or 2)

 T	the value of this element must be 0, 1, or 2

 F	the value of this element must be -1

 0	the value of this element must be 0

 1	the value of this element must be 1

 2	the value of this element must be 2

 The pattern matrix for the disjoint predicate is:

 	F
 	F
 	*

 	F
 	F
 	*

 	*
 	*
 	*

 This means that neither feature's interior or boundary may interact with the other's interior or boundary.

 String Representations of Intersection Matrices

 Any intersection matrix can be represented as a 9-character string. To generate the string representation of a particular intersection matrix, take each element starting from the top-left, going right-to-left for each row.

 For example, the string representation of the intersection matrix for the disjoint predicate (as seen above) is “FF*FF****”.

 Definitions of Predicate Attributes

 Each of the supported predicates is described below, along with some associated examples and pattern matrices. Note that the examples are not exhaustive: there may be entirely different situations where a given predicate is true. In the examples, the base is labeled "A" and the candidate is labeled "B".

 	Predicate
 	Example
 	Description
 	Pattern Matrix

 	INTERSECTS
 	
 	The two features are not disjoint, as defined below.
 	

 	DISJOINT
 	
 [image: 1_2.jpg]

 	The boundaries and interiors do not intersect.
 	
 [image: 1_3.jpg]

 	EQUALS
 	
 [image: 1_5.jpg]

 	The features have the same boundary and the same interior.
 	
 [image: 1_6.jpg]

 	TOUCHES
 	
 [image: 1_8.jpg]

 	The boundaries may intersect or one boundary may intersect the other interior.
 	
 [image: 1_9.jpg]

 or

 	The interiors do not touch.
 	
 [image: 1_11.jpg]

 or

 	Undefined for point/point.
 	
 [image: 1_13.jpg]

 	CROSSES
 	
 [image: 1_15.jpg]

 	The interiors intersect and the base’s interior intersects the candidate’s exterior. Or in the case of line/line, the intersection of the interiors forms a point.
 	
 [image: 1_16.jpg]

 or, for two lines:

 	Undefined for point/point or area/area
 	

 [image: 1_18.jpg]

 	OVERLAPS
 	
 [image: 1_20.jpg]

 	The interiors intersect, but neither feature is contained by the other, nor are the features equal.
 	
 [image: 1_21.jpg]

 or, for two lines:

 	Undefined for point/line, point/area, or line/area.
 	

 [image: 1_23.jpg]

 	CONTAINS
 	
 [image: 1_25.jpg]

 	
 The interiors intersect and no part of the candidate intersects the base's exterior.

 (inverse of WITHIN)

 	
 [image: 1_26.jpg]

 	WITHIN
 	
 [image: 1_28.jpg]

 	
 The interiors intersect and no part of the base intersects the candidate's exterior.

 (inverse of CONTAINS)

 	
 [image: 1_29.jpg]

 	<DE-9IM string>
 	In addition to the predicates listed above,spatial relations can also be specified using a string representation of an intersection matrix.

 Spatial Relationship Examples

 	Spatial Relations

 	Base

 	Candidates

 	
 [image: pointCandidate.png]

 	
 [image: lineCandidate.png]

 	
 [image: areaCandidate.png]

 	Intersects

 	Contains

 	
 [image: pointBase.png]

 	
 [image: ContainsPointPoint.png]

 	
 [image: NA.png]

 	
 [image: NA.png]

 	
 [image: lineBase.png]

 	
 [image: ContainsLinePoint.png]

 	
 [image: ContainsLineLine.png]

 	
 [image: NA.png]

 	
 [image: areaBase.png]

 	
 [image: ContainsAreaPoint.png]

 	
 [image: ContainsAreaLine.png]

 	
 [image: ContainsAreaArea.png]

 	Crosses

 	
 [image: pointBase.png]

 	
 [image: NA.png]

 	
 [image: NA.png]

 	
 [image: NA.png]

 	
 [image: lineBase.png]

 	
 [image: NA.png]

 	
 [image: CrossesLineLine.png]

 	
 [image: CrossesLineArea.png]

 	
 [image: areaBase.png]

 	
 [image: NA.png]

 	
 [image: CrossesAreaLine.png]

 	
 [image: NA.png]

 	Equals

 	
 [image: pointBase.png]

 	
 [image: EqualsPointPoint.png]

 	
 [image: NA.png]

 	
 [image: NA.png]

 	
 [image: lineBase.png]

 	
 [image: NA.png]

 	
 [image: EqualsLineLine.png]

 	
 [image: NA.png]

 	
 [image: areaBase.png]

 	
 [image: NA.png]

 	
 [image: NA.png]

 	
 [image: EqualsAreaArea.png]

 	Overlaps

 	
 [image: pointBase.png]

 	
 [image: NA.png]

 	
 [image: NA.png]

 	
 [image: NA.png]

 	
 [image: lineBase.png]

 	
 [image: NA.png]

 	
 [image: OverlapsLineLine.png]

 	
 [image: NA.png]

 	
 [image: areaBase.png]

 	
 [image: NA.png]

 	
 [image: NA.png]

 	
 [image: OverlapsAreaArea.png]

 	Touches

 	
 [image: pointBase.png]

 	
 [image: NA.png]

 	
 [image: TouchesPointLine.png]

 	
 [image: TouchesPointArea.png]

 	
 [image: lineBase.png]

 	
 [image: TouchesLinePoint.png]

 	
 [image: TouchesLineLine.png]

 	
 [image: TouchesLineArea.png]

 	
 [image: areaBase.png]

 	
 [image: TouchesAreaPoint.png]

 	
 [image: TouchesAreaLine.png]

 	
 [image: TouchesAreaArea.png]

 	Within

 	
 [image: pointBase.png]

 	
 [image: WithinPointPoint.png]

 	
 [image: WithinPointLine.png]

 	
 [image: WithinPointArea.png]

 	
 [image: lineBase.png]

 	
 [image: NA.png]

 	
 [image: WithinLineLine.png]

 	
 [image: WithinLineArea.png]

 	
 [image: areaBase.png]

 	
 [image: NA.png]

 	
 [image: NA.png]

 	
 [image: WithinAreaArea.png]

 	Disjoint

 	
 [image: pointBase.png]

 	
 [image: DisjointPointPoint.png]

 	
 [image: DisjointPointLine.png]

 	
 [image: DisjointPointArea.png]

 	
 [image: lineBase.png]

 	
 [image: DisjointLinePoint.png]

 	
 [image: DisjointLineLine.png]

 	
 [image: DisjointLineArea.png]

 	
 [image: areaBase.png]

 	
 [image: DisjointAreaPoint.png]

 	
 [image: DisjointAreaLine.png]

 	
 [image: DisjointAreaArea.png]

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 SpikeRemover

 Cleans up feature geometries by removing spikes in 2D.

 The transformer looks at every pair of line segments made up of three
 consecutive distinct points. If the angle (in degrees) between two line segments is
 less than or equal to the specified maximum angle, then the middle point
 is a spike and is removed.

 If the Maximum Spike Length
 is specified, then the transformer will skip line segments longer than
 this length; otherwise, all line segments are considered.

 If the geometry of a feature is a path, the transformer removes spikes
 between consecutive path segments as well. For a polygon or donut, if
 the start/end point is a spike, then it is also removed. The end result
 is still a polygon/donut. Any polygons, donuts, paths or lines that are
 part of a collection of geometry will also be processed.

 The transformer will also remove any duplicate points.

 The transformer is not effective when the line contains many deviations
 other than spikes. In such cases, it is recommended to first clean up
 the features using the Generalizer transformer
 with Douglas-Poiker algorithm.

 Features that are cleaned up will be output through the Changed port.
 Duplicate points and spikes will be output through the Flagged port. Any
 untouched features will be output through the Unchanged port.

 Example

 [image: spikeremover.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 SQLCreator

 Generates FME features from the results of a SQL query against a database. One FME feature is created for each row of the results of the SQL Query.

 Parameters

 Reader Format and Dataset

 Select the Reader format and dataset, including any format-specific parameters.

 Coord. System

 You can leave the default, or use a selection from the Coordinate System Gallery.

 SQL Statement

 Specify the SQL query using the text editor.

 Multiple SQL commands can be delimited by a character specified using the keyword FME_SQL_DELIMITER, embedded at the very beginning of the SQL statement. The single character immediately following this keyword will be used to split the SQL which will then be sent to the database for execution. (Note: Include a space before the character.)

 An individual statement may be preceded with a hyphen, indicating that errors should be ignored.

 The following example contains two SQL commands where errors from the first command will be ignored:

 FME_SQL_DELIMITER ;

 -SELECT * FROM TABLEA;

 SELECT * FROM TABLEB;

 Attributes to Expose

 Enter the names of attributes to expose on the features created by the query. The attributes will be output in the same sequence as specified in the list.

 Note: By default, the attributes of the resulting features are hidden. You can specify which attributes to expose by entering the attribute names. Click the browse button next to the Attributes to Expose parameter. You can also use a SQL statement to populate the list by pressing “Populate from SQL Query…” and entering a SQL query. The columns from the first matching feature will be used to populate the attributes list.

 Usage Notes

 Relationship to FeatureMerger

 The FeatureMerger joins two datasets and uses a simple, single attribute key to match features. The FeatureMerger is also able to perform certain geometric operations on incoming features using its Merge Type parameter.

 Relationship to InlineQuerier

 The InlineQuerier can be thought of as the crafty cousin of the SQLCreator/SQLExecutor transformers, in that it allows the power of SQL to be applied to datasets originating from non-SQL capable data sources or disjoint SQL-capable sources.

 If all the data to be queried already exists in a SQL-capable data source, it is always more efficient to use the SQLCreator or SQLExecutor, because this allows the queries and filtering of the data to be executed directly by the database before it enters the FME environment.

 Relationship to Joiner

 The Joiner is very useful and efficient when there exists a one-to-one or one-to-many relationship between data flowing through FME and data held within a database. If it can be used, the Joiner can be more efficient than using either the InlineQuerier or SQLCreator/SQLExecutor, provided that the Joiner key fields have indexes in the source database. The Joiner is simple to use and does not require any knowledge of SQL.

 Example

 [image: sqlcreator.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Database

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 SQLExecutor

 Performs SQL queries against a database.

 One query is issued to the database for each feature that enters the transformer. The results of the query are then output through the Result port.

 Input Ports

 Initiator

 Features that trigger a SQL query to be executed.

 Output Ports

 Result

 Features that result from the SQL queries.

 Initiator

 Input Initiator features with an additional attribute (_matched_records) that contains the number of features generated as the result of SQL query initiated by that feature.

 Parameters

 Reader Format and Dataset

 Select the Reader format and dataset, including any format-specific parameters.

 Coord. System

 You can leave the default, or use a selection from the Coordinate System Gallery.

 SQL Statement

 Specify the SQL query using the text editor.

 Multiple SQL commands can be delimited by a character specified using the keyword FME_SQL_DELIMITER, embedded at the very beginning of the SQL statement. The single character immediately following this keyword will be used to split the SQL which will then be sent to the database for execution. (Note: Include a space before the character.)

 An individual statement may be preceded with a hyphen, indicating that errors should be ignored.

 The following example contains two SQL commands where errors from the first command will be ignored:

 FME_SQL_DELIMITER ;

 -SELECT * FROM TABLEA;

 SELECT * FROM TABLEB;

 Attributes to Expose

 Enter the names of attributes to expose on the features created by the query. The attributes will be output in the same sequence as specified in the list.

 Note: By default, the attributes of the resulting features are hidden. Specify which attributes to expose by entering the attribute names. Click the browse button next to the Attributes to Expose parameter. You can also use a SQL statement to populate the list by pressing “Populate from SQL Query…” and entering a SQL query. The columns from the first matching feature will be used to populate the attributes list.

 Combine Attributes

 Result Attributes Only: The result feature attributes consist solely of the query results.

 Keep Initiator Attributes if Conflict: The result feature attributes are a combination of both the query results and the initiator feature's attributes. If there is a conflict, attribute values are taken from the initiator feature.

 Keep Result Attributes if Conflict: The result feature attributes are a combination of both the query results and initiator feature's attributes. If there is a conflict, attribute values are taken from the query results.

 Usage Notes

 Relationship to FeatureMerger

 The FeatureMerger joins two datasets and uses a simple, single attribute key to match features. The FeatureMerger is also able to perform certain geometric operations on incoming features using its Merge Type parameter.

 Relationship to InlineQuerier

 The InlineQuerier can be thought of as the crafty cousin of the SQLCreator/SQLExecutor transformers, in that it allows the power of SQL to be applied to datasets originating from non-SQL capable data sources or disjoint SQL-capable sources.

 If all the data to be queried already exists in a SQL-capable data source, it is always more efficient to use the SQLCreator or SQLExecutor, because this allows the queries and filtering of the data to be executed directly by the database before it enters the FME environment.

 Relationship to Joiner

 The Joiner is very useful and efficient when there exists a one-to-one or one-to-many relationship between data flowing through FME and data held within a database. If it can be used, the Joiner can be more efficient than using either the InlineQuerier or SQLCreator/SQLExecutor, provided that the Joiner key fields have indexes in the source database. The Joiner is simple to use and does not require any knowledge of SQL.

 Example

 [image: sqlexecutor.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Database

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 SQSReceiver

 Using the Amazon Simple Queue Service (SQS), receives messages from an Amazon SQS queue.

 Input Ports

 This transformer has no input ports.

 Output Ports

 Output

 Features containing messages received from the specified Amazon SQS queue. The content and other details of the message are stored as attributes of the feature. The following attributes are used:

 	Attribute
 	Description

 	sqs_content
 	The content of the message.

 	sqs_md5
 	The MD5 checksum of the message.

 	sqs_message_id
 	The ID of the message.

 	sqs_receipt_handle
 	The ID confirming receipt of the message.

 Parameters

 Amazon Simple Queue Service Parameters

 Amazon SQS Queue URL

 The URL of the Amazon queue to be polled.

 AWS Access Key ID

 An access key associated with a user with permission to receive messages from the queue.

 AWS Secret Access Key

 A secret key paired with the access key provided.

 Working with SQS

 For more information about receiving messages from a SQS queue using the Simple Queue Service (SQS), see the Amazon Simple Queue Service Publisher in the FME Server Reference Manual.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Workflow

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 SQSSender

 Using the Amazon Simple Queue Service (SQS), sends messages to an Amazon SQS queue.

 Input Ports

 Input

 This transformer accepts any feature.

 Output Ports

 This transformer has no output ports.

 Parameters

 Amazon Simple Queue Service Parameters

 Amazon SQS Queue URL

 The URL of queue where messages are to be sent.

 AWS Access Key ID

 An access key associated with a user with permission to send messages to the queue.

 AWS Secret Access Key

 A secret key paired with the access key provided.

 Message Parameters

 Message Attribute

 The attribute containing the message to be sent.

 Working with SNS

 For more information about sending messages using the Simple Queue Service (SQS), see the Amazon Simple Queue Service Subscriber in the FME Server Reference Manual.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Workflow

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 StatisticsCalculator

 Calculates statistics based on a designated
 attribute or set of attributes of the incoming features.

 If
 a feature does not contain attributes with the specified names, or these
 attributes do not contain a valid number, then it will be treated as
 having an empty string value for each specified attribute. Numbers that begin with
 '0' will be treated as octal values. Numbers that begin with '0x' will
 be treated as hexadecimal values.

 Input Ports

 Input

 All features enter the transformer through the Input port.

 Output Ports

 Summary

 A single new feature will be output containing the statistics attributes for each group. If features are not grouped, the latter will emit a single feature containing the statistics for the whole set of input features.

 No summary data will be generated if no input is received.

 Complete

 All Input features will all be passed through this output with all the statistics attributes for their group added onto them. Note that this will require all Input features to be stored until the end of translation, which can greatly increase the amount of memory and/or temporary disk storage usage.

 Cumulative

 All Input features will all be passed through this output with all the statistics attributes to date for their group added onto them. The features pass through this port immediately, each having the statistics computed for the set of features from the first feature in the group through to the current feature. (Note that this differs from the “final” statistics output in the Complete group.)

 Parameters

 Group By

 If Group By attributes are chosen,
 statistics will be calculated independently within each group of features.
 This can be used to create a pivot-table-like analysis of values in a
 data stream.

 Attributes to Analyze

 The list of attributes is created when you connect the transformer to an incoming feature. Choose all attributes whose statistics you wish to compute.

 Prepend Output Attribute Names

 The traditional behavior of the StatisticsCalculator, when computing statistics for a single attribute, is to name the attributes containing the computed statistics exactly as they are specified, such as “_min”, “_max”, “_mean”, and so on. When computing statistics on more than a single attribute, the StatisticsCalculator must prepend the name of the attribute being analyzed onto the specified statistic names, so that they can be distinguished on the resulting feature.

 This choice allows one to choose whether the attribute naming is determined automatically, in which case the traditional naming will take place when only a single attribute is selected for analysis, or if the attribute name is always appended regardless. That is, when this choice is set to For all results, the computed attributes will always be named with the analyzed attribute’s name prepended (such as “population._mean”), even if only one attribute is being analyzed.
To return to the traditional behaviour, this choice must be set to For multiple results only.

 Attribute Statistics

 Each of the following statistics will be output in the respective attribute,
 if one is given. Leaving a computed attribute name blank will turn off computation of that attribute.

 If more than a single attribute was chosen for Attributes to Analyze or Prepend Output Attribute Names is set to For all results, then the names of the computed attributes will be prefixed with the original attribute name. (e.g. If statistics are being calculated on the attributes “population” and “area”, and “_mean” is entered as the attribute into which to store the calculated mean value, resulting features will contain new attributes named “population._mean” and “area._mean” to contain the respective computed mean values.)

 	Minimum: The numerical minimum,
 unless at least one value is non-numeric, in which case this will be the
 lexical minimum.

 	Maximum: The numerical maximum,
 unless at least one value is non-numeric, in which case this will be the
 lexical maximum.

 	Median: The middle value
 when the values are listed in order if the number of values is odd, or
 the average of the two middle values if the number of values is even.
 If there is at least one non-numeric input value, then the list is sorted
 lexically, and the first of the two middle values is taken as the median
 if the number of values is even.

 	Total Count: The input feature count.

 	Numeric Count: The number of numeric values that entered the transformer. In particular, empty, missing, and null values are ignored, and are not included in this count.

 	Sum: The sum of all numeric
 values, or a blank string if there were no numeric values.

 	Range: Equal to the maximum
 minus the minimum, or a blank string if any value is not numeric.

 	Mean: The sum of all numeric
 values divided by the number of numeric values, or a blank string if there
 were no numeric values.

 	Standard Deviation: The standard
 deviation of all the numeric values, as measured by the "nonbiased"
 or "n-1" method, or a blank string if there were zero or one
 numeric values. If
 the data values are large, the standard deviation calculation may fail.
 In this
 case, a warning will be logged and the returned standard deviation will
 be -1.

 	Mode: The most frequent of
 all the values. If the dataset is bimodal (two or more values occur with
 the highest frequency) one of the values will be returned randomly.

 	Histogram: If the Compute Histograms option is checked, the StatisticsCalculator will provide a count for each unique value encountered for the analyzed attribute. The results are given as a structured list of attributes which present (value,count) pairs. There are two possibilities for the structure of this list:	If the Histogram List Attribute parameter is given a value, the resulting list attributes will be named <resultAttribute>{<index>}.value and <resultAttribute>{<index>}.count. For example: “_histogram{0}.value”, “_histogram{0}.count”, “_histogram{1}.value”, “_histogram{1}.count”, etc.
	If the Histogram List Attribute parameter is left blank, the resulting list attributes will be named after the attribute on which the histogram was computed. For example, “region{0}.value”, “region{0}.count”, “region{1}.value”, “region{1}.count”, etc.

 Example

 Creating pivot tables in FME

 The StatisticsCalculator transformer can generate
 statistics for groups of features rather than all features. This effectively
 adds the ability to create pivot tables in FME similar to the pivot tables
 in Excel.

 Note: The AttributePivoter transformer provides a simpler approach to generate some forms of pivot tables.

 Source Table and Excel Pivot Table

 Fictitious data generated in Excel was exported it to a CSV file for use in Workbench. A simple pivot table
 was also created in Excel to show what we want to produce from FME; basically
 we want to summarize observed values based on region and potential.

 [image: statisticscalculator.gif]

 FME Pivot Table

 The workspace shown below uses the StatisticsCalculator
 transformer to create statistics for the observed attribute by first grouping
 features by region and potential. Then the new statistics features are
 sorted by region and potential, and output to a CSV file. The resulting
 CSV file has all of the same attributes/fields as the Excel pivot table.

 [image: statisticscalculator3.png]

 The
 table written by FME and viewed in Excel resembles the Excel pivot table:

 [image: statisticscalculator2.gif]

 You can also use the WebCharter transformer
 to chart the data.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 StreamOrderCalculator

 Computes the Strahler order and/or Horton order of streams in a river network.

 This recursive algorithm processes vector river networks for Strahler stream order values. The algorithm requires the vector network to be topologically correct to successfully process. The network must be a center-lined network where each arc (sometimes referred to as an edge) must be joined at their node (sometimes referred to as a junction). No left and right banks or lake side shores should be present.

 Input Ports

 This transformer only takes linear features and one destination node per group.

 Input Line features must be a topologically noded
network with features connecting at line ends only. That is, all features must be
split at junctions.

 Output Ports

 Network

 All river streams connected to the destination node are output through the Network port with the Strahler order and/or Horton value assigned to the attribute(s) specified in the Strahler Order Attribute and/or Horton Order Attribute.

 Unused

 All river streams that are not connected to the destination node are output through the Unused port.

 Cycle

 If any cycle exists, stream order is not computed and all lines are output through the Unused port. All nodes in which the cycles occur are output through the Cycle port.

 Invalid

 All non-linear features and extra destination nodes are output through the Invalid port.

 Parameters

 Group By

 The default behavior is to use the entire set of input features as the group. This option allows you to select attributes that define which groups to form. Each set of features that have the same value for all of these attributes will be processed as an independent group.

 Fix Flow Direction of Input

 You can choose to fix the direction of the streams to fit the downstream direction to the destination node by setting this parameter to Yes.

 Detect Cycles

 You can choose to detect cycles by setting Detect Cycles to Yes. This is useful to make sure that no cycles exist in the network prior to fixing flow direction or computing stream order.

 If any cycle exists, stream order is not computed and all lines are output through the Unused port. All nodes in which the cycles occur are output through the Cycle port.

 Stream Order Type = Strahler

 The Strahler order of the streams is calculated as follows:

 	When two or more streams with the same Strahler orders join, the outflow streams are assigned this Strahler order plus 1.

 	When two or more streams with different Strahler orders join, the outflow streams are assigned the maximum Strahler order.

 If Stream Order Type is set to Horton, then Strahler order is calculated internally before Horton order can be computed. Horton ordering is based on the idea of a main stream. It starts with finding out the main stream that flows to the sink node; the Horton order of the arcs in this main stream will be the maximum Strahler order of these arcs. This process continues for each of the remaining tributaries until all streams have been assigned a Horton order.

 Stream Order Type = Horton

 Users can specify the rules by which main streams are determined. At each junction in the network, the main stream of the incoming streams is selected based on the following rules:

 	If Horton Class Attribute is specified, always match the value of this attribute of the incoming streams to the main stream determined previously. If there is only one stream that matches, it is part of the current main stream.

 	Otherwise, pick the stream with the highest value based the following formula:

 priorityValue = (Horton Priority Weight) * (Horton Priority Attribute value) + (Horton Angle Weight) * (angle deviation between this stream and the previous main stream) + (Horton Length Weight) * (ratio of longest length to a source node)

 The angle between this stream and the previous stream is normalized to a value between 0 and 1. The value is 1 if the incoming stream is 0 degrees (straight) away from the previous main stream. If the stream is 180 degrees (exact opposite direction) away from the previous main stream, then the value is 0. If the angle between the streams is 45 or 90 or 135 degrees, the value is computed as 0.75, 0.5 and 0.25 respectively.

 The ratio of the longest length to a source node for a stream is calculated as follows:

 ratio = (longest length of this stream to a source node) / (sum of all longest lengths of the incoming arcs to a source node)

 If none of the Horton Priority Weight, Horton Angle Weight and Horton Length Weight are specified, then by default, a main stream is determined by the longest branch. All these weights must be real values greater than or equal to zero.

 Example

 The image below demonstrates a map representation of a river network, an invalid network where lake and river bank sides have been digitally captured and a valid, topologically correct, center-lined river network which the algorithm can process.

 [image: StreamOrderCalculator1.png]

 If the network is "broken" (arcs not connecting) then the output will be incorrect. The algorithm would treat the disconnected catchment as a separate river system, so it is important to check the connectivity of the river network before attempting to compute Strahler order values.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Network

 Related Transformers

 NetworkFlowOrientor

 NetworkTopologyCalculator

 ShortestPathFinder

 StreamPriorityCalculator

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: Strahler Horton

 StreamPriorityCalculator

 Calculates the primary and secondary streams of multiple stream networks. The key to determining the priority is the shortest path algorithm using multiple iterations within a network graph.

 This attribute defines, for each source junction of the network, a unique path (the shortest path) to reach the destination junction. All flow lines included in a path (from the sources to the destination) will have a stream priority attribute set to 1 (primary); all others are set to 2 (secondary).

 Before using this transformer, you will need to specify the weights on the network lines in the source data by specifying the Forward Weight Attribute and optionally Reverse Weight Attribute if the network graph is non-oriented.

 A weight is a property of a network line typically used to represent a cost for traversing across a network line. An example of a line weight is the length of the line. In a shortest path analysis, you would choose this weight if you wanted the resulting path to be of the shortest length. For line features, 2 weights can be used: one along the digitized direction of the line feature (the forward weight) and one against the digitized direction of the line feature (the reverse weight). The digitized direction of a line feature refers to the order of the vertices.

 The goal is to flag the loops (cycles) in the network in order to highlight the primary network lines.

 [image: LevelPriorityCalculator_1.png]

 [image: LevelPriorityCalculator_2.png]

 [image: LevelPriorityCalculator_3.png]

 [image: LevelPriorityCalculator_4.png]

 Input Ports

 Line

 Network lines with cycles (loops).

 Destination

 Destination nodes, located on an end point (leaf) of the network graph. All other end points on the network graph are considered sources.

 Output Ports

 Network

 Streams that are connected will be assigned the same network ID attribute.

 ExtraDestination

 Only one destination node is allowed per network. Any extra destination nodes found are output through the ExtraDestination port.

 Invalid

 Destination nodes that are not found on any network are output through the Invalid port. All non-linear features are also output through the Invalid port.

 Parameters

 Group By

 The default behavior is to use the entire set of input features as the group. This option allows you to select attributes that define which groups to form. Each set of features that have the same value for all of these attributes will be processed as an independent group.

 Forward Weight Attribute

 An attribute name on the network lines that contains a weight along the digitized direction. This parameter is required to apply the shortest path algorithm.

 Reverse Weight Attribute

 An attribute name on the network lines that contains a weight against the digitized direction. This parameter is required to apply the shortest path algorithm if the digitized direction of network lines is significant. By example, the digitized direction can represent a downstream flow direction for a hydrographical network. If the digitized direction is not significant for a network graph, a user can provide the same attribute of the Forward Weight Attribute parameter.

 Network ID Attribute

 Streams that are connected will be assigned the same network ID in the Network ID Attribute. All streams will be assigned a stream priority value in the Stream Priority Attribute with either -1, 1 or 2. Streams that are not connected to the destination nodes will be assigned level priority value of -1. Meanwhile, primary or secondary streams will be assigned level priority value of 1 or 2 respectively.

 Stream Priority Attribute

 An attribute name that will store the stream priority value (1 for primary or 2 for secondary) for output network lines.

 Expected Output

 	Network lines with a stream priority attribute set to 1 (primary) or 2 (secondary). If it’s not possible to determine the priority (if there isn't a destination located on network graph) a stream priority attribute is set to -1. The network lines have also a Graph Identifier attribute. All network lines in a same graph will have the same value in this attribute.

 	Unused destination (if the destination is not located on an end point of the network graph)

 Usage Examples

 This transformer can be used on network linear flow lines. There are two ways to determine the stream priority attribute:

 	To calculate the stream priority attribute for the oriented network lines: for these lines, the digitized direction represents a downstream flow direction.

 	To calculate the stream priority attribute for the non-oriented network lines: for these lines, the digitized direction is not significant.

 Calculating the Stream Priority for Oriented Network Lines

 When the network lines are oriented, the shortest path should not go against the digitized direction. So initially the weight along the digitized direction (the forward weight) is the length, and the weight against the digitized direction (reverse weight) is a bigger value.

 Note that the reverse weight is optional, and usually not required.

 [image: LevelPriorityCalculator_5.png]

 Calculating the Stream Priority for Non-Oriented Network Lines

 When the network lines are not oriented, the digitized direction of network lines is not significant. So the weight along the digitized direction (forward weight) and the weight against the digitized direction (reverse weight) are the same. In this case, you can use the same attribute corresponding to the length for both weight parameters. In this way, the loops are removed for the primary network lines (stream priority=1) and you can apply other algorithm to modify the digitized direction. This is how you can make network lines primary (stream priority=1) where the digitized direction represents a downstream flow direction.

 [image: LevelPriorityCalculator_6.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Network

 Related Transformers

 NetworkFlowOrientor

 NetworkTopologyCalculator

 ShortestPathFinder

 StreamOrderCalculator

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 StringCaseChanger

 Changes the case of text attributes to UPPERCASE, lowercase,
 Title case, or Full Title Case.

 Parameters

 Attribute(s) to Change

 After connecting the StringCaseChanger in your workspace, click the Browse
 button. Use the checklist to choose which attributes to change, and then
 click the OK button.

 Case Change

 	UPPERCASE changes attributes to uppercase characters.

 	lowercase changes attributes to lowercase characters.

 	Title case changes the first character in the string
 to its Unicode title case variant (or to uppercase if there is no title
 case variant) and the rest of the string lowercase.

 	Full Title Case converts the first letter of each
 word, rather than just the first letter in the string. Full
 Title Case will ignore parentheses if they start the string or follow
 whitespace, and will treat hyphens (-) and underscores (_) as whitespace characters.

 Usage Notes

 Use the BulkAttributeRenamer to change the case of the attribute names, rather than the values of the attributes.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Strings

 Transformer History

 This transformer replaces the CaseChanger.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: CaseChanger

 StringConcatenator

 Concatenates the values of any number of attributes, user parameters and/or constants, and stores the result in a new attribute.

 If you require setting more than one attribute, consider using the AttributeCreator. It contains the same functionality.

 Input Ports

 Input

 This transformer accepts any feature.

 Output Ports

 Output

 Features with the concatenated attributes.

 Parameters

 Destination Attribute

 This is the new attribute that will contain the results. Use the default name, or type a new name.

 String Parts

 In basic mode, the String Parts table defines the items to be concatenated. For each item, you can select either an attribute value, constant, newline, published parameter, private parameter, or system parameter. A preview of the resulting string is shown in the Concatenated Result window.

 You can switch to the advanced mode by clicking the Switch to Advanced button.

 String Expression

 In advanced mode, you can type a string in the String Expression section. The string can contain attribute value references, function references, or user parameter references.

 To use Math functions in the string editor, you also need to use the feature function @Evaluate. See the example below.

 You can switch back to basic mode using the Switch to Basic option on the Options menu but note that some table formatting may be lost when going from Advanced to Basic.

 Text Editor

 For more information, see the Text Editor.

 Example

 [image: stringconcatenator.png]

 Using the String Expression parameter

 This example multiplies the area of a feature by the value of an attribute,
and creates a string that reports the result.

 @Evaluate(@Round(@Value(NumericAttribute))*@Area())

 Related Transformers

 AttributeCreator

 ListConcatenator

 CoordinateConcatenator

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Strings

 FMEpedia

 See FMEpedia for additional information about this transformer.

 Transformer History

 This transformer was previously called the Concatenator.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: Concatenator join connect series

 StringFormatter

 Reformats the data held in each specified attribute according to the TCL format command, which is similar to the C printf function. Attribute values can be formatted into strings, characters or numbers. Numeric output may be decimal (floating point or integer), octal, or hexadecimal; leading zeroes are removed from attribute values before performing numeric formatting.

 The
 syntax for the format string is:

 [flags][width][precision]<type>

 Note:
 A preceding percent sign (%) is not part of the format string.

 Flag Characters:

 One or more of the following flag characters can be specified:

 0
 The
 value should be padded with zeroes instead of spaces.

 -
 The value should be padded on the right-hand side. (The default is to pad on the left.)

 +
 The
 numeric value should always be signed.

 Field Width:

 The optional field width is given as a decimal number. If the value
 has fewer characters than the field width, it will be padded with spaces.

 Field Precision:

 The optional precision is given as a period followed by a decimal number.

 Attribute Type:

 One of the following attribute types must be specified. The attribute
 value will be converted to the given type, if possible.

 d Integer

 e Decimal
 number (scientific notation: -d.ddde+dd)

 f Decimal
 number (floating-point notation: -ddd.ddd)

 o Octal
 number

 x Hexadecimal
 number

 s String

 Examples:

 If the source attribute contains the value spuds
 the following format strings will give the following results:

 	
 Format

 	
 Result

 	
 8s

 	
 spuds

 	
 -08s

 	
 spuds000

 If the source attribute contains the value 12345.6789
 the following format strings will give the following results:

 	
 Format

 	
 Result

 	
 e

 	
 1.234568e+004

 	
 .2f

 	
 12345.68

 	
 015s

 	
 0000012345.6789

 If the source attribute contains the value 1234
 the following format strings will give the following results:

 	
 Format

 	
 Result

 	
 x

 	
 4d2

 	
 4.4f

 	
 1234.0000

 	
 +06d

 	
 +01234

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Strings

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 StringLengthCalculator

 Calculates the length of strings and the number of bytes in a blob.

 Parameters

 Source Attribute

 After connecting the transformer, select the source attribute from the list.

 String Length Attribute

 This attribute contains the resulting value.

 Usage Notes

 Note that in non-ASCII character sets, the length is the
 number of actual characters (some or all of which could be multi-byte)
 in the string, which may not match the number of bytes used to store the
 string.

 Example

 To calculate the number of bytes in a blob:

 	Add a raster format reader (for example, TIFF).

 	Connect a RasterExtractor followed by a StringLengthCalculator.

 	In the StringLengthCalculator parameters, select _rasterBlob as the Source Attribute.

 	Connect an Inspector transformer.

 	Run the Workspace.

 [image: stringlengthcalculator_1.png]

 Locate the _length attribute name in the Information Window:

 [image: stringlengthcalculator_2.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Strings

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 StringPadder

 Pads the selected attributes with a specified character, either on the right or left side. For each attribute specified, if the attribute's length is less than Pad Width, spaces will be added to the given side to bring it up to that length.

 Parameters

 Attributes

 Choose the attribute(s) to pad.

 Desired String Length

 Desired String Length is the minimum length expected of the output string. If the input attribute has a length that is shorter than this desired length, it will be padded to be of this length. If the input attribute is equal to, or longer than this length, the attribute value will not be changed. Null and missing attributes will not be padded.

 Side to Pad

 This sets the padding to the Right (suffix current attribute value) or the Left (prefix current attribute value).

 Pad Character

 A single character to pad the string with. If not specified, string will be padded with a space character.

 Pad Empty Attribute

 Indicates whether or not to pad empty string values. Null values are not equal to the empty string. Nulls, like missing attributes, are never padded.

 Example

 Original value: "hello"

 Pad Width: 10

 Side to Pad: Left

 Resulting value: " hello"

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Strings

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 StringPairReplacer

 Replaces characters in the value contained in the source attribute based
 on the replacement key-value pairs.The replacement pairs parameter is
 a list of

 key value key value

 Each instance of a key in the source string will be replaced with its
 corresponding value. If case-sensitive is no, then matching is done without
 regard to case differences. Both the keys and values may have multiple
 characters. Replacement is done in an ordered manner, so the key appearing
 first in the list will be checked first, and so on.

 For example, if the source attribute’s value was:

 bobby

 and the replacement pairs were:

 b
 s o a

 the result will contain:

 sassy

 Note that the replacement pairs are separated by spaces. If either of
 the strings contains a space, it must be escaped with a \. For
 example, if the source attribute’s value was:

 billy
 bob

 and the replacement pairs were:

 y\
 b a

 the result will contain:

 billaob

 If either of the strings contains a backslash \, it must be escaped with a backslash \. A single backslash not followed by a space will be ignored. For example, if the source attribute’s value was:

 \billybob

 And the replacement pairs were:

 \\b a

 The result will be:

 aillybob

 To substitute a substring specified using regular expressions, use the
 StringReplacer
 transformer.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Strings

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 StringReplacer

 Replaces substrings matching a string or regular expression in the string
 contained in the source attribute.

 Parameters

 Attributes

 This parameter specifies which attributes will have substrings replaced.

 Text to Find

 This parameter specifies
 the substring that will be replaced. See also the Replacement Text parameter.

 Replacement Text

 The Replacement Text parameter
 specifies the substring that will replace instances of the replacement
 substring.

 If the replacement text contains & or \0, then it is replaced
 in the substitution with the portion of string that matched the regular
 expression.

 If replacement text contains \#, where # is a digit between
 1 and 9, then it is replaced in the substitution with the portion of string
 that matched the n-th parenthesized subexpression of the regular expression.

 Special character sequences can be used in both the Text
 to Find and Replacement Text
 parameters.

 Characters can be expressed as regular characters but they can also include any number of control characters.

 Special
 character sequences (Advanced Editor only) are interpreted as shown below:

 	Sequence
 	Description

 	
 Ctrl+Shift+h (^H)

 	
 Backspace (0x08)

 	
 Ctrl+Shift+l (^L)

 	
 Form feed (0x0c)

 	
 Ctrl+Shift+j (^J)

 	
 Newline (0x0a)

 	
 Ctrl+Shift+r (^M)

 	
 Carriage return (0x0d)

 	
 Ctrl+Shift+i (^I)

 	
 Tab (0x09)

 	
 Ctrl+Shift+k (^K)

 	
 Vertical tab (0x0b)

 Defining Special Characters

 You can define special characters through the Basic or Advanced Editors. Click Open Editor from the parameter menu:

 [image: special_char1.png]

 Basic Text Editor

 Select Constant from the String Type column (or, in some transformers, the Value column) and click on the empty field in the column:

 [image: special_char2.png]

 Click the browse button to the right of the column to open an Edit Value dialog. In this editor, enter characters using the shortcut keys
from the table above.

 Advanced Text Editor

 Enter characters using the shortcuts from the table above.

 Note: To see tab characters, click the Options menu on the bottom left and select Show Spaces/Tabs.

 Use Regular Expressions

 This parameter specifies whether the Text to Find parameter is a plain string or a regular expression.

 If the Use Regular Expressions parameter is set to Yes, Advanced Regular Expressions (AREs) are supported.
 In
 brief, An ARE is one or more branches, separated by ‘|’, matching anything
 that matches any of the branches.

 A brief summary of the special characters and their meanings is:

 	|
 	separates "branches"
 (or choices)

 	*
 	 a sequence of 0 or
 more matches of what precedes it

 	+
 	a sequence of 1 or
 more matches of what precedes it

 	?
 	a sequence of 0 or
 1 matches of what precedes it

 	.
 	 matches any single
 character

 	^
 	matches the start of
 the value

 	$
 	matches the end of
 the value

 	[]
 	enclose a set of
 character choices

 	()
 	enclose a "subexpression"
 -- whatever matches each subexpression is placed into the _matched_parts{}
 list attribute

 	a
 	any character can be
 listed to be matched

 Case Sensitive

 This parameter
 specifies whether or not the substring matching will be case-sensitive.

 Examples

 In this example, a pure substitution of text is made without any use
 of regular expression functionality. This is the simplest kind of substring
 replacement.

 Source
 String: Bobby

 Text
 to Find: obb

 Replacement
 Text: ill

 Use
 Regular Expression: no

 Case
 Sensitive: yes

 Result:
 Billy

 In this example, a pattern matching zero or more ’b’ characters is replaced
 with nothing.

 Source
 String: Bobby

 Text
 to Find: b*

 Replacement
 Text:

 Use
 Regular Expression: yes

 Case
 Sensitive: yes

 Result:
 Boy

 In this example, a pattern matching zero or more ’b’ characters followed
 by a y is duplicated in the result (prepended by hyphens)

 Source
 String: Bobby

 Text
 to Find: b*y

 Replacement
 Text: --\\0-\\0

 Use
 Regular Expression: yes

 Case
 Sensitive: yes

 Result:
 Bo--bby-bby

 Related Transformers

 See the StringSearcher transformer help for additional
 regular expression examples.

 To replace pairs of substrings, use the StringPairReplacer
 transformer.

 To search for regular expression matches in a string without doing any
 replacement, use the StringSearcher transformer.

 Additional Resources

 Test regular expressions with Rubular, a Ruby-based regular expression editor.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Strings

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 StringSearcher

 Performs a regular expression match on the specified expression.
 If the expression matches the pattern, the feature is output via the Matched
 port, and the portion of the original search string that matched the
 regular expression is stored in the attribute specified in the “Matched Result Attribute” (and
 optionally matching pieces of the expressed are stored in the attribute list specified in the “Matched Parts Attribute”). Otherwise, it is output via the NotMatched port.

 This transformer takes its name and inspiration from the UNIX utility
 grep, which searches for patterns
 in text files.

 Parameters

 Search In

 The input text to be searched.

 Regular Expression

 To use this transformer to parse out portions of a string,
 "subexpressions" within the regular expression are used. Subexpressions
 are enclosed in parentheses (), and the portion of the input text that
 matched that subexpression is stored as an entry in the “Matched Parts Attribute”
 list. The
 elements of this list can then be exposed to Workbench by right clicking
 on it and indicating the number of elements to expose for later use. See
 below for some examples.

 Advanced Regular Expressions (AREs) are supported. For a complete description
 of AREs, see Syntax of Tcl Regular Expressions
 in the
 FME Functions and Factories manual, or see Regular Expression Information.

 In brief, an ARE is one or more branches, separated by |, matching anything
 that matches any of the branches.

 A brief summary of the special characters and their meanings is:

 	|
 	separates "branches"
 (or choices)

 	*
 	 a sequence of 0 or
 more matches of what precedes it

 	+
 	a sequence of 1 or
 more matches of what precedes it

 	?
 	a sequence of 0 or
 1 matches of what precedes it

 	.
 	 matches any single
 character

 	^
 	matches the start of
 the value

 	$
 	matches the end of
 the value

 	[]
 	enclose a set of
 character choices

 	()
 	enclose a "subexpression"
 -- whatever matches each subexpression is placed into the “Matched Parts Attribute”{}
 list attribute

 	a
 	any character can be
 listed to be matched

 Examples:

 	^A
 	matches any value
 starting with an A

 	^[0-9]
 	matches any value
 starting with a digit

 	^[0-9]+$
 	matches any
 value consisting exclusively of digits

 	^(beef|chicken)$
 	matches
 values of either “beef” or “chicken”

 	^([0-9]*) ([0-9]*)$
 	matches two integer
 numbers separated by a space, and puts the first number into “Matched Parts Attribute”{0}
 and the second into “Matched Parts Attribute”{1}

 	^N([0-9][0-9])[.]([0-9][0-9])[.]([0-9][0-9])
 	matches N23.45.11 and puts 23 into “Matched Parts Attribute”{0}, 45 into “Matched Parts Attribute”{1},
 and 11 into “Matched Parts Attribute”{2}

 The Regular Expression field can also include any number of special characters.

 Characters can be expressed as regular characters but they can also include any number of control characters.

 Special
 character sequences (Advanced Editor only) are interpreted as shown below:

 	Sequence
 	Description

 	
 Ctrl+Shift+h (^H)

 	
 Backspace (0x08)

 	
 Ctrl+Shift+l (^L)

 	
 Form feed (0x0c)

 	
 Ctrl+Shift+j (^J)

 	
 Newline (0x0a)

 	
 Ctrl+Shift+r (^M)

 	
 Carriage return (0x0d)

 	
 Ctrl+Shift+i (^I)

 	
 Tab (0x09)

 	
 Ctrl+Shift+k (^K)

 	
 Vertical tab (0x0b)

 Defining Special Characters

 You can define special characters through the Basic or Advanced Editors. Click Open Editor from the parameter menu:

 [image: special_char1.png]

 Basic Text Editor

 Select Constant from the String Type column (or, in some transformers, the Value column) and click on the empty field in the column:

 [image: special_char2.png]

 Click the browse button to the right of the column to open an Edit Value dialog. In this editor, enter characters using the shortcut keys
from the table above.

 Advanced Text Editor

 Enter characters using the shortcuts from the table above.

 Note: To see tab characters, click the Options menu on the bottom left and select Show Spaces/Tabs.

 Case Sensitive

 Note that the matches can be either case-sensitive or case-insensitive,
 depending on how the transformer is configured.

 Matched Result Attribute

 The attribute name used to store the matching result. The default attribute name is _matched_characters.

 Matched Parts Attribute

 The attribute list name used to store optional matching subexpressions. The default attribute list name is _matched_parts.

 Related Transformers

 To replace substrings matching a regular expression in a string, use
 the StringReplacer
 transformer.

 Additional Resources

 Test regular expressions with Rubular, a Ruby-based regular expression editor.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Strings

 Transformer History

 This transformer was previously named Grepper.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 SubstringExtractor

 Extracts a substring from the source attribute. The substring is taken
 from the range of characters specified.

 Character
 indexes start at 0 for the first character. A
 negative index is used to indicate the position relative to the end of
 the string (-1 is the last character, -2 the second last, and so on).
 The index
 can also be taken from the value of another attribute.

 If the last index is greater than or equal to the length of the string,
 then it is treated as if it were the end of the string. If the first index
 is greater than the last index, then an empty string is placed into the
 result attribute.

 Each of the index parameters may either be entered as a number, or can
 be taken from the value of a feature attribute by selecting the attribute
 name from the pull-down list.

 Examples

 	To trim off the first character only, use a start
 of 1 and an end of -1

 	To trim off the last character only, use a start
 of 0 and an end of -2

 	To extract the second and third characters in
 the string, use a start of 1 and an end of 2

 	To trim off a single character only, use a start of 4 and an end of 4.

 	If you want to split the four first characters of the string
ABCDE, use four SubstringExtractor transformers and set their
respective properties as follows:

 0,0

 1,1

 2,2

 3,3

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Strings

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 SummaryReporter

 Writes a summary report of features that enter to a disk file. Features
 are sorted prior to being summarized.

 The summary report is a human-readable text file which can be read by
 any text editor. This
 summary report can be used to compare and quickly find differences between
 sets of features.

 The summary report includes fields such as Feature Type, 3D Length,
 2D Length, X Min, X Max, Y Min, Y Max, Z Min, Z Max, Number of Coordinates,
 Coordinate System, and Attribute Values.

 The report title is written at the top of the file.

 The Suppress Empty Report parameter
 controls whether an empty file is created when no features enter.

 The Append to Existing Report
 parameter controls whether the new report overwrites or is appended to
 existing files.

 The Write Report in UTF-8 parameter
 controls the encoding of the output text file. When set to Yes, the output
 text file is encoded in UTF-8. Otherwise, it is written in the current
 system encoding.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 SurfaceBuilder

 Cuts holes in surface features with other surface features. A surface that is cut by another surface must be co-planar with that second surface, and contain that second surface.

 All surfaces are converted into faces (for example, a mesh is converted into faces – one face per mesh part).

 Input Ports

 Input

 Surface features: it is assumed that any two input surfaces within a group either have a strict containment relationship, or are not overlapping.

 Output Ports

 Surface

 Contains the output surfaces.

 Unused

 All but one geometrically identical surface will be output through the Unused port. Two surfaces are considered geometrically identical if their geometries match exactly.

 Non-geometry properties like coordinate systems, measures, traits, and geometry names are not considered when matching input geometries.

 <Rejected>

 Non-surface features

 Parameters

 Group By

 Leaving this parameter blank causes the entire set of input surfaces to form a single group. Alternatively, this parameter allows you to select attributes on which to form groups of surface features – each set of features that have the same value for all of these attributes will be processed independently in a group.

 No attributes other than Group By attributes will be carried across from the Input features to the output features.

 Drop Holes

 This parameter indicates
 whether or not surface features used to cut other surfaces should
 be dropped or output.

 Hole Flag Attribute

 This parameter will be added to each output feature and will contain "yes" if that feature was used to cut a hole inside some other feature, and "no" if that feature did not cut into any other features.

 Hole List Name

 If a hole list name is specified, the attributes of the features that were used to cut holes in this surface are added to this attribute list.

 Enable Tolerance

 If set to Yes, the Normal Tolerance in Degrees and Offset Tolerance parameters are enabled. If set to No, the two parameters are disabled.

 Normal Tolerance in Degrees

 Faces must be parallel before they are allowed to cut into each other. If two faces are nearly parallel with normals that are slightly apart, use this parameter to set a tolerance in degrees. The larger the value, the less parallel the faces would have to be while still considered parallel to each other.

 Usage Tip: Use this parameter together with Offset Tolerance.

 Offset Tolerance

 Faces must be co-planar before they are allowed to cut into each other. If two faces are nearly co-planar, but are a small offset from each other, use this parameter to set a tolerance in ground units. The larger the value, the farther away the faces could be while still considered co-planar.

 Usage Tip: Use this parameter together with Normal Tolerance in Degrees.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 SurfaceDraper

 Constructs a Delaunay triangulation based on input points and breaklines. Input drape features will be overlaid onto the surface model, and output as draped features.

 Input Ports

 Points/Lines

 These input features may be 2D or 3D, and may reside inside a raster, a point cloud, or other aggregate structures. 2D features will be forced to 3D by adding a z value of 0. In most cases, all points extracted from this port will be found in the vertex pool of the underlying surface model. A minimum of 3 unique points are required to construct a surface model. Points with duplicate x and y values will be dropped.

 Breaklines

 These input features may be 2D or 3D, and may reside inside an aggregate structure. 2D features will be forced to 3D by adding a z value of 0. Breakline edges will be found in the edge pool of the underlying surface model. Sometimes, a breakline edge will be split up to allow an optimal triangulation of the surface model. Points with duplicate x and y values will be dropped.

 DrapeFeatures

 These input features may be 2D or 3D. If they are 3D, their z values will be overwritten. Features input through this port are output via the DrapedFeatures output port with their z values set to interpolated values on 	the underlying surface model.

 Output Ports

 DrapedFeatures

 This output port produces features input through the DrapeFeatures port, with their z values set to interpolated values on the underlying surface model.

 Parameters

 Group By

 This parameter allows groups to be formed by attribute values. Zero or more attributes may be specified.

 Input features with the same attribute values are placed into the same group. The transformer then operates independently on each group of input features.

 If this parameter is left blank, the transformer will treat the entire set of input features as one group.

 Surface Tolerance

 This parameter is used to determine which input points to add to the surface model as vertices. Specifying a value of 0 turns off vertex filtering.

 Tip: A larger value will speed up surface model construction. The larger the value, the more input points will be filtered out. For input files with millions – or even billions – of points, it becomes essential to increase this value.

 When a positive value for surface tolerance is specified, it works as follows. For each vertex that is being added to the model:

 	If the x,y location is outside the 2D convex hull of the existing surface model, it is added to the model.

 	If the x,y location is inside the 2D convex hull of the existing surface model:	The difference between the z value from the existing surface model and the z value of the vertex is calculated.
	This difference is compared to the surface model tolerance.
	The vertex is only added to the surface model if the difference is greater than the surface tolerance; otherwise, the vertex is discarded.

 Drape Method

 This parameter controls whether input DrapeFeatures will retain its vertex count, or be modified to adhere to the underlying surface model:

 	If Drape Method is set to VERTEX, the input feature will be output with the same number of vertices, with z values set on each vertex. The z values are interpolated from the underlying surface model.

 	If Drape Method is set to MODEL, the feature will have other vertices added to more closely follow the underlying surface model. For example, if an input DrapeFeature falls outside the underlying surface model, it will gain additional vertices where the DrapeFeature crosses the boundaries of the surface model.

 Interpolation Method

 This parameter is used for the output ports DEMPoints and DEMRaster when these output ports exist on the transformer. It is also used if DrapeFeatures are input to the model.

 	AUTO: The transformer will calculate each output point automatically. The PLANAR method is used if the output point is within a surface triangle in xy and the CONSTANT method is used otherwise.

 	PLANAR: Barycentric interpolation is used to determine the z value for each output point. If an output point is outside the 2D convex hull of the surface model, the output z value will be set to NaN (Not a Number).

 	CONSTANT: The z value of each output point is set to the z value of the closest vertex in the underlying model.

 Existing Elevation

 This parameter controls whether input DrapeFeatures with Z values will be offset or have Z values replaced:

 	If Existing Elevation is set to ‘Replace Z’, the input feature will be output with Z values that are interpolated from the underlying surface model.

 	If Existing Elevation is set to ‘Offset Z’ and the input feature had Z values, each Z value will be offset by the interpolated Z value from the underlying surface model. For example, if the surface model represents the difference between two elevation models, this mode will allow vector features to be updated accordingly.

 Example

 [image: surfacedraper.gif]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Surfaces

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 SurfaceModeller

 Constructs a Delaunay triangulation based on input points and breaklines.

 The surface model may be output in a variety of representations, such as a triangulated irregular network (TIN), TIN vertices, triangles, digital elevation model (DEM), and contours. Because the surface model is a Delaunay triangulation, it can also be output as its dual – a Voronoi diagram.

 When you need multiple representations of a surface model, this transformer is more efficient than using separate transformers.

 Input Ports

 Points/Lines

 These input features may be 2D or 3D, and may reside inside a raster, a point cloud, or other aggregate structures. 2D features will be forced to 3D by adding a z value of 0. In most cases, all points extracted from this port will be found in the vertex pool of the underlying surface model. A minimum of 3 unique points are required to construct a surface model. Points with duplicate x and y values will be dropped.

 Breaklines

 These input features may be 2D or 3D, and may reside inside an aggregate structure. 2D features will be forced to 3D by adding a z value of 0. Breakline edges will be found in the edge pool of the underlying surface model. Sometimes, a breakline edge will be split up to allow an optimal triangulation of the surface model. Points with duplicate x and y values will be dropped.

 DrapeFeatures

 These input features may be 2D or 3D. If they are 3D, their z values will be overwritten. Features input through this port are output via the DrapedFeatures output port with their z values set to interpolated values on 	the underlying surface model.

 Output Ports

 Contours

 This output port produces contour lines. Each contour is 2D or 3D depending on Output Contour Dimension, and stores its elevation in the _elevation attribute. If contours are 3D, then their z values are equivalent to their elevation attribute values.

 Tip: The parameter Conflict Resolution can filter out a subset of input Points/Lines to ensure a well-constructed surface model.

 DEMPoints

 This output port samples the underlying surface model according to the sampling rates specified in Output DEM X Cell Spacing, and Output DEM Y Cell Spacing, and produces a set of evenly spaced 3D points.

 DEMRaster

 This output port samples the underlying surface model according to the sampling rates specified in Output DEM X Cell Spacing, and Output DEM Y Cell Spacing, and produces a single raster feature consisting of evenly spaced 3D points arranged by rows and columns.

 DrapedFeatures

 This output port produces features input through the DrapeFeatures port, with their z values set to interpolated values on the underlying surface model.

 TINEdges

 This output port produces all the edges of the underlying surface model. Each edge feature contains the attributes _vertex1_id and _vertex2_id, which identify the vertices to which it is connected.

 Triangles

 This output port produces all the triangles of the underlying surface model as polygons. Each output triangle has these attributes:

 	_vertex1_id, _vertex2_id, and _vertex3_id
 	identify the vertices that define the triangle

 	_slope
 	the slope of the plane defined by the triangle, in degrees, relative to the horizontal plane

 	_percentageSlope
 	the slope expressed as (rise / run) * 100%, or equivalently tan(_slope) * 100%

 	_aspect
 	the aspect angle, in degrees, measured by the angle between nx and ny, where nx and ny are are the x and y components of the normal vector of the triangle

 TINSurface

 This output port produces a single mesh geometry containing all the triangles of the underlying surface model.

 VertexPoints

 This output port produces all of the vertices of the underlying surface model. Each vertex contains the attribute _vertex_id which uniquely identifies the vertex.

 VoronoiDiagram

 This output port produces a 2D dual of the underlying surface model, which is a 3D Delaunay Triangulation. The dual to a Delaunay Triangulation is called the Voronoi Diagram. The 2D dual is constructed by considering only the x and y dimensions of the 3D Delaunay Triangulation. For each vertex in the Delaunay Triangulation, a 2D Voronoi polygon feature is output, which is closer to the vertex it encloses in the x-y plane than any other vertex in the Delaunay Triangulation. Further, the Voronoi polygon has these attributes:

 	_vertex_id
 	identifies the vertices that it encloses

 	_elevation
 	contains the elevation of the enclosed vertex

 Parameters

 Transformer

 Group By

 This parameter allows groups to be formed by attribute values. Zero or more attributes may be specified.

 Input features with the same attribute values are placed into the same group. The transformer then operates independently on each group of input features.

 If this parameter is left blank, the transformer will treat the entire set of input features as one group.

 Parallel Processing Level

 How parallel processing works with FME: see About Parallel Processing for detailed information.

 This parameter determines whether or not the
transformer should perform the work across parallel processes. If it is enabled, a process will be launched for each group specified by the Group
By parameter.

 Parallel Processing Levels

 	Parameter
 	Number of Processes

 	No Parallelism
 	1

 	Minimal
 	cores1 / 2

 	Moderate
 	exact number of cores

 	Aggressive
 	cores x 1.5

 	Extreme
 	cores x 2

 For example, on a quad-core machine, minimal parallelism will result in two simultaneous FME processes. Extreme parallelism on an 8-core machine would result in 16 simultaneous processes.

 You can experiment with this feature and view the information in the Windows Task Manager and the Workbench Log window.

 Parameters

 Surface Tolerance

 This parameter is used to determine which input points to add to the surface model as vertices. Specifying a value of 0 turns off vertex filtering.

 Tip: A larger value will speed up surface model construction. The larger the value, the more input points will be filtered out. For input files with millions – or even billions – of points, it becomes essential to increase this value.

 When a positive value for surface tolerance is specified, it works as follows. For each vertex that is being added to the model:

 	If the x,y location is outside the 2D convex hull of the existing surface model, it is added to the model.

 	If the x,y location is inside the 2D convex hull of the existing surface model:	The difference between the z value from the existing surface model and the z value of the vertex is calculated.
	This difference is compared to the surface model tolerance.
	The vertex is only added to the surface model if the difference is greater than the surface tolerance; otherwise, the vertex is discarded.

 Interpolation Method

 This parameter is used for the output ports DEMPoints and DEMRaster when these output ports exist on the transformer. It is also used if DrapeFeatures are input to the model.

 	AUTO: The transformer will calculate each output point automatically. The PLANAR method is used if the output point is within a surface triangle in xy and the CONSTANT method is used otherwise.

 	PLANAR: Barycentric interpolation is used to determine the z value for each output point. If an output point is outside the 2D convex hull of the surface model, the output z value will be set to NaN (Not a Number).

 	CONSTANT: The z value of each output point is set to the z value of the closest vertex in the underlying model.

 DEM

 Output DEM X Cell Spacing, Output DEM Y Cell Spacing

 These parameters specify the x and y sampling intervals for the output DEMPoints.

 Output DEM Raster Nodata Value

 This parameter is used only when Interpolation Method is set to PLANAR, and it only affects the output port DEMRaster.

 All output raster cells that fall outside the underlying surface model’s boundaries will be assigned the value of this parameter.

 When this parameter is blank, it is interpreted as NaN (Not a Number).

 Note: To ensure consistent raster output, it is highly recommended that you do not leave this parameter blank.

 Draped Features

 Drape Method

 This parameter controls whether input DrapeFeatures will retain its vertex count, or be modified to adhere to the underlying surface model:

 	If Drape Method is set to VERTEX, the input feature will be output with the same number of vertices, with z values set on each vertex. The z values are interpolated from the underlying surface model.

 	If Drape Method is set to MODEL, the feature will have other vertices added to more closely follow the underlying surface model. For example, if an input DrapeFeature falls outside the underlying surface model, it will gain additional vertices where the DrapeFeature crosses the boundaries of the surface model.

 Existing Elevation

 This parameter controls whether input DrapeFeatures with Z values will be offset or have Z values replaced:

 	If Existing Elevation is set to ‘Replace Z’, the input feature will be output with Z values that are interpolated from the underlying surface model.

 	If Existing Elevation is set to ‘Offset Z’ and the input feature had Z values, each Z value will be offset by the interpolated Z value from the underlying surface model. For example, if the surface model represents the difference between two elevation models, this mode will allow vector features to be updated accordingly.

 Output Contours

 Output Contours

 Activating this group causes contour features to be output from the Contours port. Note that when this group is activated, input points along contour intervals will be perturbed or removed (depending on the Conflict Resolution parameter) which may affect output from ports other than the Contours port.

 Output Contour Interval

 This parameter specifies the elevation separation of the output contours.

 Output Contour Dimension

 This parameter specifies whether the output contours are 2D or 3D. 2D contours are equivalent to 3D contours, except that the z coordinates are dropped.

 Tip: When the input dataset is large enough, setting this parameter to 2D will result in a visible performance improvement.

 Conflict Resolution

 This parameter controls whether input points on the contour interval are dropped, or perturbed. Not dropping or perturbing these points would result in topologically invalid contours.

 	Perturb Input Points on Contour Interval: Contours are negatively offset in the z direction. The perturbation amount is 1% of the contour interval.

 	Remove Input Points on Contour Interval: Input points on the contour interval are not added to the underlying surface model.

 Use Surface Model File

 Use Surface Model File

 This parameter allows you to define a file for storing a surface model.

 File storage is useful for building a large surface model through multiple runs, and for workspaces that need to re-use a preconstructed surface model. The saved surface models can be used as part of a production stream on the same operating system.

 Note: This parameter is processed only if Group By is not specified.

 Surface Model Base File Name

 This parameter specifies the filename, including its path, of the surface model file. The surface model file has the file extension *.fsm.

 Surface Model Update Mode

 This parameter controls whether the workspace is reading or writing a surface model file.

 Note: There must be at least one input feature. For reading, it suffices to input a single feature with a null geometry via any of the input ports.

 	Read or Append: Reads the surface model from the specified file, and appends it to the surface model constructed by the input features. The appended model is then written back to the same file.

 	Write or Overwrite: Writes the constructed surface model to the specified file. If the specified file exists, it will be overwritten.

 Estimated # of Vertices in Model

 This parameter provides an estimate of the number of vertices in the final surface model, which can be significantly greater than the total number of input points through Points/Lines and Breaklines.

 Note: A generous estimate is recommended when you are building a large model in multiple runs because this estimate is used for optimization purposes. If this estimate is too low, the surface model construction could take significantly longer.

 XMin, YMin, XMax, YMax

 This parameter should only be used when you are building large surface models across multiple runs.

 Note: In subsequent runs of the SurfaceModeller, this parameter must be specified or else the transformer will use the bounding box of the surface model from the first run for constructing the surface model.

 Example

 [image: surfacemodeller.png]

 Usage Notes

 It is important to note that if the only thing you want to do with an existing surface model is output information, then you must route a feature into the surface model. The easiest way to do this is to simply use the Creator transformer and route a single feature with a null geometry into the DrapeFeatures input port.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Surfaces

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: MBR "minimum bounding rectangle"

 1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 SurfaceOnSurfaceOverlayer

 Performs a surface-on-surface overlay so that all input surfaces are intersected against each other and resultant surface features are created and output. The output surfaces can retain all the attributes of the input features in which they are contained.

 All surfaces are broken down into faces. For example, a mesh is broken into faces, one face per mesh part.

 Non-surface input features are not supported. Input collections of surfaces are automatically de-aggregated.

 Input Ports

 Surface

 Surface features.

 Output Ports

 Surface

 Surface features are output here.

 <Rejected>

 Non-surface features are output here.

 Parameters

 Group By

 The default behavior is to use the entire set of features as the group. This option allows you to select attributes that define which groups to form.

 Parallel Processing Level

 How parallel processing works with FME: see About Parallel Processing for detailed information.

 This parameter determines whether or not the
transformer should perform the work across parallel processes. If it is enabled, a process will be launched for each group specified by the Group
By parameter.

 Parallel Processing Levels

 	Parameter
 	Number of Processes

 	No Parallelism
 	1

 	Minimal
 	cores1 / 2

 	Moderate
 	exact number of cores

 	Aggressive
 	cores x 1.5

 	Extreme
 	cores x 2

 For example, on a quad-core machine, minimal parallelism will result in two simultaneous FME processes. Extreme parallelism on an 8-core machine would result in 16 simultaneous processes.

 You can experiment with this feature and view the information in the Windows Task Manager and the Workbench Log window.

 Overlap Count Attribute

 The Overlap Count Attribute holds the number of input surfaces that contain each output surface. This count will be 1 or greater.

 List Name

 If a List Name is supplied, for each output feature, a list is created of all the attributes of input features that contain the output feature. A list with the same name is created for traits.

 Enable Tolerance

 If set to Yes, the Normal Tolerance in Degrees and Offset Tolerance parameters are enabled. If set to No, the two parameters are disabled.

 Normal Tolerance in Degrees

 Faces must be parallel before they are allowed to cut into each other. If two faces are nearly parallel with normals that are slightly apart, use this parameter to set a tolerance in degrees. The larger the value, the less parallel the faces would have to be while still considered parallel to each other.

 Usage Tip: Use this parameter together with Offset Tolerance.

 Offset Tolerance

 Faces must be co-planar before they are allowed to cut into each other. If two faces are nearly co-planar, but are a small offset from each other, use this parameter to set a tolerance in ground units. The larger the value, the farther away the faces could be while still considered co-planar.

 Usage Tip: Use this parameter together with Normal Tolerance in Degrees.

 Example:

 [image: areaonareaoverlayer.png]

 Usage Notes

 When attributes (traits) are merged between features, existing attributes (traits) are not replaced. Therefore if the features being overlaid have attributes (traits) with the same name, then the first set of values will be kept. You can work around this by renaming, prefixing, or removing attributes (traits) to avoid name collisions.

 Aggregates are not supported by this transformer.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 SurfaceReverser

 Reverse surfaces and solids.

 On surfaces, it will reorder the coordinates of the surface such that the normal of the output surface is the opposite of the input surface. Vertex normals that exist on the surface will be also be reversed.

 On solids, it will reverse the underlying surfaces, in effect causing the solid to be turned inside-out.

 Parameters

 Orientation Flag Attribute

 If the Orientation Flag attribute is specified, then the attribute will be added to the resulting features and its value is set to Yes if the orientation of the geometry has been changed. Otherwise, the value of the attribute is set to No.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 3D

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 SurfaceSplitter

 Splits a double-sided input surface geometry into two single-sided surfaces – one equal to the front side of the input surface and one equal to the back side of the input surface.

 Output Ports

 Front/Back

 This transformer splits a double-sided input surface geometry into two single-sided surfaces – one equal to the front side of the input surface and one equal to the back side of the input surface – through the Front and Back ports, respectively.

 The surface output through the Back port will be a single-sided surface whose front is equivalent to the back side of the original geometry. If a single-sided geometry is input, it will be output via the corresponding output port, converted to a front-sided surface in the case of a back-sided surface.

 Invalid

 Zero-sided surfaces will be treated as invalid. Unprocessed geometries are output through the Invalid port.

 Parameters

 None.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Surfaces

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 SystemCaller

 Runs a program and waits for it to exit before continuing the translation.

 The command-line parameter must start with the name of a program (.exe) or batch file (.bat) that is either fully specified
 or is in the PATH. It can contain additional
 arguments as well, which are passed as command-line arguments to the program
 or batch script.

 If an Exit Code Attribute is specified, it will be set to the executed program's exit code: usually 0 for success and nonzero for failure.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 TclCaller

 Runs a Tool Command Language (Tcl) command and assigns its return value to an attribute.

 The Tcl command can operate on the feature’s geometry and/or attributes,
 using any of the built-in Tcl functions provided by the Tcl language,
 as well as any of the FME-provided Tcl facilities.

 See
 the Tcl language reference manual (www.tcl.tk) and the FME Tcl Variables and Functions section below for details of the capabilities.

 Common Tcl examples usage include:

 	Trim spaces from an attribute:

 FME_SetAttribute
 trimmedAttribute [string trim [FME_GetAttribute originalAttribute]]

 	Replace all non-numeric characters with spaces
 in an attribute:

 FME_SetAttribute
 anAttribute [regsub -all {[^0-9]} [FME_GetAttribute anAttribute] {}]

 Note
 that in this case, the return value is the number of substitutions actually
 made.

 	Match a regular expression against an attribute:

 regexp
 {^[A-Za-z]$} [FME_GetAttribute anAttribute]

 This regular expression tests if the entire value of the attribute consists
 only of alphabetic characters.

 Note that when matching regular expressions, the return value will be
 1 if the expression matched, and 0 otherwise.

 	Log a custom message to the log window:

 FME_LogMessage fme_inform This is my message

 The recommended way to manipulate feature attributes is through the
 functions that are provided for this purpose:

 FME_GetAttribute
 attrName

 FME_SetAttribute
 attrName newVal

 FME_CopyAttribute
 destAttrName srcAttrName

 FME_RenameAttribute
 destAttrName srcAttrName

 FME_UnsetAttributes
 attrName1 [attrName2 attrName3 ...]

 A Tcl source file can optionally be provided. The file will be read
 before the Tcl command is executed. This can be used to reference Tcl
 functions kept in a common external file.

 Additional code may also be provided in the Source Code editor. This
 code will be compiled once at the beginning of the translation and so
 offers a more efficient option than providing extensive code in the Tcl
 Expression parameter.

 It is possible to create multiple copies of a feature using the Number of Copies Tcl Expression parameter. This expression should return a number.

 If specified, the copy number attribute will hold the copy number of each output feature. For example, if 3 copies of an input feature are made, the output copies
 will have 0, 1, and 2, respectively, assigned to their copy number attribute. The Tcl expressions can examine this attribute to determine which output feature number it is working on.

 FME Tcl Variables and Functions

 Global Variables

 Four Tcl global variables provide a gateway between an FME feature and the Tcl script: FME_FeatureType, FME_CoordSys, FME_AttrEncoding, and FME_AttrNameEncoding variables. In order to use these in a Tcl procedure, they must be declared as global; otherwise, the variables will be considered to be local and will not affect or interact with the FME feature upon which the function is run. To use them in a function, use a pattern like:

 proc doSomething {

 global FME_FeatureType

 global FME_CoordSys

 # rest of function goes here...

 }

 FME_AttrEncoding Variable

 This global variable defines the name of the character encoding in which Tcl assumes a feature's attributes are specified when working with FME_GetAttribute and FME_SetAttribute functions. As Tcl works internally with UTF-8, this means that it will convert attribute values from the given encoding to UTF-8 when getting the value of attribute with FME_GetAttribute function, and will convert values from UTF-8 to the given encoding when setting the attribute value using FME_SetAttribute function.

 The value of this variable does not impact the setting or retrieval of attributes when character encoding is known, either on the retrieved attribute or as directed by the arguments to FME_GetAttribute or FME_SetAttribute.

 The default attribute encoding is the same as the default character encoding of the system on which FME is executing, and might be overridden by Tcl's built-in "encoding system" command. A complete list of supported encodings may be obtained by executing the command "encoding names".

 The variable may be set, read, or unset:

 set FME_AttrEncoding iso8859-2

 puts $FME_AttrEncoding

 unset FME_AttrEncoding

 If FME_AttrEncoding is unset, or is set to be an empty string, it reverts to the default system encoding.

 FME_AttributeExists Function

 This function is used to determine if an attribute is present on a feature.

 The syntax for FME_AttributeExists is:

 FME_AttributeExists <attributeName>

 <attributeName> is the name of the attribute whose value is to be retrieved.

 If the attribute was present on the feature, the value 1 is returned; otherwise, 0 is returned.

 FME_IsAttributeNull Function

 This function is used to determine if the value of an attribute is null.

 The syntax for FME_IsAttributeNull is:

 FME_IsAttributeNull <attributeName>

 <attributeName> is the name of the attribute whose value is to be checked.

 If the attribute has a null value, the value 1 is returned; otherwise, 0 is returned.

 FME_AttributeNames Function

 This function is used to retrieve the names of all feature attributes and return them as a Tcl list.

 The syntax for FME_AttributeNames is:

 FME_AttributeNames

 FME_AttrNameEncoding Variable

 This global variable defines the name of the character encoding in which Tcl assumes a feature's attributes' names are specified when working with FME_GetAttribute and FME_SetAttribute functions. As Tcl works internally with UTF-8, this means that it will convert attribute names from UTF-8 to the given encoding system, and use the converted name when referring to the actual feature's attributes.

 The default attribute encoding is the same as the default character encoding of the system on which FME is executing, and might be overridden by Tcl's built-in "encoding system" command. A complete list of supported encodings may be obtained by executing the command "encoding names".

 The variable may be set, read, or unset:

 set FME_AttrNameEncoding iso8859-2

 puts $FME_AttrNameEncoding

 unset FME_AttrNameEncoding

 If FME_AttrNameEncoding is unset, or is set to be an empty string, it reverts to the default system encoding.

 FME_CoordSys Variable

 This global variable is set up to mirror the coordinate system of the feature. As with the FME_FeatureType variable, it can be set, read, and unset:

 set FME_CoordSys UTM10-83

 puts $FME_CoordSys

 unset FME_CoordSys

 FME_Coordinates Function

 In any Tcl procedure invoked by TclCaller, the FME_Coordinates function can be used to read and write the coordinates of the feature. It provides several options, as listed below:

 dimension (2|3)

 Sets the dimension of the feature - either 2 or 3.

 numCoords

 Returns the number of coordinates in the feature.

 resetCoords

 Removes all the current coordinates from the feature.

 Note: Calling resetCoords has no effect on the fme_geometry or fme_type attributes. These must be reset or readjusted explicitly by the script so the feature is not left in an inconsistent state.

 getCoord (x|y|z) <index>

 Returns the coordinate value for the specified axis at the specified <index>.

 <index> ranges from zero to one less than the number of coordinates.

 addCoord <xvalue> <yvalue> [<zvalue>]

 Adds the coordinate specified to the end of the feature's geometry.

 geomType

 Returns the geometry type of the feature - it will be one of the values allowed for the fme_geometry attribute:

 fme_point

 fme_line

 fme_polygon

 fme_donut

 fme_aggregate

 fme_undefined

 geomType <type>

 Sets the geometry type of the feature to the passed-in value. No sanity checking is done. It is important that this be done with care since setting an incorrect geometry type can later hinder FME.

 FME_CopyAttribute Function

 This function is used to copy a feature attribute. The attribute's original internal data storage type is preserved by using this function. This can be significant when working with high precision floating point values.

 The syntax for FME_CopyAttribute is:

 FME_CopyAttribute <newName> <oldName>

 If the feature did not contain an attribute with the name oldName, then the function does nothing. It will not create a new blank valued attribute.

 FME_DecodeText Function

 This function is used to decode character strings which have been encoded as described in the section Substituting Strings in Mapping Files. The result of the function is a copy of the input parameter, with substituted string sequences converted back to the characters they represent.

 The syntax for FME_DecodeText is:

 FME_DecodeText <encodedText>

 <encodedText> specifies a string which possibly contains substituted character string sequences.

 FME_DecodeTextOrAttr Function

 This function is similar to FME_DecodeText, except that its argument may be interpreted as a reference to an attribute value rather than as a string to decode.

 The syntax for FME_DecodeTextOrAttr is:

 FME_DecodeTextOrAttr [&]<encodedText>

 <encodedText> specifies a string which possibly contains substituted character strings.

 If the argument begins with an ampersand character ("&"), the function returns the value in the attribute named by decoding the remainder of the argument. Otherwise, the function returns the decoded equivalent of <encodedText>.

 This function is particularly useful when defining new transformers with GUI elements of "STRING_OR_ATTR_ENCODED" type.

 FME_EncodeText Function

 This function is used to generate character strings which have are encoded as described in the section Substituting Strings in Mapping Files. The result of the function is a copy of the input parameter, with special characters converted to substituted string sequences which pass cleanly through FME's file parser, and can be represented in any ANSI character set.

 The syntax for FME_EncodeText is:

 FME_EncodeText <unencodedText>

 <unencodedText> specifies the string which is to be encoded. Any special characters in this string will be replaced with the substitution sequences listed in the referenced section Substituting Strings in Mapping Files.

 FME_Execute Function

 This function is used to call any FME function from within a Tcl procedure. This allows standard FME functions to be called iteratively on the same feature.

 The syntax for FME_Execute is:

 FME_Execute <functionName> [<arg1> ... <argN>]+

 <functionName> is the name of any FME function, without the leading @ sign.

 Any remaining arguments are passed to the function. For example, the @Generalize function is invoked like this:

 FME_Execute Generalize Douglas 10

 and this would accomplish the same effect as if @Generalize(Douglas,10) were invoked elsewhere in the mapping file.

 If the function that is invoked causes the feature to be deleted, the translation will be aborted. The @Generalize function may do this if the feature's total length is less than the tolerance value passed in.

 FME_FeatureType Variable

 This global variable is set up to mirror the feature type of the feature. As with the other variables, it can be set, read, and unset:

 set FME_FeatureType "Roadster"

 puts $FME_FeatureType

 FME_GetAttribute Function

 This function can be used to get a value of attribute on the feature from within a Tcl procedure.

 The syntax for FME_GetAttribute is:

 FME_GetAttribute <attributeName> [<attributeEncoding>]

 <attributeName> is the name of the attribute whose value is to be retrieved.

 <attributeEncoding> is an optional character encoding used when interpreting the bytes of an existing attribute's value. If this is not specified, the bytes of an encoded attribute are interpreted according to their original encoding, and the bytes of a plain string attribute are interpreted according to the value of the FME_AttributeEncoding global variable.

 If the attribute was not present on the feature, an empty string is returned as the value.

 FME_LogMessage Function

 The FME_LogMessage function is used to write messages to the FME log file. It may be invoked in one of two ways:

 FME_LogMessage <severity> <messageNumber> [<arg1> ... <argN>]+

 or

 FME_LogMessage <severity> <message>

 <severity> can have one of these values: fme_inform, fme_warn, fme_error, fme_fatal, fme_statistic, and fme_statusreport

 When the first form is used, the message number must be present in a file in the messages subdirectory under the FME installation directory. The remaining parameters are used to fill in any %0, %1, ... %n parameter holders in the message. For example, if the message was:

 3011, Opening file %0 for mode %1

 then FME_LogMessage could be called like this:

 FME_LogMessage fme_inform 3011 /tmp/cacher.txt read

 In the second form, the message is output directly to the log file.

 FME_RenameAttribute Function

 This function is used to rename a feature attribute. The attribute's original internal data storage type is preserved by using this function. This can be significant when working with high precision floating point values.

 The syntax for FME_RenameAttribute is:

 FME_RenameAttribute <newName> <oldName>

 If the feature did not contain an attribute with the name oldName, then the function does nothing. It will not create a new blank valued attribute.

 FME_SetAttribute Function

 This function is used to set the value of an attribute on a feature.

 The syntax for FME_SetAttribute is:

 FME_SetAttribute [-notranscode] <attributeName> <attrValue> [<attributeEncoding>]

 <attributeName> is the name of the attribute whose value would be set to <attrValue>.

 <attributeEncoding> is an optional character encoding to be applied to the resulting attribute. It overrides the effect of any value currently stored in the FME_AttributeEncoding global variable.

 If the -notranscode option is specified, the bytes of the Tcl variable are copied verbatim to the resulting attribute, in place of a character encoding conversion from Tcl's internal UTF-8 encoding to the target character encoding. This is useful when the Tcl variable is known to contain an array of bytes in a particular character encoding instead of the usual sequence of UTF-8 characters.

 The resulting attribute will normally have attached character encoding information. If the <attributeEncoding> argument is not specified, the attribute will default to a UTF-8 encoding unless the FME_AttributeEncoding global variable is defined. If this variable is defined, the resulting attribute will be an unencoded (plain string) attribute, with bytes representing the value's characters in the named encoding.

 FME_SetAttributeNull Function

 This function is used to set the value of an attribute on a feature to null.
 If the attribute does not exist, it will be created.

 The syntax for FME_SetAttributeNull is:

 FME_SetAttributeNull <attributeName>

 <attributeName> is the name of the attribute whose value would be set to null.

 If the attribute does not exist, it will be created and its type will be string.

 FME_TempFilename Function

 This function generates a temporary filename in the FME temporary directory.

 The filename is guaranteed to be a unique, new file.

 Note: FME will create an empty file with the given name; you must delete it when you are done.

 The syntax for FME_TempFilename is:

 FME_TempFilename [<prefix>] [<suffix>]

 If a prefix and suffix are not provided, the filename will be returned as an arbitrarily uniquely named file in the FME temporary directory. (For information on where this directory is located, see Temporary Directory Determination.)

 If a prefix is provided, then that is used as the beginning portion of the filename within the temporary directory, and the suffix is used as the ending portion. Typically the suffix is used to append an extension, and in this case, it would have to additionally include a period "."

 For example, this call:

 FME_TempFilename raster .png

 would return something like:

 c:/Documents and Settings/username/Local Settings/Temp/rastera05921.png

 FME_UnsetAttributes Function

 This function is used to remove one or more attributes from a feature.

 The syntax for FME_UnsetAttributes is:

 FME_UnsetAttributes <attr1> [<attr2> <attr3 ...]

 No error will be generated if the feature did not contain any of the attributes listed. FME_UnsetAttributes simply ignores any argument that does not specify an attribute on the feature.

 Usage Notes

 Note that due to FME parser limitations, a Tcl expression cannot contain a % character. If a % character is needed, then the expression should be coded as a Tcl procedure and put into an external file to be 'source'd in. Further note that the StringFormatter transformer provides a convenient way to access the Tcl 'format' command thereby sidestepping the % character issue for this situation.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 TCPIPReceiver

 Can be used in conjunction with TCPIPSender.

 Receives raw data over TCP/IP. Produces a feature each time a specified number of bytes is received or a particular sequence is detected.

 To transport data from one FME process to another: use the
 TCPIPSender transformer in the source FME workspace to send data to a TCPIPReceiver transformer in the receiving FME workspace.

 Input Ports

 This transformer has no input ports.

 Output Ports

 Transported

 Features containing the data that has been received are output through this port.

 Parameters

 Connection

 Initiation Sequence

 The Initiation Sequence specifies whether the transformer is responsible for establishing the connection (Establish), or connecting to an establishing host (Connect). If the TCPIPReceiver is used with a corresponding TCPIPSender, either the sender or receiver can be the establisher.

 Note: The
 workspace that establishes the transfer mode must be running before
 the connecting workspace.

 Establishing Host

 This parameter
 is only needed by the workspace with the Initiation Sequence parameter set to Connect. The TCPIPReceiver in Connect mode can connect to the specified host and listen for data. The establishing host can be another FME workspace, or any application or server that communicates over TCP/IP.

 Port or Service to Use

 Specify either a port number or a service (for example, http, ftp, telnet, imap, gopher, pop3, www, and smtp are services that are typically associated with well-known port numbers).

 The default value is 8586.

 Continue Listening on Client Disconnect

 If this parameter is set to No, the TCPIPReceiver will only accept one connection to receive features from. Otherwise the TCPIPReceiver will accept new client connections if the current client has disconnected until the translation is stopped.

 Delimiting

 Delimiting Method

 If this parameter is set to Fixed Data Length, then each feature output by the TCPIPReceiver will contain a maximum number of bytes, specified by the Data Length parameter. This method is intended for receiving data that always has a fixed length.

 If this parameter is set to Receive Data Length from Sender, then the TCPIPReceiver will expect to receive the size of incoming data before the data payload, up to a maximum of 256KB per request. In this way, the value of Data Length is determined dynamically by the sender, rather than set at a fixed value by the receiver. If the sender transmits more than 256KB, then the output data will be divided into 256KB segments. If the TCPIPReceiver is used in conjunction with a TCPIPSender, then the TCPIPSender should have the Send Data Length attribute set to Yes. If this parameter is set to No, then the TCPIPReceiver processes all incoming transmissions as raw data.

 If this parameter is set to Custom Delimiter, then the TCPIPReceiver will split received data into features using the specified Delimiter parameter, up to a maximum of 256KB per feature.

 Data Length

 Specify the maximum number of bytes that the transformer receives before it outputs a feature. In the event that the connection is terminated, the transformer will output any remaining data. If -1 is entered as a value for this parameter, then the TCPIPReceiver will receive up to 256KB per request. Only used if Delimiting Method is set to Fixed Data Length.

 Delimiter

 Specify the string that separates the received data into segments. Each segment will become a separate feature. For example, if Delimiter was the string “__”, then the data “ABC__DEF__GHI” would be split into 3 features with Output Attribute values of “ABC”, “DEF”, and “GHI” respectively.

 Output

 Output Attribute

 Specify the output attribute that will store the received data.

 Number of Bytes Received Attribute

 Specifies the destination attribute for the number of bytes received by the TCPIPReceiver.

 Usage Notes

 To set up a feature stream between two FME
 workspaces using the TCPIPReceiver and TCPIPSender transformers:

 	One workspace is the designated "establisher"
 of the transport stream. If there are multiple transport streams between
 workspaces, one workspace must be the establisher of all the streams,
 and the other will connect to those transport streams. This
 is regardless of whether the individual transporters are sending or receiving
 data.

 	The establishing workspace must be started before the
 workspace that is connecting. A TCPIPReceiver/TCPIPSender cannot
 successfully connect to a transport stream that is not already established.

 	For each transport channel, there must be a different
 port that is used for each server machine.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 TCPIPSender

 Can be used in conjunction with TCPIPReceiver.

 Sends raw data to the specified host, which may be another FME workspace running in a different process, (located on the same machine or on a different machine), or any client application that communicates over TCP/IP.

 To transport data from one FME process to another: use the
 TCPIPSender transformer in the source FME workspace to send data to a TCPIPReceiver transformer in the receiving FME workspace.

 Input Ports

 Input

 This transformer accepts any feature.

 Output Ports

 This transformer has no output ports.

 Parameters

 Initiation Sequence

 The Initiation Sequence specifies whether the transformer is responsible for establishing the connection (Establish), and or connecting to an establishing host (Connect). If the TCPIPReceiver is used with a corresponding TCPIPSender, either the sender or receiver can be the establisher.

 Note: The
 workspace that establishes the connection must be running before
 the connecting workspace.

 Establishing Host

 This parameter
 is only needed by the workspace with the Initiation Sequence parameter set to Connect, and only
 when the workspaces are running on different machines.

 Port or Service to Use

 Specify either a port number or a service (for example, http, ftp, telnet, imap, gopher, pop3, www, and smtp are services that are typically associated with well-known port numbers).

 The default value is 8586.

 Attribute to Stream

 This parameter specifies the name of the output attribute.

 Send Data Length

 If this parameter is set to Yes, then the TCPIPSender will transmit the size of each data transmission (in bytes) before sending the data payload. For example, if the TCPIPSender was sending the data “1234”, it would first transmit a value of “4” to let the receiver know to expect 4 bytes, and then transmit the data itself. If this parameter is set to No, then the TCPIPSender will just transmit the given data.

 Usage Notes

 To set up a data stream between two FME
 workspaces using the TCPIPReceiver and TCPIPSender transformers:

 	One workspace is the designated "establisher"
 of the transport stream. If there are multiple transport streams between
 workspaces, one workspace must be the establisher of all the streams,
 and the other will connect to those transport streams. This
 is regardless of whether the individual transporters are sending or receiving
 data.

 	The establishing workspace must be started before the
 workspace that is connecting. A TCPIPReceiver/TCPIPSender cannot
 successfully connect to a transport stream that is not already established.

 	For each transport channel, there must be a different
 port that is used for each server machine.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Terminator

 Stops a translation when it detects detect non-valid situations or input data conditions that should
 not exist.

 When
a feature is directed to this transformer, the translation immediately stops and an
error message is displayed (Transaction Terminated). To redirect the Terminator to an Inspector instead of stopping the translation, you can set this option in the Workspace Properties in the Navigator.

 Terminator Redirect

 [image: terminator_redirect.png]

 When
a feature is directed to this transformer, Workbench immediately stops and displays an
error message (Transaction Terminated). If you are programming or
debugging, you would usually disable the connections to the Terminators and then add an Inspector to verify if the features are real
errors. In production mode, you have to re-enable these connections and delete the Inspector.

 This option allows you to automatically redirect the features that
enter the Terminator to a Visualizer, without having to modify the workspace.
When this option is activated, all the features that enter a Terminator are
redirected to an Inspector and the translation continues without stopping. A message is added to the log file to indicate that some
features were redirected to a Visualizer.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 Tester

 Evaluates one or more tests on a feature, and routes the feature
 according to the outcome of the test(s). The tests can consist of any
 FME-allowed operands.

 Input Ports

 Input

 This transformer accepts any feature.

 Output Ports

 Passed

 If the test(s) pass, the feature is output
 via the Passed port.

 Failed

 If the test(s) fail, the feature is output via the Failed port.

 Note that you can combine several tests into a single Tester transformer,
 and the features can be routed to Passed depending on the Pass Criteria below.

 If you have several tester transformers in sequence, consider using the TestFilter instead. This transformer allows you to create a series of tests with ‘named’ output ports for each result.

 Parameters

 Pass Criteria

 The Pass Criteria defines how multiple clauses are interpreted in the final classification of the incoming feature.

 You can choose one of three test scenarios:

 	Scenario
 	Pass Criteria
 	Description

 	One test is required for the input feature to be classified as Passed.
 	One Test (OR)
 	In this case, as long as one of the test clauses is true, then the feature is Passed. This is an OR test (test1 OR test2 OR test3). If any one is true, then the result is true.

 	All tests are required for the input feature to be classified as Passed.
 	All Tests (AND)
 	
 This is stricter than One Test (OR) because all tests must pass in order for the result to be true (test1 AND test2 AND test3).

 	
 Create your own test expression.

 This is useful when you need fine-grained control over what you want the Tester to evaluate. If you select this mode, a Composite Expression field appears.

 	Composite Test
 	
 If, for example, you want to check whether the value of an attribute is between 5 and 10, or equals 99, you can set up three test clauses:

 Clause 1 : x > 5

 Clause 2 : x < 10

 Clause 3 : x = 99

 (where x is the selected attribute in the Left Value field):

 [image: tester_compositetest.png]

 To correctly get the desired results, you require that clause 1 AND clause 2 be true (between 5 and 10), OR clause 3 is true (equals 99).

 In this case, choosing One Test or All Tests modes will not satisfy the test requirement. You can, however, choose Composite Test and enter the following expression in the Composite Expression field:

 ((1 AND 2) OR 3)

 The numbers above correspond to the test clauses defined in the 'Test Clauses' table. When read, the composite expression above states that 'Clause 1 AND Clause 2 must be satisfied, OR Clause 3 must be satisfied'.

 Composite Expression

 The expression to be used when the Pass Criteria parameter is Composite Test. The expression can refer to a clause from the Test Clauses table using that clause's row number.

 Test Clauses

 Values

 The Value columns (operands) may be a literal constant, the value of an attribute, a published parameter or a calculated value that is a combination of the above. If it is a calculated function, the function will be executed on the current feature and the result will be used for the test.

 Operators

 The Operator column is one of: =, !=, <, >, <=, >=, In, Between, Like, Matches Regex, Contains, Begins With, Ends With, Attribute Is Null, Attribute Is Empty String, Attribute Is Missing.

 Unique operators are described in more detail here:

 	
 Operator

 	
 Description

 	
 Example

 	In
 	A list of values in which you are testing for a certain value. The Right Value is a comma-delimited list of values, or a range.
 	
 X=5, if X In 1,2,3 (no = Failed)

 X=5, if X In 3-7 (yes = Passed)

 	Between
 	Whether a value is between a minimum and maximum.
The Right Value consists of two comma-separated values.
 	
 X=5, if X Between 2,3 (no = Failed)

 X=5, if X Between 1,10 (yes = Passed)

 	Like
 	Allows you to use a wildcard query. Note that wildcard queries use the percentage symbol (%), not an asterisk (*).
 	
 X=abcd, if X Like %bc% (yes = Passed)

 	Matches Regex
(Advanced FME)
 	Does a value match a regular expression?
 	
 X=abcd, if X Matches Regex .*bc.*
(yes = Passed)

 	Contains
 	Does the Right Value appear in the Left Value?
 	
 X=abcd, if X Contains bc (yes = Passed)

 	Begins With
 	Does a string begin with this...?
 	
 X=abcd, if X Begins With a (yes = Passed)

 X=abcd, if X Begins With b (no = Failed)

 	Ends With
 	Does a string end with this..?
 	
 X=abcd, if X Ends With d (yes = Passed)

 X=abcd, if X Ends With b (no = Failed)

 	Attribute Is Null
 	Does the specified attribute have a null value?
 	
 If attribute specified in ‘Left Value’ has a null value (yes=Passed)

 If attribute specified in ‘Left Value’ does not have a null value (no=Failed)

 	Attribute Is Empty
String
 	Does the specified attribute have an empty string value?
 	
 If attribute specified in ‘Left Value’ is an empty string (yes=Passed)

 If attribute specified in ‘Left Value’ is not an empty string (no=Failed)

 	Attribute Is Missing
 	Is the specified attribute absent on the feature?
 	
 If attribute specified in ‘Left Value’ is absent on feature (yes=Passed)

 If attribute specified in ‘Left Value’ is present on feature (no=Failed)

 If you chose operators: Attribute Is Empty String, Attribute Is Null, or Attribute Is Missing, the left hand side will be considered an attribute name regardless of the icon shown. To force the Tester to use the value of an attribute for the left hand side, you must explicitly type @Value(attrName) where attrName is the name of your attribute.

 Negate

 A checkbox indicating that the test should return the false if the “<lhs> <op> <rhs>” expression is true and vice versa.

 For example,

 X=abcd, is 'abcde' Contains X if negated (answer no = Failed)

 X=5, Y=1,2,3,4 is X In Y if negated (answer yes = Passed)

 Mode

 By default,
 the Comparison Mode is set to Automatic which means compare as numbers if possible. This means the Tester will first try to convert the operands to numbers. If it is successful, it will compare them as numbers. If it is still not successful, it will treat operands as strings.

 Alphanumeric Strings: Say you have a string that is labeled "4E5". If you choose Automatic, it is possible that
 it will be treated as a number. If you want it treated as a text string, set the Comparison Mode to String
 – this
 ensures that the Tester will always treat the operands as strings, and
 will compare them as strings.

 Examples

 	Attribute
 	Test Condition
 	Result

 	x=abcd
 	X Contains abcd
 	Passed

 	x=a, Y=big
 	X In Y
 	Failed

 	X=100
 	X < 200
 	Passed

 	X=4E5
 	X=400000
 	
 Passed, if comparison mode set to Automatic

 Failed, if comparison mode set to String

 Comparison Mode is set to Automatic:

 @Area() < 100

 &numLanes > 2

 Comparison Mode is set to String:

 "Joe" = "Jerry"

 Usage Notes

 At run-time, the Tester invokes numeric comparisons or string comparisons, such as greater than and less than, that have different meanings depending on the type of operands. If both arguments may be converted to numbers, then numeric comparisons will be used; otherwise, string comparisons will be used.

 If multiple Tests or String Tests are present, the test will pass if at least one of the Tests is true, unless the Pass Criteria is All Tests (AND) or Composite
Test. By default, the Pass Criteria used between multiple tests is One Test
(OR).

 The String Comparison Mode forces string comparison of the equation, and the Automatic Comparison Mode (which is the default) indicates that a basic evaluation of the tests is performed.

 String ranges (i.e. a-d) can also be used with the In and Between operators. If you want to test for values that contain a hyphen, those values should be enclosed in quotation marks. For example, if x=LL-27, then x In "LL-27","LL-83" would be true. On the other hand, x In LL-27,LL-83 would be false. This is because LL-27 and LL-83 are treated as two empty string ranges, since numbers are ordered earlier than letters when considered as strings.

 Testing for TEST

 You cannot directly test for the value of "TEST". However,
 you can perform the test by following the steps below:

 	Use
 an AttributeCreator to add a new attribute, and set its value to TEST.

 	Use
 the value of the new attribute to test against.

 Click here to see a workspace example.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Filters

 FMEpedia

 See FMEpedia for an example showing how to set up the various pass criteria.

 Transformer History

 This transformer replaced the AttributeTester and GenericTester transformers.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: AttributeTester "comparison mode" GenericTester "pass criteria" "test clause"

 TestFilter

 Filters features by test conditions to one or more output ports.

 This transformer is equivalent to a connected string of Tester transformers, and can be used to reduce a workspace that is filled with Testers.

 A test condition consists of one or more test clauses and a specified comparison method (AND, OR, or COMPOSITE).

 Output Ports

 <Unfiltered>

 The feature is output via the <Unfiltered> port if the feature does not satisfy any of the test conditions. The name of this port can be changed by editing the parameters.

 You can also specify your own output port names as described in step 4 under Port Definitions below.

 Parameters

 Port Definitions

 	Double click a blank row in the table (or select the row and click the Edit Conditions button).

 	Specify the Test Conditions. These are described in detail in the Tester transformer.

 	Click OK to close the window and add the test condition to the TestFilter.

 	Initially, the test condition will appear in both the Test Conditions and the Output Port columns. You can edit the Output Port field to specify your own output port name. Multiple test conditions can output to the same output port if the port name is the same.

 Repeat these steps for each test condition that you want to add to the TestFilter. The buttons on the side of the dialog box allow you to add and remove rows from the table, and set the order in which to perform the tests:

 [image: testfilter_buttons.png]

 Unfiltered Port Name

 The feature is output via this port if the feature does not satisfy any of the test conditions. By default, the port is named ‘<Unfiltered>’.

 Usage Notes

 	This transformer is equivalent to a connected string of Testers, and can be used to reduce a workspace that is filled with Testers.

 	See the Tester for more information on test conditions.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Filters

 FMEpedia

 See FMEpedia for additional information about this transformer.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: Tester AttributeTester GenericTester Operator

 TextAdder

 Sets the feature's geometry to text using the previous geometry as the text location.

 This transformer turns the feature into a text feature using the previous geometry as the geometry for the text.

 Note: Unless the previous geometry was originally a point, it is not likely that the resulting feature will be usable by most writers. For this reason, in most cases, you should use the LabelPointReplacer.

 Output Ports

 Output

 Features that have been converted to text are output through this port.

 Parameters

 Text String

 Specifies the text string to be added to the feature.

 Text Size

 Specifies the text size, measured in ground units.

 Text Rotation

 Specifies the text rotation, measured in degrees counterclockwise from horizontal.

 Related Transformers

 LabelPointReplacer

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 TextDecoder

 Decodes a string from a number of different text encodings into plain text. The following encoding types are supported:

 URL (Percent Encoding)

 This encoding is used to ensure that a string is valid for inclusion in a URL. All characters that are not a letter, digit, dash, period, underscore or tilde will be encoded. The TextDecoder converts an encoded string such as black%20%26%20white into its decoded form black & white.

 Unicode Code Point (\Uxxxx or U+xxxx)

 This encoding is used to encode non-ascii characters in an ascii string. There are two representations commonly used: \Uxxxx and U+xxxx, where the ‘xxxx’ string represents the hex value of a Unicode code point. For example, the Cyrillic character Ӥ is represented as \U04E4 or U+04E4. The TextDecoder converts a string containing code point references to a UTF-8 string, with the code points dereferenced. Any characters which are not part of a Unicode code point will be unchanged. For example, the string ‘U+0F06 εA \U03A8’ will be decoded to ‘༆ εA Ψ’

 XML

 This encoding is used to ensure strings are acceptable for use in an XML document. Characters that have syntactic meaning in XML are escaped, using the following mapping:

 	Character
 	Encoded Value

 	<
 	<

 	>
 	>

 	"
 	"

 	&
 	&

 	'
 	'

 In addition, the XML encoding allows for any character to be represented using the decimal or hexadecimal representation of its Unicode code point. The TextDecoder converts an XML encoded string, such as black & white into its plain text representation, black & white.

 HTML

 This encoding is an extension of the XML encoding. The HTML encoding includes many characters which cannot be represented using a simple Latin character set, such as ♪, ± or ∞. The TextDecoder will convert an HTML encoded string, such as this &plusm; that into its plain text representation, this ± that.

 Base64

 Base64
encoding is a method of storing arbitrary data as an ASCII string. The TextDecoder will convert Base64 encoded data into a text string. The Base64 data will be decoded into a sequence of bytes, which will then be interpreted using the character encoding given in the Character Encoding for Binary Data parameter.

 HEX

 HEX encoding is another method used to store arbitrary data as an ASCII string. The TextDecoder will convert HEX encoded data to a text string. The HEX data will be decoded into a sequence of bytes, which will then be interpreted using the character encoding given in the Character Encoding for Binary Data parameter.

 Parameters

 Encoding Type

 Identifies the method the transformer will use to decode the attribute.

 String to Decode

 The value of this parameter will be decoded using the selected method.

 Destination Attribute

 This attribute will store the decoded string.

 Character Encoding for Binary Data

 This optional parameter only applies to the HEX and Base64 encoding methods. If no value is given, the output attribute will be left as binary data.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Strings

 Transformer History

 Selecting URL as the Encoding Type replaces the URLDecoder transformer, which is now deprecated.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: URLDecoder decode encode

 TextEncoder

 Encodes a text string using URL, XML, HTML, Base64, or HEX methods.

 URL (Percent Encoding)

 This encoding is used to ensure that a string is valid for inclusion in a URL. All characters that are not a letter, digit, dash, period, underscore or tilde will be encoded. The TextEncoder converts a plain text string, such as black & white into its encoded form black%20%26%20white.

 XML

 This encoding is used to ensure strings are acceptable for use in an XML document. Characters that have syntactic meaning in XML are escaped, using the following mapping:

 	Character
 	Encoded Value

 	<
 	<

 	>
 	>

 	"
 	"

 	&
 	&

 	'
 	'

 In addition, the XML encoding allows for any character to be represented using the decimal or hexadecimal representation of its Unicode code point. The TextEncoder will convert a text string, such as black & white into its XML representation, black & white.

 HTML

 This encoding is an extension of the XML encoding. The HTML encoding includes many characters which cannot be represented using a simple Latin character set, such as ♪, ± or ∞. The TextEncoder will convert a text string, such as black ± white into its HTML representation, this &plusm; that.

 Base64

 Base64 encoding is a method of storing arbitrary data as an ASCII string. When this method is selected, the TextEncoder will convert a UTF-8 text string into a string a ASCII characters. Note that attributes will be converted to UTF-8 before they are encoded to Base64. If this is undesirable, consider using the BinaryEncoder, as it will not change the character encoding of attribute values

 HEX

 HEX encoding is another method used to store arbitrary data as an ASCII string. When this method is selected, the TextEncoder will convert a UTF-8 text string into a string a ASCII characters. Note that attributes will be converted to UTF-8 before they are HEX encoded. If this is undesirable, consider using the BinaryEncoder, as it will not change the character encoding of attribute values.

 Parameters

 Encoding Type

 Identifies the method the transformer will use to encode the attribute.

 String to Encode

 The value of this attribute will be encoded using the selected method.

 Destination Attribute

 This attribute will store the encoded data.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Strings

 Transformer History

 Selecting URL as the Encoding Type replaces the URLEncoder transformer, which is now deprecated.

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.
Keywords: URLEncoder decode encode

 TextLocationExtractor

 Sets a text feature's geometry to the location of the text.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 TextPropertyExtractor

 Sets the given attributes to the properties of a text geometry.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 TextPropertySetter

 Sets the properties of a text geometry to the specified properties.
 All parameters are optional; if a value is unspecified, it will be left
 unmodified on the geometry.

 This transformer can also be used to create new text geometry by using a point as an input. The point geometry will be used as the base location for the new text geometry. When using this creation mode, you must supply the New Text String parameter.

 Input

 Input

 Features with text geometry or point geometry.

 Output

 Output

 Features with the properties of the text geometry modified according to the new values provided, or the newly created text geometry.

 <Rejected>

 Invalid features will be output via this port.

 Parameters

 New Text String

 The new text string.

 New Text Size

 The new text size.

 New Text Rotation

 The new text rotation.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 TextStroker

 Takes as input a font name, text padding and width multiplier, and outputs aggregates that describe the outline of the text. If the font name is not supplied, then the font name and style are retrieved from attributes on the feature.

 Output Ports

 Stroked

 Stroked text is generated via the Stroked output port.

 Untouched

 Any rejected features
 (for example, points with no text attributes) are generated via the Untouched output port.

 Parameters

 Font Name

 The font name can refer to any valid TrueType font, and is case-insensitive.
 The font name can also include optional style specifiers according to
 the syntax:

 <fontname>[,SIZE][,BOLD][,ITALIC][,<character set index within font>]

 The [] enclose optional items. The
 character set index, which is an integer starting at 0, is typically not
 used.

 Some example font specifications include:

 	Arial
 	Regular Arial

 	Arial,16
 	Regular Arial, 16 pt

 	Arial,ITALIC
 	Italic Arial

 	Arial,BOLD
 	Bold Arial

 	Arial,BOLD, ITALIC
 	Bold and Italic Arial

 	Arial,16,BOLD,ITALIC
 	Bold and Italic Arial, 16 pt

 The font name can also be taken from the value of an attribute. The value
 is taken as the full font specifier and can also include the style information.

 Stroked Geometry Type

 This parameter specifies whether the output features
 should be polygons or lines.

 Text Padding

 Specifies the text padding (extra spacing between characters) in ground units.

 Text Width Multiplier

 The font width
 multiplier multiplies the "natural" width for the font, based on the height.
 A value of zero indicates that the font width is equal to the font height.

 A multiplier
 of two will give characters at twice their normal width.

 Example

 [image: TextStroker.png]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 TextureCoordinateSetter

 Assigns texture coordinates to surfaces.

 Parameters

 Texture Mapping Type

 If you choose Surface Normal, then the texture coordinates are assigned to the sloped surfaces.

 For composite surfaces, each surface will be treated separately since the parts can have different slopes. If you choose From Top View, the texture coordinates are assigned to the surfaces as if the surfaces are flat on the ground (that is, only X and Y coordinates are considered). In this mode, a composite surface is considered as one single geometry when the texture coordinates are applied.

 Width Scale Factor and Height Scale Factor

 Use these parameters to specify the number of times the texture is repeated in rows and columns, respectively.

 Horizontal Offset and Vertical Offset

 Use these parameters to specify horizontal and vertical offset.

 Usage Notes

 	This transformer works only with surfaces, not including triangle strips and triangle fans.

 	Multi-surfaces are not yet supported.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 Tiler

 Chops the input features into a series of tiles.

 Features
 that span multiple tiles will be clipped into multiple features. Features
 that lie on the boundary between tiles will be output once in each tile.
 If this
 is not the desired behavior a DuplicateRemover transformer can be used.

 This transformer works with both raster and vector
 data.

 Parameters

 Tile Size

 Tiling Type

 Tile Size: This option enables the Tile Width and Height parameters, which allow you to specify the width and height of each tile in ground units.

 Number of Tiles: This option enables the Number of Horizontal and Vertical Tiles parameters, which allow you to specify the number of tiles that will be produced.

 Tile Width/Tile Height

 These parameters are required when the Tiling Type is Tile Size, and allow you to specify the size of each tile in ground units (for example, 100m x 100m).

 Note: If the source is a raster, does not have a coordinate
 system and is not georeferenced, then the raster extents and spacing are
 adjusted to default values. The horizontal and vertical spacing are set
 to one column and one row, respectively, and the origin is set to (0,0).

 IMPORTANT: If attributes are used for the Tile Width or Tile
 Height parameters, the value will be taken from the first feature to enter
 the transformer. An error will occur if this feature does not have these
 attributes.

 Seed Coordinate X/Y

 These optional parameters specify a "seed point" from which tiles will be generated. Note that it is permissible to specify a value for only one of these parameters.

 Number of Horizontal/Vertical Tiles

 These parameters are required when the Tiling Type is Number of Tiles, and allow you to specify how to tile the input data (for example, 5 horizontal tiles and 5 vertical tiles).

 Attributes

 Column Attribute/Row Attribute

 Each feature output from the Tiler will have a row and a column attribute
 added, specifying the zero-based row and column that the feature fell
 into. Row
 0, Column 0 corresponds to the tile in the bottom-left corner.

 Example

 [image: tiler.gif]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster grid clip subset tile extent bound limit Tessellate Tessellation

 TimeStamper

 Adds a time stamp to a feature as a new attribute. The format of the
 time stamp is set as a parameter of the transformer.

 Conversion specifiers are introduced by a ^ character and are replaced
 in the format as follows:

 	
 ^a

 	
 The abbreviated weekday
 name according to the current locale.

 	
 ^A

 	
 The full weekday name according to the current locale.

 	
 ^b

 	
 The abbreviated month name according to the current locale.

 	
 ^B

 	
 The full month name according to the current locale.

 	
 ^c

 	
 The preferred date and time representation for the current locale.

 	
 ^d

 	
 The day of the month as a decimal number ranging from 00 to 31.

 Note that leading zeros will be added when the day of the
 month is less than 10. If you want to suppress the leading zero, enter
 ^#d.

 	
 ^H

 	
 The hour as a decimal number using a 24-hour clock ranging from
00 to 23.

 	
 ^I

 	
 The hour as a decimal number using a 12-hour clock ranging from
01 to 12.

 	
 ^j

 	
 The day of the year as a decimal number ranging from 001 to 366.

 	
 ^m

 	
 The month as a decimal number ranging from 00 to 12.

 Note that leading zeros will be added when the month is less
 than 10. If you want to suppress the leading zero, enter ^#m.

 	
 ^M

 	
 The minute as a decimal number.

 	
 ^p

 	
 Either a.m. or p.m. according to the given time value, or the corresponding
 strings for the current locale.

 	
 ^S

 	
 The second as a decimal number.

 	^s
 	Seconds from epoch.

 	
 ^U

 	
 The week number of the current year as a decimal number, starting with
 the first Sunday as the first day of the first week.

 	
 ^W

 	
 The week number of the current year as a decimal number, starting with
 the first Monday as the first day of the first week.

 	
 ^w

 	
 The day of the week as a decimal, with Sunday being 0.

 	
 ^x

 	
 The preferred date representation for the current locale without the
 time.

 	
 ^X

 	
 The preferred time representation for the current locale without the
 date.

 	
 ^y

 	
 The year as a decimal number without a century ranging from 00 to 99.

 	
 ^Y

 	
 The year as a decimal number including the century.

 	
 ^Z

 	
 The time zone or name or abbreviation.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Strings

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 TINGenerator

 Constructs a Delaunay triangulation based on input points and breaklines. The surface model may be output in a number of representations: a triangulated irregular network (TIN), TIN vertices, TIN edges, and triangles.

 Input Ports

 Points/Lines

 These input features may be 2D or 3D, and may reside inside a raster, a point cloud, or other aggregate structures. 2D features will be forced to 3D by adding a z value of 0. In most cases, all points extracted from this port will be found in the vertex pool of the underlying surface model. A minimum of 3 unique points are required to construct a surface model. Points with duplicate x and y values will be dropped.

 Breaklines

 These input features may be 2D or 3D, and may reside inside an aggregate structure. 2D features will be forced to 3D by adding a z value of 0. Breakline edges will be found in the edge pool of the underlying surface model. Sometimes, a breakline edge will be split up to allow an optimal triangulation of the surface model. Points with duplicate x and y values will be dropped.

 Output

 TINEdges

 This output port produces all the edges of the underlying surface model. Each edge feature contains the attributes _vertex1_id and _vertex2_id, which identify the vertices to which it is connected.

 Triangles

 This output port produces all the triangles of the underlying surface model as polygons. Each output triangle has these attributes:

 	_vertex1_id, _vertex2_id, and _vertex3_id
 	identify the vertices that define the triangle

 	_slope
 	the slope of the plane defined by the triangle, in degrees, relative to the horizontal plane

 	_percentageSlope
 	the slope expressed as (rise / run) * 100%, or equivalently tan(_slope) * 100%

 	_aspect
 	the aspect angle, in degrees, measured by the angle between nx and ny, where nx and ny are are the x and y components of the normal vector of the triangle

 TINSurface

 This output port produces a single mesh geometry containing all the triangles of the underlying surface model.

 VertexPoints

 This output port produces all of the vertices of the underlying surface model. Each vertex contains the attribute _vertex_id which uniquely identifies the vertex.

 Parameters

 Group By

 This parameter allows groups to be formed by attribute values. Zero or more attributes may be specified.

 Input features with the same attribute values are placed into the same group. The transformer then operates independently on each group of input features.

 If this parameter is left blank, the transformer will treat the entire set of input features as one group.

 Parallel Processing Level

 How parallel processing works with FME: see About Parallel Processing for detailed information.

 This parameter determines whether or not the
transformer should perform the work across parallel processes. If it is enabled, a process will be launched for each group specified by the Group
By parameter.

 Parallel Processing Levels

 	Parameter
 	Number of Processes

 	No Parallelism
 	1

 	Minimal
 	cores1 / 2

 	Moderate
 	exact number of cores

 	Aggressive
 	cores x 1.5

 	Extreme
 	cores x 2

 For example, on a quad-core machine, minimal parallelism will result in two simultaneous FME processes. Extreme parallelism on an 8-core machine would result in 16 simultaneous processes.

 You can experiment with this feature and view the information in the Windows Task Manager and the Workbench Log window.

 Surface Tolerance

 This parameter is used to determine which input points to add to the surface model as vertices. Specifying a value of 0 turns off vertex filtering.

 Tip: A larger value will speed up surface model construction. The larger the value, the more input points will be filtered out. For input files with millions – or even billions – of points, it becomes essential to increase this value.

 When a positive value for surface tolerance is specified, it works as follows. For each vertex that is being added to the model:

 	If the x,y location is outside the 2D convex hull of the existing surface model, it is added to the model.

 	If the x,y location is inside the 2D convex hull of the existing surface model:	The difference between the z value from the existing surface model and the z value of the vertex is calculated.
	This difference is compared to the surface model tolerance.
	The vertex is only added to the surface model if the difference is greater than the surface tolerance; otherwise, the vertex is discarded.

 Example

 [image: tingenerator_new.png]

 FME Licensing Level

 FME Professional edition and above

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Surfaces

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.
Keywords: breakline morphology tessellate tessellation "surface model" TIN
1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 TopologyBuilder

 Computes topology on input point, line, and/or area features.

 This transformer
 is typically used to determine topological relationships to aid in decision
 making in later transformers (for example, the FeatureColorSetter).

 This transformer does not assume that all input data is clean and noded properly unless Assume Clean Data is set to Yes. It takes any data and constructs the resulting topology after computing any intersections that are present in the input data.

 Input Ports

 Node, Line, Area

 These input ports accept node, line, and area features.

 Output Ports

 The TopologyBuilder outputs the significant Nodes
 and Lines with attributes describing
 their topological relationships. Areas
 are output with information about the Lines
 that form them.

 Note: Unlike most transformers, you cannot name these attributes.

 	Output Ports
 	Output Feature Properties

 	
 Node

 	
 NODENUM NODEANGLE{}

 All topologically significant nodes are output. They have the attributes NODE_NUMBER_ATTR and ANGLE_PREFIX_ATTR specified as directed by the factory clauses.

 	
 Line

 	
 ARC_ID RIGHT/LEFT_POLY RIGHT/LEFT_EDGE FROM/TO_NODE POLYLIST

 All topologically significant lines are output. They have the attributes FROM_NODE_ATTR, TO_NODE_ATTR, RIGHT_POLY_ATTR, LEFT_POLY_ATTR and POLYGONS_ATTR specified as directed by the factory clauses.

 	
 Area

 	
 POLY_ID PERIMETER
 AREA ARCLIST

 The
 polygonal entities constructed are output here. These have a list of the
 Lines which make up the polygon along with the actual geometry.

 	
 Universe

 	
 <none>

 This is the polygon that represents everything not covered by any of the input polygons. This feature consists of a list of the defining Line identifiers that make it up but does not have any associated geometry.

 Parameters

 Group By

 The input features may be grouped into separate topology sets based on attribute values. All attributes are carried across from the input features to the output features.

 Maximum Coords Per Line

 The number indicates the maximum length to output any line. If any line contains more than this number of coordinates, it will be broken into pieces which are output separately, each with their own line IDs, and correctly noded.

 Unify Attributes From Overlapping Input

 If set to Yes, the transformer enters a mode where no collinear lines or overlapping points are output at all, whether they came from source linear features or from the borders of source area features or input points, or calculated as intersection points. In this mode, all output lines or points which were overlapping with at least one direct input will contain a list attribute (_overlapping_input_data) with information about each input with which it was overlapping. This keyword sets the fieldname of the list attribute to contain all the attributes (that do not start with "fme_") from all of the input lines or points that were overlapping with the final output line or point.

 A side effect of this option is that only arcs that form part of a polygon boundary will be considered in the calculation of LEFT_EDGE_ATTR and RIGHT_EDGE_ATTR. (All arcs originating only from line input will have their own ID supplied as their left edge ID, and the negation of this as their right edge ID.)

 Provide All Bounding Arcs on Output Polygons

 If this is Yes, the universe polygon returned will have complete geometry on it. If it is No, the universe polygon will take less time to create because it will have no geometry, but will have links to the arcs that form the boundary of the polygon. The default is Yes.

 Propagate All Attributes From Input

 If Propagate All Attributes From Input
 is set to Yes, attribute lists are added to each output feature, composed
 of attributes from the relevant input features. For each node, this will
 be a list of lines and a list of polygons touching the node; for lines,
 there will be a list of nodes and a list of polygons; and for polygons,
 a list of nodes and a list of lines. The base names for the lists will
 be _nodes, _lines, and _polygons.

 Preserve Internal Edges (Advanced)

 Preserve Internal Edges (Advanced)
 specifies that coordinate "cycles" within a polygon are allowable
 and will be preserved. A "cycle" is an edge that occurs twice in the same polygon's boundary (once in each direction); the edge's ID will appear twice in that polygon's edge list, positive in one instance and negative in the other.

 Assume Clean Data (Advanced)

 Assume Clean Data (Advanced) specifies that the input is topologically clean and noded properly and therefore no intersection will be performed. To be topologically clean, the data must contain no un-noded self intersections; this may be confirmed using the appropriate Self Intersection rule inside GeometryValidator. Otherwise, the intersections of the data are computed prior to constructing the topology.

 Example

 [image: topologybuilder.gif]

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: connectivity hub

 TransporterReceiver

 Used in conjunction with TransporterSender.

 Receives features from another FME workspace running
 in a different process, which may be located on the same or a different
 machine.

 To transport features from one FME process to another: use the
 TransporterSender transformer in the source FME workspace to send features to a TransporterReceiver transformer in the receiving FME workspace.

 Input Ports

 This transformer has no input ports.

 Output Ports

 Transported

 Features that have been received from a TransporterSender are output through this port.

 Parameters

 Transfer Mode

 Specify how you want to transfer data. The transfer mode must be the same for both the TransporterSender and the TransporterReceiver.

 	Stream: Feature data is transferred over the network connection as raw binary data.

 	TCP/IP: All feature data will be transferred over the network connection.

 	TCP/IP (Attribute): Only the value of a selected attribute is streamed.

 	File: The feature data will be saved to disk and the location
 of the file will be sent over the TCP/IP connection.

 Initiation Sequence

 The Initiation Sequence specifies which Transporter endpoint is responsible for establishing
 the Transport stream (ESTABLISH), and which is responsible for connecting (CONNECT).

 Note: The
 workspace that establishes the transfer mode must be running before
 the connecting workspace. The transfer mode must be consistent if there are multiple transport streams between two
 workspaces.

 Establishing Host

 This parameter
 is only needed by the workspace with the Initiation Sequence parameter set to CONNECT, and only
 when the workspaces are running on different machines.

 One of the primary uses for this parameter will be local to a machine
 in order to partition large workspaces into smaller components that each
 have their own address space.

 Port or Service to Use

 Specify either a port number or a service (for example, http, ftp, telnet, imap, gopher, pop3, www, and smtp are services that are typically associated with well-known port numbers).

 The default value is 8586.

 Output Attribute

 This parameter is required only when the Transfer Mode is set to TCP/IP (Attribute).

 Usage Notes

 To set up a feature stream between two FME
 workspaces using the TransporterReceiver and TransporterSender transformers:

 	One workspace is the designated "establisher"
 of the transport stream. If there are multiple transport streams between
 workspaces, one workspace must be the establisher of all the streams,
 and the other will connect to those transport streams. This
 is regardless of whether the individual transporters are sending or receiving
 data.

 	The establishing workspace must be started before the
 workspace that is connecting. A transporter cannot
 successfully connect to a transport stream that is not already established.

 	For each transport channel, there must be a different
 port that is used for each server machine.

 	You can use an arbitrary number of transporters
 within a workspace.

 	Supports IPv6.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 TransporterSender

 Used in conjunction with TransporterReceiver.

 Sends features to another FME workspace running
 in a different process, which may be located on the same machine or on a different
 machine.

 To transport features from one FME process to another: use the
 TransporterSender transformer in the source FME workspace to send features to a TransporterReceiver transformer in the receiving FME workspace.

 Input Ports

 Input

 This transformer accepts any feature.

 Output Ports

 This transformer has no output ports.

 Parameters

 Transfer Mode

 Specify how you want to transfer data. The transfer mode must be the same for both the TransporterSender and the TransporterReceiver.

 	Stream: Feature data is transferred over the network connection as raw binary data.

 	TCP/IP: All feature data will be transferred over the network connection.

 	TCP/IP (Attribute): Only the value of a selected attribute is streamed.

 	File: The feature data will be saved to disk and the location
 of the file will be sent over the TCP/IP connection.

 Initiation Sequence

 The Initiation Sequence specifies which Transporter endpoint is responsible for establishing
 the Transport stream (ESTABLISH), and which is responsible for connecting (CONNECT).

 Note: The
 workspace that establishes the transfer mode must be running before
 the connecting workspace. The transfer mode must be consistent if there are multiple transport streams between two
 workspaces.

 Establishing Host

 This parameter
 is only needed by the workspace with the Initiation Sequence parameter set to CONNECT, and only
 when the workspaces are running on different machines.

 One of the primary uses for this parameter will be local to a machine
 in order to partition large workspaces into smaller components that each
 have their own address space.

 Port or Service to Use

 Specify either a port number or a service (for example, http, ftp, telnet, imap, gopher, pop3, www, and smtp are services that are typically associated with well-known port numbers).

 The default value is 8586.

 File Name

 This parameter is only
 used when Transfer Mode is set
 to File. It
 specifies the base file name to use.

 Each
 file that is created will have a -<integer> appended to the end
 of the name to keep all files unique.

 Example:
 If the File Name is features.fft, the first file created
 is features-0.fft, the second file created is features-1.fft, and so on. The full
 path of the file will be passed to the receiver and the receiver must
 be able to access the file from the same path (drive letter included).

 Features to Save per File

 This parameter is only used when Transfer Mode is set
 to File. It
 specifies how many features to write to a file before sending the location
 of the file to the receiver.

 Attribute to Stream

 This parameter specifies the name of the output attribute. It is required only when the Transfer Mode is set to TCP/IP (Attribute).

 Usage Notes

 To set up a feature stream between two FME
 workspaces using the TransporterReceiver and TransporterSender transformers:

 	One workspace is the designated "establisher"
 of the transport stream. If there are multiple transport streams between
 workspaces, one workspace must be the establisher of all the streams,
 and the other will connect to those transport streams. This
 is regardless of whether the individual transporters are sending or receiving
 data.

 	The establishing workspace must be started before the
 workspace that is connecting. A transporter cannot
 successfully connect to a transport stream that is not already established.

 	For each transport channel, there must be a different
 port that is used for each server machine.

 	You can use an arbitrary number of transporters
 within a workspace.

 	Supports IPv6.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Triangulator

 Breaks an input geometry into triangular units or a mesh.

 For 2D geometries, the triangulation is performed with respect to the X-Y plane.

 For 3D geometries, such as faces, the triangulation is performed with respect to the normal direction of each surface.

 Areas and circular segments will be converted into a linear equivalent in this transformer.

 Output Ports

 	Triangulated features are output through the Triangles port

 	Triangulated mesh geometries are output through the TINSurface port.

 	Unprocessed geometries are output through the Untouched port.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Geometric Operators

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Tweeter

 Sends a Twitter™ status update from Workbench.

 Output Ports

 Tweet

 Upon successful completion of a status update, the feature will be output through the Tweet output port, and will have several new attributes:

 _twitter_response: Contains the JSON response text from the server. The value of this attribute can be explored using the JSONFragmenter or JSONExtractor transformers.

 _twitter_status_id: Contains the integer ID of the status update.

 _twitter_status_truncated: Contains a Boolean string indicating whether or not the status update had to be trimmed to 140 characters.

 Error

 If a status update could not be sent, the feature will be output through the Error output port, and will have the following new attributes:

 _twitter_response: If a response was received from the Twitter server, it will be stored in this attribute.

 _twitter_error: If the Twitter response contained an error message, it will be stored in this attribute.

 Parameters

 Tweet Parameters

 Text

 This parameter can be used to enter a status update directly, or to enter the name of an attribute which contains the status update.

 Include Geometry

 If this parameter is set to Yes, the tweet will be tagged with the center point of the feature’s geometry. This will result in the feature geometry being reprojected to LL84, if it is not already in an equivalent coordinate system.

 Authentication Parameters

 Twitter Username and Password

 Enter a Twitter account username and password.

 Proxy Parameters

 Proxy URL, Proxy Port, Proxy Username, Proxy Password, Proxy Authentication Method

 These optional parameters may be set for organizations that require Internet access via an HTTP proxy server.

 Related Transformers

 JSONFragmenter

 JSONExtractor

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Web Services

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 TweetSearcher

 Runs a search for Twitter™ entries that contain the given query. Access to the Twitter search API is rate-limited. Excessive searching in a given time period will result in search requests being denied. The exact rate limit information for the search API may be found at the search API documentation page: http://dev.twitter.com/docs/api/1.1/get/search/tweets

 Output Ports

 Tweets

 Upon successful completion of the search, the transformer will output a new feature for each tweet in the search results. Each output feature will contain several attributes:

 _tweet_id: The identification number of the search result.

 _tweet_user: The name of the Twitter user who created the search result.

 _tweet_text: The text of the search result.

 _tweet_created_at: The date and time of the status update. This will be formatted in the standard FME date/time format: YYYYMMDDHHMMSS

 _tweet_search_result: The JSON text of the search result. This can be further examined via the JSONFragmenter and JSONExtractor transformers.

 Error

 If the search could not be completed, the feature will be output through the Error output port, and will have the following new attributes:

 _twitter_search_result: If a response was received from the Twitter server, it will be stored in this attribute.

 _twitter_error: If the Twitter response contained an error message, it will be stored in this attribute.

 Parameters

 Search Parameters

 Twitter Search Text

 Type a search query or select the name of an attribute that contains the query.

 Result Type

 Select the type of Tweets to search for. The options are Recent, Popular and Mixed. The value of this parameter may affect the number of search results that are returned.

 Maximum Number of Results

 Specifies an upper bound on the number of search results returned, and therefore the maximum number of features output from the transformer.

 Authentication Parameters

 Twitter Username and Password

 A valid Twitter username and password are required in order to access the Twitter search API.

 Geocode Parameters

 Search for Geocoded Tweets

 If this parameter is set to Yes, the transformer will restrict its search to geocoded tweets. These are tweets which have been tagged with lat/long location data. The center of gravity of the feature’s geometry will be used as the center point of the search area.

 Note that Geocoded Tweets may also include non-geocoded tweets if a user has set their location in Twitter settings, and that location falls within the search parameters (but does not have proper lat/long coordinates).

 In these cases, the TweetSearcher will add an additional attribute: _tweet_geo. To exclude these results, you can attach a Tester transformer to filter out non-geocoded Tweets. Set the test to _tweet_geo = "null".

 Search Radius/Radius Units

 When searching for geocoded tweets, these parameters control the radius of the search area. The units may be set to Kilometers or Miles, and only tweets within the search radius from the search center point will be returned.

 Proxy Parameters

 Proxy URL, Port, Username, Password, Authentication Method

 These optional parameters may be set for organizations that require Internet access via an HTTP proxy server.

 Related Transformers

 JSONFragmenter

 JSONExtractor

 Tester

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Web Services

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 TwitterStatusFetcher

 Retrieves the timeline for a particular Twitter™ user or list. Access to the Twitter timeline API is rate-limited. Excessive access in a given time period will result in requests being denied. The exact rate limit information for the user and list timeline APIs may be found at the API documentation pages:

 http://dev.twitter.com/docs/api/1.1/get/statuses/user_timeline

 http://dev.twitter.com/docs/api/1.1/get/lists/statuses

 Output Ports

 Tweets

 Upon successful completion of the request, the transformer will output a new feature for each tweet in the timeline. Each output feature will contain several attributes:

 _tweet_id: The identification number of the tweet.

 _tweet_status: The text of the tweet.

 _tweet_created_at: The date and time of the status update. This will be formatted in the standard FME date/time format: YYYYMMDDHHMMSS

 _tweet_username: The screen name of the user who created the tweet.

 _tweet_search_result: The JSON text of the status update. This can be further examined via the JSONFragmenter and JSONExtractor transformers.

 Error

 If a request could not be completed, the feature will be output through the Error output port, and will have the following new attributes:

 _twitter_search_result: If a response was received from the Twitter server, it will be stored in this attribute.

 _twitter_error: If the Twitter response contained an error message, it will be stored in this attribute.

 Parameters

 Timeline Parameters

 Type

 Select the type of timeline to fetch. The transformer can fetch a user timeline, or a list timeline.

 Name

 When fetching a user timeline, use this parameter to enter the user whose updates are to be retrieved. When fetching a list timeline, use this parameter to enter the name of the list. This attribute may be set to an attribute value.

 List Owner

 When fetching a list timeline, use this parameter to enter the name of the twitter user that owns the list being fetched.

 Include Re-tweets

 When fetching a list timeline, this parameter may be used to filter out re-tweets. If it is set to ‘Yes’, the output may contain re-tweets. If the parameter is set to ‘No’, re-tweets will be removed from the transformer results.

 Maximum Number of Results

 The maximum number of tweets to be returned. Note that twitter may return fewer tweets than this number.

 Authentication Parameters

 Twitter Username and Password

 All user timeline requests require a valid twitter username and password.

 Proxy Parameters

 Proxy URL, Port, Username, Password, Authentication Method

 These optional parameters may be set for organizations that require Internet access via an HTTP proxy server.

 Related Transformers

 JSONFragmenter

 JSONExtractor

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Web Services

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 UUIDGenerator

 Calculates a UUID (Universally Unique IDentifier) for each incoming
 feature, and adds it as a new attribute. The UUID is expressed as a string
 consisting of 8 hexadecimal digits, each followed by a hyphen, then three
 groups of 4 hexadecimal digits, each followed by a hyphen, then 12 hexadecimal
 digits. It is 36 bytes in size. UUIDs look like:

 7672aac8-fa0b-464c-b0b8-3efa9ae9cd86

 This transformer is similar to the GOIDGenerator, which generates a
 unique ID for each feature partially based on that feature's geometry.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Strings

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 VariableRetriever

 Reads the specified variable and puts its value into the specified attribute.

 The variable must have been previously set using the VariableSetter
 transformer.

 The 'Variable Scope' parameter specifies whether the scope of this variable
 is Global or Local. Globally-scoped
 variables can be accessed by a VariableRetriever anywhere in the workspace,
 whereas locally-scoped transformers can only be accessed within the custom
 transformer they are created in.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 VariableSetter

 Creates and sets the specified variable to the specified value.

 The variable can later be read back into an attribute using the VariableRetriever
 transformer.

 The 'Variable Scope' parameter specifies whether the scope of this variable
 is Global or Local. Globally-scoped
 variables can be accessed by a VariableRetriever anywhere in the workspace,
 whereas locally-scoped transformers can only be accessed within the custom
 transformer they are created in.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Infrastructure

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 VectorOnRasterOverlayer

 Overlays vector features onto a single raster feature by drawing them onto the resulting output raster. The properties of the output raster are identical to that of the input raster.

 Input Ports

 Vector

 The vector features which will be rasterized onto the resultant raster.

 The fme_color attribute of the input vector features is used to generate pixel values for color bands. Pixel values for red, green, and blue bands will be taken from the corresponding component of a feature's fme_color attribute. Pixel values for gray bands will be the average of the fme_color components.

 Polygonal features may also optionally have an fme_fill_color attribute; in this case, the outer boundary will be drawn using fme_color and the inner area will be drawn using fme_fill_color.

 Pixel values for alpha bands may be specified through the Alpha Value parameter.

 The Z coordinates of the input vector features are used to generate pixel values for numeric bands.

 Raster

 The feature to use as the background raster of the resultant raster. This must be a raster feature or an error will occur.

 Output Ports

 Raster

 The raster drawn from a group of features.

 Parameters

 Transformer

 Group By

 If the Group By parameter is set to an attribute list, one raster per group will be produced.

 Alpha

 Alpha Value

 This parameter
 specifies the alpha channel value (0-1) for the vector features.

 Composite Using Alpha Band

 If Composite Using Alpha Band is set to Yes, rasters will be expected to have an alpha band selected. Vector features will then be blended with the underlying raster according to their alpha values, rather than just overwriting the underlying raster.

 Anti-Aliasing

 Anti-Aliasing

 If this parameter is Yes, the output lines will be smoothed using an anti-aliasing algorithm.

 Tolerance

 The Tolerance parameter is the maximum normalized distance from a line segment or polygon vertex to a pixel to be rendered. For example a tolerance of 1.0 will draw all pixels touched by the input vector line, while a tolerance of 0.0 will draw only those pixels where the input vector line passes directly through their center. Tolerance can only be selected when anti-aliasing is off.

 Point Cloud

 Input Component

 When drawing point clouds on color bands, the Input Component specifies which component of the point should be used to set the color of the raster pixel. If the parameter is set to Color, the points in the cloud must have a color component. If the parameter is set to Intensity, the points in the cloud must have an intensity component. The intensity component is converted to a color using a grayscale continuum, where the minimum intensity in the cloud is black and the maximum intensity in the cloud is white.

 Usage Notes

 This transformer supports raster band selection. The RasterSelector can be used to modify selection.

 Aggregates are not supported by this transformer.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster grid band channel palette lookup LUT colormap colourmap vector rasterize convert digitize digitise nodata color colour visualize visualise overlay adjacent map algebra "point cloud" LiDAR sonar

 VertexCreator

 Appends coordinates to point and line geometry, or replaces existing geometry with point geometry.

 If the feature turns into a closed polygon as a result of adding the point, it will be tagged as an area feature; otherwise, it will be tagged as a line. (However, if this was the first point added, it will be tagged as a point.)

 Input Ports

 Input

 If the Mode parameter is set to Add Point, this transformer accepts features with null, point or line geometries. In this case, the transformer has no effect on features containing other types of geometries.

 The table below shows input features and their resulting geometries.

 	
 Input Feature

 	
 Add Point - Resulting Geometry

 	null geometry
 	point

 	point geometry
 	line

 	line geometry
 	line or polygon

 If the Mode parameter is set to Replace with Point, then this transformer accepts features with all types of geometries. Arcs and ellipses are first replaced by their center point.

 Output Ports

 Point

 The features with the new point geometry appended to, or replacing, the existing geometry.

 Parameters

 Mode

 The features with the new point geometry appended to, or replacing, the existing geometry.

 If the Mode parameter is set to Add Point, the VertexCreator will attempt to append the specified coordinates as a point on the given feature geometry. This geometry must be of the type null, point or line. Other types of input feature geometry will be ignored.

 If this parameter is set to Replace with Point, the VertexCreator will replace any existing geometry on the feature with a point geometry at the specified coordinates.

 X Value

 You can either choose
 coordinates from the value of a feature attribute
 by selecting the attribute name from the pull-down list, or
 enter numbers.

 Y Value

 You can either choose
 coordinates from the value of a feature attribute
 by selecting the attribute name from the pull-down list, or
 enter numbers.

 Z Value

 You can either choose
 coordinates from the value of a feature attribute
 by selecting the attribute name from the pull-down list, or
 enter numbers.

 If the optional Z Value parameter is specified, the resulting feature will have a 3D geometry. Otherwise, the output feature will have a 2D geometry. You can either choose coordinates from the value of a feature attribute by selecting the attribute name from the pull-down list, or enter constants.

 Note that the SurfaceDraper transformer (available in FME Professional and higher) can be used to supply interpolated elevation values to the vertices of 2D features based on a 3D grid or set of 3D features.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Manipulators

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 VolumeCalculator

 Calculates the volume of a solid object and stores the value in an attribute. The volume is calculated in cube map units, whatever they are.

 Input Ports

 Input

 This transformer accepts all geometries.

 Output Ports

 Output

 This transformer calculates the volume of any solid geometries.

 For non-3D solid geometries, a volume of zero is always returned.

 Parameters

 Geometry Part Selection

 Geometry XQuery

 Use this parameter if you want to isolate only a portion of the geometry passed in to the transformer. If no criteria are specified, the action will apply to the entire geometry at all levels.

 Selection can be based on structural location, geometry name, type, appearance information, or traits. The syntax used is a restricted set of XQuery, where the return clause is fixed.

 The basic Geometry XQuery dialog allows you to construct simple selection queries by automatically writing the necessary query based on specified test clauses. Clicking the Switch to Advanced button opens the Advanced Editor, which allows you to type a query free-form, for more expressive queries.

 Note that once you switch to Advanced mode, you will have to clear all parameters before you can return to Basic mode.

 A hierarchical geometry is represented as nodes of type geometry, with attributes containing information about traits, type, and name for each geometry.

 Parameters

 Volume Attribute

 The attribute that contains the total volume of the solid feature. If the Geometry XQuery parameter is used, then only those sub-parts that are filtered will contribute to this total.

 Multiplier

 This parameter can be used to scale the volume from being cube ground units (the units of the feature's coordinates) to something else.

 This parameter may either be entered as a number, or can be taken from the value of a feature attribute by selecting the attribute name from the pull-down list.

 Save Volume on Parts as Traits

 If this parameter is selected, each sub-part of the geometry will have its own volume saved as a trait on that geometry part. The name of the trait will be the same as that specified in the Volume Attribute parameter.

 The volume of a part is considered to be the total volume of that part and any sub-parts it may have.

 This parameter is often most useful when used with the Geometry XQuery parameter.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Calculators

 Related Transformers

 AreaCalculator

 LengthCalculator

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: Euclidean

 VoronoiCellGenerator

 Outputs circular sectors of influence for point features that have directions defined by azimuths.

 This transformer creates a number of sectors for each set of point features (collectively called a site), depending on each point’s direction of influence (defined in degrees clockwise from North). Each sector fans out from the center point (site point) of the site it belongs to, and has a user-defined radius.

 This transformer generates a Voronoi diagram that consists of polygons representing the closest areas around center points of sectors (site points). The final output will be the sectors truncated to the extents of their site’s corresponding Voronoi polygons.

 This transformer has an additional output port that produces sectors truncated by Voronoi polygons, to eliminate possible overlaps between different sites.

 Input Ports

 Input

 This transformer accepts only points. All other geometries are rejected.

 If 3D points enter this transformer, they are treated as if they were 2D points.

 Output Ports

 SiteSectors

 Sector polygons are output unclipped via this port. Output sectors of different sites may overlap each other.

 VoronoiPolygons

 These are the Voronoi polygons produced by the transformer and used to clip the output polygons of the Cells port.

 Cells

 Cells are sectors truncated by Voronoi polygons. The output sectors from this port do not overlap. To ensure correct output from this port, please refer to the Radius parameter.

 SitePoints

 For each site, a point is created with coordinates that are the average of the coordinates of all points accepted for that sector. This point is the center of all sectors generated for a site.

 ExtraPoints

 If a Sector Name Attribute is specified and there are points with the same sector and site names, only the first point meeting all requirements is considered for creating sectors and the rest are output from this port.

 DistantPoints

 Upon entering transformer, if a point is found to be farther from any of the other points in its site than the specified Maximum Distance Between Site Points, it will be dropped from sector generation and output from this port.

 IncompletePoints

 These are output points that are missing or have invalid values for required attributes.

 IllegalGeom

 Non-point features are left untouched and output via this port.

 Parameters

 Site Name Attribute

 This is the attribute that determines the site to which an input point belongs.

 Azimuth Attribute

 The direction each input point faces (or influences).
Valid Azimuth Attribute values are positive and less than 360.

 Sector Name Attribute

 If a Sector Name Attribute is specified and there are points with the same sector name in a site, only one of the points is considered for creating sectors.

 Each feature entering the transformer is checked. If its sector name is already in use within its site, it will be output on the ExtraPoints port.

 Radius

 This parameter defines the radius of influence for each sector. This determines the radius of each sector in a site.

 Note: Values of Radii larger than the extents of the area covered by the site points will produce invalid results. Differing values of radii for overlapping sectors will also result in incorrect output.

 Maximum Distance Between Site Points

 This parameter specifies the maximum distance a point can be from any other point in its site and still be considered in sector creation.

 Points are considered in the order they enter the transformer, with each new point tested against all other points already accepted as a part of its site.

 If a nonconstant value is specified for this parameter (e.g. an attribute value, which may differ from feature to feature), then when comparing the distance between two features, the maximum distance will be calculated from the feature that entered the transformer earlier.

 Ensure Topological Correctness

 Yes: The output will form a well-noded coverage. Related transformers that expect this type of input include the TopologyBuilder, FeatureColorSetter, and similar transformers.

 No: There may be slight overlaps or gaps between sectors, making the output unsuitable for some geometric operations.

 Note that the input points should be in a way that the transformer is able to produce at least three different site points that are not collinear, since a Voronoi Diagram is generated for analysis.

 Example

 In the telecommunications industry, directional antennas are used in conjunction with each other for better coverage and stronger signal reception. These antennas each cover a sector of a complete circle that an antenna tower covers, with some areas of overlap between each two sectors.

 This transformer can be used to determine the “Nominal” (assuming a whole circle is covered and there are no overlaps between any two sectors) coverage field of directional antennas and receivers.

 Input points and their azimuth values are received:

 [image: voronoicellgenerator1.png]

 A center point is created for each site:

 [image: voronoicellgenerator2.png]

 Please note that after this step, the locations of input points play no part in the generation of sectors, and the values that determine sectors are the input points’ azimuths and radii.

 Polygon sectors are generated. The sector corresponding to each point will span an area determined by the radius set and:

 (The point's azimuth + adjacent azimuth (in degrees))/2

 Two sides of a sector are found by one time choosing the closest azimuth clockwise and the next time counter-clockwise. Resulting sectors will look like this:

 [image: voronoicellgenerator3.png]

 Voronoi polygons are generated, based on site points:

 [image: voronoicellgenerator4.png]

 If two sites have overlapping sectors, the sectors are clipped by the Voronoi polygons to generate Cells:

 [image: voronoicellgenerator5.png]

 FME Licensing Level

 FME Professional edition and above

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Surfaces

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 VoronoiDiagrammer

 Generates a Voronoi diagram or Thiessen polygon. A Voronoi diagram is a set of polygons that represent proximity information
 about a set of input points. Each polygon in the diagram defines the area
 of space that is closest to a particular input point.

 If a Voronoi diagram is to be made from points with elevations, and
 you want to add additional breakline and tolerance options, consider using the SurfaceModeller
 transformer.

 Input Ports

 Points

 The extent of the Voronoi diagram is guaranteed to cover the bounding
 box of all the input Point features.

 MinimumVoronoiExtent

 Features input to the optional MinimumVoronoiExtent
 port will expand the extent of the resulting diagram to include their
 bounding box. This provides a way of extending the bounds of the diagram
 well past the extent of the input points.

 Parameters

 Group By

 This parameter allows groups to be formed by attribute values. Zero or more attributes may be specified.

 Input features with the same attribute values are placed into the same group. The transformer then operates independently on each group of input features.

 If this parameter is left blank, the transformer will treat the entire set of input features as one group.

 Propagate Attributes

 If this parameter is set to Yes, which is the default, attributes from input points will be preserved on the output polygons.

 Voronoi Radial Limit

 If specified, this value limits the radius of the output polygons. This provides a way of generating a region of influence around each point.

 Example

 [image: voronoidiagrammer.gif]

 FME Licensing Level

 FME Professional edition and above

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Surfaces

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: MBR "minimum bounding rectangle"

 WebCharter

 Creates a URL that can be used to obtain a chart of the specified data
 as a PNG image from the Google Chart API, as documented at http://code.google.com/apis/chart .

 Note: Google, and Google Chart API are trademarks of Google,
 Inc. Use of the Google Chart API is subject to the Terms of Service for
 the API.

 One URL is created for each feature that enters the transformer. The
 data for the chart is taken from the list specified, and each element
 of the list must be numeric. Only one data series is currently supported
 (i.e., there is no ability to overlay two numeric sets of data on the
 same chart).

 The transformer supports a subset of the Google chart types: Line charts,
 Bar Charts, and Pie Charts:

 	If a Line chart is chosen, then each list value
 is used as a y value, and the list element numbers are used as the x values.
 If data labels are provided in a list with a parallel structure to the
 data list, these will be placed below the x axis. The number of labels can also be limited in this case as well. Optional chart ranges
 can be used to fix the y axis range, otherwise, the range will be adjusted
 to go between the min and max values in the dataset.

 	If a Bar chart is chosen, then a bar is created
 for each list value. If data labels are provided in a list with a parallel
 structure to the data list, these will be used to label the bars. Optional
 chart ranges can be used to fix the bar ranges, otherwise, the range will
 be adjusted to go between the min and max values in the dataset (which
 means one bar will have a 0 length). The bars can be set to run horizontally
 or vertically, depending on the chart type chosen.

 	If a Pie chart is chosen, one slice of the pie
 will be created for each list value. If data labels are provided in a
 list with a parallel structure to the data list, these will be used to
 label the slices. Flat
 or 3d pie charts can be created, depending on the chart type chosen.

 The Chart Height and Width control the size, in pixels, of the image
 that the Google Chart API will return. Note
 that the chart API will truncate the chart if the size is not large enough,
 or does not have the correct aspect ratio. In particular, labelled pie
 charts typically must be wider than they are high. Further note that according
 the the Chart API documentation, the number of pixels must not exceed
 300,000.

 A Chart Title may optionally be specified, it must not contain any special
 characters that cannot appear in a URL. As
 well, if a two-line title is desired, it can be created by placing a |
 character as the line separator.

 An optional Data Color can be specified and will be used as the color
 for the data portion of the resulting chart. The parameter can be edited by clicking the colored square to the right of the text field, or by editing the contents of the field directly. The color must be specified as <red>,<green>,<blue> where each of <red>, <green>, and <blue> is a number between 0 and 1.

 The Chart Data Encoding parameter controls which mechanism is used to convert the numeric data to be charted into a Google Chart API representation. The Simple method scales the data into 62 discrete values, while the Extended method provides a resolution of 4096 different values. Since the Extended method uses a . in its representation, some software (notably some builds of Google Earth) may not be able to correctly handle the URLs it generates, and so the Simple method is preferable unless the greater resolution is required.

 Additional Google Chart API directives may be appended onto the URL
 by subsequent transformers such as the StringConcatenator
 to add additional styling and color customization, as permitted by the
 API.

 The ImageFetcher transformer can be used to retrieve
 the chart produced by the URL and convert it into a raster feature for
 further processing and output. Another
 potential use of the URL, when writing KML, is to attach dynamic charts
 to placemarks by including it as part of the kml_description.

 Example: Creating an FME Chart from a Pivot Table

 Following the example started in the StatisticsCalculator,
 you can take the pivot table a bit further and generate a chart using
 the WebCharter transformer. This provides us with the basis for some interesting
 summarization and reporting tools.

 The workspace uses a WebCharter
 transformer to create a chart of a pivot table.

 [image: webcharter1.gif]

 The
 chart created from the FME generated pivot table.

 (Note
 that the data is fictitious.)

 [image: webcharter2.gif]

 Another good example is shown on this FMEpedia page.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Web Services

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 WebMapTiler

 Creates a series of image tiles that can be utilized by web mapping applications such as Bing™ Maps, Google Maps™, or Web Map Tile Service. This is done by resampling rasters to various different resolutions
 and then splitting them into tiles.

 Input Ports

 Input

 Features with raster geometry.

 Output Ports

 Tiles

 The resulting image tiles.

 Parameters

 Tile Scheme

 Specifies a method for tiling up data. This controls factors like the coordinate system, tile size, spacing, etc. See the Tile Schemes section for more details.

 Minimum Zoom Level

 These parameters specify the zoom levels
 for which tiles will be generated. The exact meaning of a zoom level depends on the tile scheme, but in general a higher zoom level uses more pixels to cover the same area (i.e. more tiles will be generated).

 If Minimum Zoom Level is unspecified, the minimum zoom level will default to the minimum level at which the raster is visible. Note that tiles will not be generated if the input raster covers less than 1 row and 1 column at a particular zoom level, regardless of the minimum zoom level value.

 Maximum Zoom Level

 These parameters specify the zoom levels
 for which tiles will be generated. The exact meaning of a zoom level depends on the tile scheme, but in general a higher zoom level uses more pixels to cover the same area (i.e. more tiles will be generated).

 If Maximum Zoom Level is unspecified, the maximum zoom level will be the smallest zoom level such that the resampled raster has more rows or columns than the original raster.

 Number of Columns

 These parameters specify the size of each output tile for tile schemes that support user-defined sizes.

 Number of Rows

 These parameters specify the size of each output tile for tile schemes that support user-defined sizes.

 Interpolation Type

 Cell values are interpolated in order to change the raster to the specified
 size. You can choose from these interpolation methods.

 	Nearest Neighbor
 is the fastest but produces the poorest image quality.

 	Bilinear
 provides a reasonable balance of speed and quality.

 	Bicubic
 is the slowest but produces the best image quality.

 	Average 4
 and Average 16 have a performance
 similar to Bilinear and are useful for numeric rasters such as DEMs.

 Quadkey Attribute

 If specified, an attribute will be added to each output feature specifying the quadkey for that tile. Quadkeys are used by Bing Maps to uniquely identify a single tile at a particular level of detail. Note that this attribute will only be created for quad-tree based tile schemes (GoogleMapsCompatible and GoogleCRS84Quad).

 Zoom Level Attribute

 If specified, an attribute will be added to each output feature specifying the zoom level of that tile.

 Tile Column Attribute

 If specified, an attribute will be added to each output feature specifying the column of that tile.

 Tile Row Attribute

 If specified, an attribute will be added to each output feature specifying the row of that tile.

 Raster Index Attribute

 If specified, an attribute will be added
 to each output feature that identifies which raster it was created from.
 This index
 is zero-based, so all tiles created from the first input raster will have
 a value of 0, all tiles created from the second input raster will have
 a value of 1, etc.

 Number of Tiles Attribute

 If specified, an attribute will be added to each output feature identifying the total number of tiles created from the input raster, across all zoom levels.

 Tile Schemes

 GoogleMapsCompatible

 This scheme is used by Google Maps, Bing Maps, Web Map Tile Service, and ArcGIS.

 	Input rasters are required to be in the EPSG:3857 coordinate system.

 	Tiles are always 256x256 pixels.

 	Valid zoom levels are 0 to 23.

 	At level 0, the entire world is represented by a 256x256 pixel tile. Each level increases the number of rows and columns by a factor of two: level 1 is 512x512, level 2 is 1024x1024, etc.

 GoogleCRS84Quad

 This scheme is used by Web Map Tile Service.

 	Input rasters are required to be in the LL84 coordinate system.

 	Tiles are always 256x256 pixels.

 	Valid zoom levels are 0 to 18.

 	At level 0, the entire world is represented by a 256x256 pixel tile (where the first and last 64 rows of the tile are blank). Each level increases the number of rows and columns by a factor of two: level 1 is 512x512, level 2 is 1024x1024, etc.

 GlobalCRS84Scale

 This scheme is used by Web Map Tile Service.

 	Input rasters are required to be in the LL84 coordinate system.

 	Tiles may have a user-defined size.

 	Valid zoom levels are 0 to 20.

 	This scheme defines a spacing in degrees for each level, as follows:

 	Level
 	Spacing (degrees)

 	0
 	1.25764139776733

 	1
 	0.628820698883665

 	2
 	0.251528279553466

 	3
 	0.125764139776733

 	4
 	6.28820698883665e-2

 	5
 	2.51528279553466e-2

 	6
 	1.25764139776733e-2

 	7
 	6.28820698883665e-3

 	8
 	2.51528279553466e-3

 	9
 	1.25764139776733e-3

 	10
 	6.28820698883665e-4

 	11
 	2.51528279553466e-4

 	12
 	1.25764139776733e-4

 	13
 	6.28820698883665e-5

 	14
 	2.51528279553466e-5

 	15
 	1.25764139776733e-5

 	16
 	6.28820698883665e-6

 	17
 	2.51528279553466e-6

 	18
 	1.25764139776733e-6

 	19
 	6.28820698883665e-7

 	20
 	2.51528279553466e-7

 GlobalCRS84Pixel

 This scheme is used by Web Map Tile Service.

 	Input rasters are required to be in the LL84 coordinate system.

 	Tiles may have a user-defined size.

 	Valid zoom levels are 0 to 17.

 	This scheme defines a spacing in degrees for each level, as follows:

 	Level
 	Spacing (degrees)

 	0
 	2

 	1
 	1

 	2
 	0.5

 	3
 	0.333333333333333

 	4
 	0.166666666666667

 	5
 	8.333333333333333e-2

 	6
 	3.333333333333333e-2

 	7
 	1.666666666666667e-2

 	8
 	8.333333333333333e-3

 	9
 	4.166666666666667e-3

 	10
 	1.388888888888889e-3

 	11
 	8.333333333333333e-4

 	12
 	2.777777777777778e-4

 	13
 	1.388888888888889e-4

 	14
 	8.333333333333333e-5

 	15
 	2.777777777777778e-5

 	16
 	8.333333333333333e-6

 	17
 	2.777777777777778e-6

 Usage Notes

 	Generally, when writing out the rasters generated by this transformer, one would fanout the destination feature type on the quadkey for Bing Maps or a combination of the zoom level, tile column, and tile row for Google Maps. The PNGRASTER writer is recommended for the best results.

 	This transformer accepts only features that have raster geometry and
 is unaffected by raster band and/or palette subselection.

 	Note that for the best performance, rasters output by this transformer should be written in the order they are output. Changing the order, e.g. by using Dataset Fanout or a Sorter transformer, may negatively impact performance. Alternatively, use a RasterCheckpointer after the WebMapTiler, but prior to the operation that changes the order.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Rasters

 FME Licensing Level

 FME Professional edition and above

 Transformer History

 This transformer was previously named the VirtualEarthTiler.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Keywords: raster grid band "virtual earth" Bing Google "web map" webmap mapcruncher pyramid clip tile subset quadkey

 WebSocketReceiver

 Receives WebSocket messages from the specified WebSocket server. Produces a feature each time a message is received, and places the contents of the message into the specified attribute. Each incoming feature will cause the WebSocketReceiver to initialize a connection to the specified WebSocket server. The transformer will block while it waits to receive WebSocket messages until the remote host closes the connection.

 Input Ports

 Input

 This transformer accepts any feature.

 Output Ports

 Output

 Features containing the data that has been received from the specified WebSocket server.

 Parameters

 WebSocket Server URL

 The URL of the remote WebSocket server that the WebSocketReceiver will connect to in order to receive WebSocket messages. The default value is ws://localhost:7078

 Connection Preamble

 If this optional parameter has a value, then the WebSocketReceiver will transmit the contents of this parameter to the remote WebSocket server before processing any incoming data.

 Output Attribute

 Specify the output attribute that will store the received WebSocket message data.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Web Services

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 WebSocketSender

 Sends WebSocket messages to the specified WebSocket server. The first input feature will cause the WebSocketSender to initialize a connection with the specified WebSocket server. The specified Data to Transmit will be sent to the WebSocket server for each input feature of the WebSocketServer, including the first feature that initiated the connection.

 Input Ports

 Input

 This transformer accepts any feature.

 Output Ports

 Output

 All input features are directly output through this port after the specified data has been transmitted.

 Parameters

 WebSocket Server URL

 The URL of the remote WebSocket server that the WebSocketSender will connect to and transmit WebSocket messages. The default value is ws://localhost:7078

 Connection Preamble

 If this optional parameter has a value, then the WebSocketSender will transmit the contents of this parameter to the remote WebSocket server before transmitting the specified data.

 Data to Transmit

 This parameter specifies the data to transmit to the specified WebSocket server. This may be a text value, an attribute value, or the result of an expression.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Web Services

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 WhiteStarLeaseBuilder

 Posts a query to a WhiteStar Legal2Map™ WebServices (WS3) server to obtain points or polygons matching a list of legal land descriptions.

 A list attribute ("Request Description Attribute") on the input feature provides the set of textual property descriptions which form the request query. The submitted query will result in a set of points representing corresponding well locations, or a set of polygons representing the area described by the request, depending on the value of the "Resulting Geometry Type" selector.

 If the list attribute contains a single element, and that element is an integer, it will be assumed to be the transaction ID of a previous query. In this case, a request will be performed to retrieve the results of the query corresponding to the given transaction ID.

 The query is sent to the Web Service host using "basic" username/password authentication over an HTTPS connection. An optional HTTP proxy server may also be specified.

 A feature is emitted for each point or polygon returned from the query. Aside from the geometry, each of these features contains attributes for a legal property description ("Result Description Attribute") and a unique numeric identifier for the transaction just completed ("Result Transaction ID Attribute").

 Note that queries involving deferred results are not currently supported, and may result in an error.

 Example

 The query for well locations described by the queries "6 25S 21E 1 SE SE SE NW" and "6 10S 16W 2 C SE NE SW" is formed as follows:

 	The input feature contains the attribute request{0} and request{1} with the values:

 request{0} = "6 25S 21E 1 SE SE SE NW"

 request{1} = "6 10S 16W 2 C SE NE SW"

 	"Request Description Attribute" is set to "request{}"

 	"Result Description Attribute" is set to "_description"

 	"Transaction ID attribute" is set to "_trans_id"

 	"Resulting Geometry Type" is set to "Point".

 	Web service host, username, and password are entered for the target server.

 Execution of this query results in the following two features:

 ==

 IFMEPoint (-95.052404999999993,37.900077000000003)

 _description -> `6 25S 21E 1 SESESENW'

 _trans_id -> `871'

 fme_geometry -> `fme_point'

 fme_type -> `fme_point'

 ==

 IFMEPoint (-99.076954999999998,39.209764999999997)

 _description -> `6 10S 16W 2 CSENESW'

 _trans_id -> `871'

 fme_geometry -> `fme_point'

 fme_type -> `fme_point'

 ==

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Web Services

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 WorkspaceRunner

 Runs an additional FME Workbench workspace on the local computer by spawning a new FME process. This transformer is useful for batch processing, especially in conjunction with the Directory and File Reader.

 Input Ports

 Input

 This transformer
 runs the specified workspace for each feature that enters through the Input port. Any published
 parameters of the specified workspace will be given values as specified
 in the transformer, or taken from attributes of the feature which enters
 it.

 Output Ports

 Succeeded

 If the Wait for Job to Complete parameter is set to Yes, then the initiating feature is output through this port if the job successfully completed. If the Wait for Job to Complete parameter is set to No, the initiating feature is output through this port if the request
 was successfully submitted, though whether or not the workspace completes is unknown in this case.

 Failed

 If the new FME process could not be spawned, the feature will be output
 via the Failed port, and the _failure_message attribute will hold the
 reason for the failure.

 Summary

 If the Wait For Job to Complete parameter is set to No, and a value is given for the Maximum Number of Concurrent Processes, then the Summary port will output a feature with the attributes _proc_count and _processes{}.

 The _proc_count attribute will contain the total number of processes executed by the WorkspaceRunner. The _processes{} attribute is a list of the process Ids. If the Wait For Job to Complete parameter is set to Yes, then Summary features will still have a _proc_count, but will not have a _processes{} attribute.

 Parameters

 FME Workspace

 Browse to select the additional workspace to run, or select an attribute that contains the full name and path of the workspace to run.

 Wait for Job to Complete

 If this parameter is set to Yes, then the transformer will wait until the workspace
 has finished running. In this case, the initiating feature is output via
 the Succeeded port if the job successfully ran to completion.

 The initiating feature will be output via the Failed port if the workspace
 did not run to completion, and will have a _failure_message attribute
 added to it that contains the error message returned from the FME that
 ran the workspace.

 If this parameter is set to No, the transformer will output the initiating feature
 as soon as an FME has been spawned off to do the translation. In this
 case, the initiating feature is output via the Succeeded port if the request
 was successfully submitted.

 Maximum Number of Concurrent Processes

 WorkspaceRunner will limit the number of concurrently executing workspaces to the value specified. This helps prevent the system from being overloaded with an excessive number of simultaneous processes. If specified, this parameter value must be an integer in the range 1-7. For example, if the value is set to 7 then WorkspaceRunner can only start 7 additional child FME processes.

 Usage Notes

 Publishing to FME Server: Publishing a workspace that includes this transformer is not recommended. The transformer will try to start an FME outside of FME Server to run the workspace, and this FME will require an additional license.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 Workflow

 Related Transformers

 There is a also an FMEServerWorkspaceRunner that will submit jobs to be run on an FME Server.

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 XMLAppender

 Assembles several XML documents into one.

 The transformer has two input ports, one accepting a single XML document, and another accepting multiple XML fragments. It works by appending every incoming XML fragment to the end of the main XML document.

 Input Ports

 Document

 Input features containing the main XML document.

 Fragment

 Input features containing the XML fragments.

 Output Ports

 Output

 This is the output for the main XML document with the appended fragments.

 UnusedDocument

 Multiple main documents are allowed only if the “Group By” parameter is used, otherwise duplicate main documents are output via this port. The main documents are considered a duplicate of each other when the values of their composite “Group By” key equal.

 UnusedFragment

 Fragments with no corresponding “Group By” main XML document are output via this port.

 Parameters

 Group By

 Use this parameter to organize multiple main documents and fragments into groups. Multiple main XML documents are allowed when their composite “Group By” key differ. Unused documents and fragments, those without corresponding keys, are routed to the UnusedDocument and UnusedFragment ports, respectively.

 XML Document Input

 Selecting from the list enables that selection's corresponding parameter:

 	Attribute with XML Document: Choose the attribute containing the main XML document.

 	XML Document Filename: Browse to the XML file.

 XML Fragment Input

 Selecting from the list enables that selection's corresponding parameter:

 	Attribute with XML Fragment: Choose the attribute containing the XML Fragment.

 	XML Fragment Filename: Browse to the XML file.

 XML Output Type

 Selecting from the list enables that selection's corresponding parameter:

 	Attribute with XML Output: Choose the attribute to hold the appended results.

 	XML Output File: Specifies the file to contain the appended results.

 Output Encoding

 This parameter is used to select the encoding for the appended results.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 XML

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 XMLFeatureMapper

 Constructs features from XML documents via xfMaps.

 The XMLFeatureMapper uses a set of rules to map XML data into FME features. These mapping rules are defined in xfMap documents. See the XML reader documentation for more information regarding the xfMap.

 Input Ports

 Input

 This transformer accepts any feature.

 Output Ports

 Mapped

 These are the features that are extracted from the XML source document via the specified xfMap.

 Invalid

 Features with and invalid input document or xfMap document are output at this port.

 Parameters

 XML Source Type

 Determines whether the XML Source will be specified using an XML file or as an attribute value.

 XML File

 Specifies the XML file to be used as the XML Source.

 XML Attribute

 Specifies the attribute whose value is the XML Source.

 Configuration Type

 Single xfMap file/Embedded xfMap script/Attribute with xfMap script: The xfMap document may be specified as a single xfMap file, embedded within the transformer, or as the value of a feature attribute.

 Multiple xfMaps files: Multiple xfMap files may be specified to map the same source XML document.

 XRS file: An XRS (XML Reader Switch) File allows the XMLFeatureMapper to automatically configure itself to read "known" XML datasets without the need to specify in advance the appropriate xfMap(s). If no xfMap and no XRS are specified for this transformer, then the default XRS document is used. The default XRS document is named xrs.xml, and it is located in the xml/xrs subdirectory of the FME installation directory. For more information regarding the XRS, see the XML Reader documentation in Workbench Help > FME Readers and Writers Reference.

 XML Source Name

 Specifies the name for the attribute whose default value is the file path of the XML document or an empty string if the XML document was specified wholly as an attribute value; the XML Source Value parameter can be used to override these default values.

 XML Source Value

 Specifies the value to be used by the attribute specified by the XML Source Name parameter.

 Feature Count Attribute

 Sets the name for the attribute that enumerates the features mapped per XML document.

 Feature Type Attribute

 Sets the name for the attribute to store the feature type for the mapped features.

 Merge Attributes From Input Feature

 Setting this parameter to Yes will merge the attributes from the input feature to the output features.

 Attributes to Expose

 Exposes any attributes so they can be used by other transformers. Type directly in the text box or click the browse button to display the editor and add attributes there.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 XML

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 XMLFormatter

 Provides various options for formatting and cleaning up XML documents.

 Input Ports

 Input

 Input features that contain the XML document information.

 Output Ports

 Passed

 If a feature is successfully formatted, it will be output through this port.

 INVALID

 If a feature does not have a well-formed XML document, it will be output through this port.

 Parameters

 XML Input

 Selecting from the list enables that selection's corresponding parameter:

 	Attribute with XML Text: Choose the attribute that contains XML Text.

 	XML Filename: Browse to the XML file.

 Formatting Options

 Formatting Type

 Select the desired formatting of the XML input:

 	None: No formatting is performed

 	Pretty-Print XML: XML elements will be formatted by adding indentations and new lines for improved readability. Any white spaces between the start tag and end tag will be preserved.

 	Linearize: All XML contents will be put on a single line.

 Whitespace Handling

 Select the desired whitespace handling for XML Formatting:

 Preserve all whitespace: all whitespace are considered significant and will be preserved as much as possible

 Remove excess whitespace: excess whitespace will be removed, lines containing only whitespace characters, from the start tag to the first non-whitespace character and from the last non-whitespace character to the end tag.

 As defined by xsi:schemaLocation: whitespace in the XML document is either significant or insignificant as defined by the schema in the xsi:schemaLocation attribute.

 As defined by an external schema: whitespace in the XML document is either significant or insignificant as defined by an external schema file.

 External Schema

 When enabled, pick an external schema file to be used to determine the significance of whitespace in the XML document.

 XML Clean-up

 Remove All Comments

 When set to Yes, this parameter removes all comments within the XML input.

 Remove Empty Elements

 When set to Yes, this parameter removes elements that have no attributes and contain no content between the Start and End Tag.

 For example,

 <example> </example>

 will be removed, however

 <example property=”empty”/>

 will not since it contains an attribute.

 Collapse Empty Elements

 When set to Yes, this parameter creates an empty tag for elements that have no content between the Start and End Tag.

 For example,

 <example property=”empty> <example>

 will be collapsed into

 <example property=”empty”/>

 Clean up Redundant Namespace Declarations

 Remove redundant and extraneous namespace declarations. For example, the following XML document that has redundant namespace declarations:

 <root>

 <f:element1 xmlns:f="http://www.w3schools.com/example">

 <f:element2 xmlns:f=" http://www.w3schools.com/example"> some text </f:element2>

 <f:element3 xmlns:f=" http://www.w3schools.com/example"> some text </f:element3>

 </f:element1>

 </root>

 Selecting Yes for this parameter will return the following results:

 <root>

 <f:element1 xmlns:f="http://www.w3schools.com/example">

 <f:element2> some text </f:element2>

 <f:element3> some text </f:element3>

 </f:element1>

 </root>

 Remove Embedded xsi:schemalocation

 When set to Yes, this parameter removes all embedded xsi:schemalocation attribute from all elements that are not the root element.

 XML Output

 Attribute to contain XML output/XML Output File

 The XML features that have been successfully processed can be output to a feature attribute by specifying an attribute name in the Attribute to contain XML Output, or to a file by specifying the path to the file in XML Output File parameter.

 Error and Warning List Name

 Features with at least one warning or error will be output through the Failed port with a new list attribute added to the features.

 If the default _xml_error is the list name, the elements of the list attribute contain the following:

 	Elements of List Attribute
 	Description

 	_xml_error{}.type
 	WARNING, ERROR or FATAL ERROR

 	_xml_error{}.file
 	the file where the warning or error occurs

 	_xml_error{}.line
 	the line where the warning or error occurs

 	_xml_error{}.col
 	the column where the warning or error occurs

 	_xml_error{}.desc
 	the details about the warning or error

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 XML

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 XMLFlattener

 Flattens content of XML element(s) into feature attributes.

 This transformer provides a quick and easy way to output any content or attributes of an XML element as feature attributes by specifying the element name or path. Optionally, the XML attributes from the ancestors of the specified elements can be fetched as FME attributes as well.

 The XMLFlattener does not currently support multiple matches, so for generation of multiple features from the source XML, please use the XMLFragmenter.

 Input Ports

 Input

 Input features that contain the XML document information.

 Output Ports

 Output

 Each feature will contain attributes that are flattened from the XML element(s).

 Parameters

 XML Source

 Selecting from the list enables that selection's corresponding parameter:

 XML Source Type

 	XML Attribute: enables the Attribute With XML Text field.

 	XML File: enables the XML Filename field.

 Flatten Paths

 This parameter specifies which elements to flatten. The Flatten Paths are whitespace-separated xfMap match expressions or each expression can be specified on a new line. For more information, see the FME Readers/Writers manual: XML (Extensible Markup Language) Reader/Writer > xfMap.

 Elements to Match

 Type directly in the text box or click the browse button to display the editor or select Set to Attribute Value to pick a feature attribute containing the element expressions.

 The Feature Paths are whitespace-separated xfMap match expressions. For more information, see the FME Readers/Writers manual: XML (Extensible Markup Language) Reader/Writer > xfMap.

 Example: input.xml

<shiporder>
 <orderperson>John Smith</orderperson>
 <shipto>
 <name>Ola Nordmann</name>
 <address>Langgt 23</address>
 <city>4000 Stavanger</city>
 <country>Norway</country>
 </shipto>
 <item id="1" status=”pending”>
 <title>Empire Burlesque</title>
 <note>Special Edition</note>
 <quantity>1</quantity>
 <price>10.90</price>
 </item>
 <item id="2" status=”shipped”>
 <title>Hide your heart</title>
 <quantity>1</quantity>
 <price>9.90</price>
 </item>
</shiporder>

 This table lists some Flatten Paths xfMap expressions shown in the above example.

 	"orderperson"
 	Add the text content of orderperson element into orderperson feature attribute

 	"shipto"
 	Add the text content of the children of shipto element into the following feature
attributes: name, address, city and country.

 	“item[@id=1]” or equivalently
<item id=“1”>

 	This matches the element in the document named item whose attribute id is equal to 1.
It adds the text content of the children as feature attributes: title, note, quantity and price.

 	“orderperson
shipto
<item id=“1”>”
 	The three previous matched expressions combined, each separated by newline.

 Customize Attributes

 Flatten Options

 The Options button opens the XML Flatten Options dialog. These options control how the content of the elements are to be mapped as feature attributes.

 The default view is Basic mode, where several options are listed:

 	Enable Flattening is selected by default.

 	Ignore Specific Sub-Elements > Sub-Elements To Ignore: Specify the children of the matched elements (from Flatten Paths) that should be ignored. In the example above, if Flatten Paths is “shipto”, then if this option is set to “country city” then both country and city contents are ignored in the output.

 	Skip Empty Elements : specify whether empty elements should be mapped as empty feature attributes

 	Add Custom Prefix > Prefix: specify the prefix for all the feature attributes that will be added from the flattened XML structure

 	Include XML Child Position > Attribute Name: specify the attribute name whose value will be the position of the child element within its parent.

 	Add Ancestor Attributes > Ancestor Element(s) : specify the parent element(s) of the elements in Flatten Path whose XML attributes will also be added as feature attributes in the output.

 The Advanced button opens the Advanced Editor, which provides additional options for customizing the feature attributes. The functionality of each option is described in the table below. The options here allow customization of the attributes and attribute lists of the matched XML subtree that will be added to FME Features.

 	Option (with example value)
 	Description
 	Default Value
 	Possible Values

 	
 separator="."

 	
 This value of this option is used as the separator in the naming of the attributes of the children of the matched elements.

 	
 period (.)

 	
 any string

 	
 open-list-brace="{"

 	
 Specifies the open list index delimiter brace for the flattened attributes.

 	
 Default value if not specified: {

 	
 any string

 	
 close-list-brace="}"

 	
 Specifies the close list index delimiter brace for the flattened attributes.

 	
 Default value if not specified: }

 	
 any string

 	
 map-empty-elements="yes"

 	
 If set to yes, any empty elements will be added onto the features as attributes with empty values. Otherwise, the attributes will not be added onto the features.

 	
 Default value if not specified: yes

 	
 yes | no

 Possible values: any string

 	
 matched-prefix="attributes"

 	
 This option controls whether FME feature attributes produced will be prefixed with matched element's name.

 If the value is yes, then both the matched element's attributes and all its children are prefixed

 If the value is no, then none of the feature attributes are prefixed with matched element's name

 If the value is children, then only the children of the matched element are prefixed

 If the value is attributes, then only the attributes of the matched element are prefixed.

 	
 Default value if not specified: yes

 	
 yes | no | children | attributes

 	
 matched-attributes="yes"

 	
 If this option is set to yes then the attributes of the matched element are mapped as FME feature attributes. Otherwise, the attributes of the matched element are ignored.

 matched-prefix option can also be set to attributes or yes to allow the attributes to be prefixed with the name of the matched element.

 	
 Default value if not specified: yes

 	
 yes | no

 	
 matched-ancestor-attributes=""

 	
 The option controls whether XML attributes from ancestor of the matched element should be included as FME feature attributes.

 - 'parent' or '1' : XML attributes of the parent of the matched element are added

 - 'grandparent' or '2' : XML attributes of the grandparent of the matched element are added

 - 'root' or '-1' : XML attributes of the root of the document are added

 - any non-negative number : XML attributes of the ancestor by going up x levels from the matched element are added. 0 is the matched element.

 To include more than one ancestor, multiple values can be separated by a space.

 For example: To get the attributes from root, parent and grand parent, we can specify

 matched-ancestor-attributes="parent grandparent root"

 	
 	
 parent | grandparent | root

 	
 cardinality="+{?}"

 	
 This option can be specified as a space separated list of cardinality directives.

 	
 Default value: +{?} (Treat child elements as a list if there are more than one with the same name)

 	
 Possible values: Refer to the xfMap section in the XML Reader documentation.

 	
 except=""

 	
 The except attribute accepts the same types of expressions as the match or except attribute of a mapping rule.

 For example, the expression except="parent/child{2}"�� could be used to exclude the second <child> element contained in a <parent> element from the output of the structure subrule.

 	
 	
 any path expression

 	
 structure-prefix=""

 	
 This option can be set to non-empty string that serves as a prefix to every attribute that is generated for a matched element.

 	
 	
 any string

 	
 child-position-attribute=""

 	
 When this option is set to non-empty string, each child element will generate an additional feature attribute whose value will be the position of the child element within its parent.

 	
 	
 any string

 	
 attribute-identifier=""

 	
 XML attributes can be differentiated from leaf elements. By setting this option to a non-empty string, the XML reader will append a prefix to the attributes in the leaf elements.

 	
 	

 All the options have more detailed examples and descriptions in the FME Readers/Writers manual: XML (Extensible Markup Language) Reader/Writer.

 Descendant Options

 The Elements As Fragments parameter can be specified to extract the children of the matched elements as xml fragments.

 For example, If Flatten Paths is “shipto” and Elements As Fragment is set to “country” then the output feature has an extra attribute “xml_fragment_country{0}” with its value set to “<country>Norway</country>”

 Parameters

 Attributes to Expose

 Exposes any attributes so they can be used by other transformers. Type directly in the text box or click the browse button to display the editor and add attributes there.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 XML

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 XMLFragmenter

 Maps elements from an XML document into XML fragments, and optionally flattens the content of the XML elements and the children further as feature attributes.

 This transformer may be used to decompose large XML documents into parts, where these parts may be further operated on via downstream XML, XQuery, XSLT or generic text processing transformers.

 Output Ports

 Fragments

 Each fragment is output as a separate FME feature via the Fragments port. Each feature from the port will have an xml_fragment attribute holding the fragment. The fragment is a valid XML document that may be further processed via subsequent XML-based and/or XQuery-based transformers.

 Three additional attributes are added to the Fragments features:

 	xml_matched_element – records the element that was matched. This attribute can be used to identify which element matched the expression, if the last component of the matched expression is a wildcard character (*).

 	xml_id – holds an ID for that element. This attribute is not guaranteed to be globally unique, but it will be unique only in the context of the input document.

 	xml_parent_id – holds an ID for the parent of that element. If the parent of the element is not matched or it does not have any parent, then this attribute is empty.

 	xml_parent_child_pos – holds the position of the element in relation to its parent. If the parent of the element is not matched or it doesn’t have any parent, then this attribute is empty. The xml_parent_child_pos starts its count at 0.

 If ‘Flatten Options’ or/and ‘Descendent Options’ are enabled, then the Fragments features will have additional attributes related to the contents of the matched XML element.

 Parameters

 XML Source

 XML Source Type: XML File/Attribute with XML Document

 The XML source type is either an XML file or a feature attribute whose value is the entire XML document.

 Feature Paths Configuration

 Elements to Match

 This parameter specifies which fragments to map. The Feature Paths are either whitespace-separated xfMap match expressions or each expression can be specified on new line.

 This parameter can be typed directly in the text box or click the browse button to display the editor or choose a feature attribute.

 Example

<dc:metadata xmlns:dc="http://purl.org/dc/elements/1.1/">
<dc:subject>Utah</dc:subject>
<dc:subject>boundaries</dc:subject>
<dc:subject>County</dc:subject>
<dc:subject>Administrative</dc:subject>
<dc:subject>geoscientificInformation</dc:subject>
<dc:description>This data set represents county boundaries in Utah at 1:24,000 scale.</dc:description>
<dc:date>2004-04-20T00:00:00.000</dc:date>
<dc:type>dataset</dc:type>
<dc:identifier xmlns:dc="http://purl.org/dc/elements/1.1/">{42AE2814-FCC1-4BC2-BAF4-CA3E55514997}</dc:identifier>
<dc:language>en</dc:language>
<dc:spatial>
<dcmiBox:Box name="Geographic" projection="EPSG:4326" xmlns:dcmiBox="http://dublincore.org/documents/2000/07/11/dcmi-box/">
<dcmiBox:northlimit units="decimal degrees">42.01</dcmiBox:northlimit>
<dcmiBox:eastlimit units="decimal degrees">-109.21</dcmiBox:eastlimit>
<dcmiBox:southlimit units="decimal degrees">36.98</dcmiBox:southlimit>
<dcmiBox:westlimit units="decimal degrees">-114.1</dcmiBox:westlimit>
</dcmiBox:Box>
</dc:spatial>
<dc:rights></dc:rights>
</dc:metadata>

 These are a few Feature Paths xfMap expressions targeting the above <dc:metadata> input document:

 	
 * "dc:subject"

 	
 Extracts every <dc:subject> into an XML fragment, producing 5 fragment features in total.

 	
 * "dc:spatial/dcmiBox:Box"

 	
 Extracts the <dcmiBox:Box> fragment, but <dc:spatial> must be the parent.

 	
 * "dcmiBox:Box/*"

 	
 Extracts every child of <dcmiBox:Box> into fragments, 4 fragments features corresponding to <dcmiBox:northlimit>, <dcmiBox:eastlimit>, <dcmiBox:southlimit> and <dcmiBox:westlimit> are output.

 	
 * "dc:subject dc:spatial/dcmiBox:Box dcmiBox:Box/*"

 	
 The three previous matched expressions combined, each separated by whitespace.

 Elements to Exclude

 If a feature path in ‘Elements to Match’ matches multiple elements, then this parameter can be used to specify which elements should be excluded in the results. The input to this parameter also takes the form of the feature path xfMap expressions described in the ‘Elements to Match’ parameter.

 Using the input document above, if the ‘Elements to Match’ is set to ‘dcmi:Box/*’ and ‘Elements to Exclude’ is set to ‘dcmi:northlimit dcmi:eastlimit” then only 2 fragment features will be output corresponding only to <dcmi:southlimit> and <dcmi:westlimit> elements.

 Merge Attributes From Input Feature

 Setting this parameter to Yes will merge the attributes from the input feature to the output features.

 Flatten Options

 The Options button opens the XML Flatten Options dialog. These options control the children of the matched elements to be flattened as attributes/attribute lists on the features produced.

 The default view is Basic mode, where several options are listed:

 	Ignore Specific Sub-Elements > Sub-Elements To Ignore : specify the children of the matched elements (from Flatten Paths) that should be ignored. For example, In the example above, if Flatten Paths is “shipto”, then if this option is set to “country city” then both country and city contents are ignored in the output.

 	Skip Empty Elements : specify whether empty elements should be mapped as empty feature attributes

 	Add Custom Prefix > Prefix: specify the prefix for all the feature attributes that will be added from the flattened XML structure

 	Include XML Child Position > Attribute Name: specify the attribute name whose value will be the position of the child element within its parent.

 	Add Ancestor Attributes > Ancestor Element(s) : specify the parent element(s) of the elements in Flatten Path whose XML attributes will also be added as feature attributes in the output.

 The Advanced button opens the Advanced Editor, which provides additional options for customizing the feature attributes. The functionality of each option is described in the table below. The options here allows customization of the attributes and attribute lists of the matched XML subtree that will be added to FME Features.

 	Option (with example value)
 	Description
 	Default Value
 	Possible Values

 	separator="."
 	This value of this option is used as the separator in the naming of the attributes of the children of the matched elements.
 	period (.)
 	any string

 	map-empty-elements="yes"
 	
 If set to yes, any empty elements will be added onto the features as attributes with empty values. Otherwise, the attributes will not be added onto the features.

 	
 Default value if not specified: yes

 	
 yes | no

 Possible values: any string

 	matched-prefix="attributes"
 	
 This option controls whether FME feature attributes produced will be prefixed with matched element's name.

 If the value is yes, then both the matched element's attributes and all its children are prefixed

 If the value is no, then none of the feature attributes are prefixed with matched element's name

 If the value is children, then only the children of the matched element are prefixed

 If the value is attributes, then only the attributes of the matched element are prefixed.

 	
 Default value if not specified: yes

 	
 yes | no | children | attributes

 	matched-attributes="yes"
 	
 If this option is set to yes then the attributes of the matched element are mapped as FME feature attributes. Otherwise, the attributes of the matched element are ignored.

 matched-prefix option can also be set to attributes or yes to allow the attributes to be prefixed with the name of the matched element.

 	
 Default value if not specified: yes

 	yes | no

 	matched-ancestor-attributes=""
 	
 The option controls whether XML attributes from ancestor of the matched element should be included as FME feature attributes.

 - 'parent' or '1' : XML attributes of the parent of the matched element are added

 - 'grandparent' or '2' : XML attributes of the grandparent of the matched element are added

 - 'root' or '-1' : XML attributes of the root of the document are added

 - any non-negative number : XML attributes of the ancestor by going up x levels from the matched element are added. 0 is the matched element.

 To include more than one ancestor, multiple values can be separated by a space.

 For example: To get the attributes from root, parent and grand parent, we can specify

 matched-ancestor-attributes="parent grandparent root"

 	
 	
 parent | grandparent | root

 	cardinality="+{?}"
 	
 This option can be specified as a space separated list of cardinality directives.

 	
 Default value: +{?} (Treat child elements as a list if there are more than one with the same name)

 	
 Possible values: Refer to the xfMap section in the XML Reader documentation.

 	except=""
 	
 The except attribute accepts the same types of expressions as the match or except attribute of a mapping rule.

 For example, the expression except="��parent/child{2}"�� could be used to exclude the second <child> element contained in a <parent> element from the output of the structure subrule.

 	
 	any path expression

 	structure-prefix=""
 	
 This option can be set to non-empty string that serves as a prefix to every attribute that is generated for a matched element.

 	
 	any string

 	child-position-attribute=""
 	
 When this option is set to non-empty string, each child element will generate an additional feature attribute whose value will be the position of the child element within its parent.

 	
 	
 any string

 	attribute-identifier=""
 	
 XML attributes can be differentiated from leaf elements. By setting this option to a non-empty string, the XML reader will append a prefix to the attributes in the leaf elements.

 	
 	

 All the options have more detailed examples and descriptions in the FME Readers/Writers manual: XML (Extensible Markup Language) Reader/Writer.

 Example

 Given the same XML input as above, and Feature Paths xfMap expression is set to “dcmiBox:Box” with the default options in “Flatten Options” will produce the following feature:
+++
Feature Type: `XMLFragmenter_FRAGMENTS'
Attribute(encoded: utf-16): `eastlimit' has value `-109.21'
Attribute(encoded: utf-16): `eastlimit.units' has value `decimal degrees'
Attribute(string) : `fme_type' has value `fme_no_geom'
Attribute(encoded: utf-16): `northlimit' has value `42.01'
Attribute(encoded: utf-16): `northlimit.units' has value `decimal degrees'
Attribute(encoded: utf-16): `southlimit' has value `36.98'
Attribute(encoded: utf-16): `southlimit.units' has value `decimal degrees'
Attribute(encoded: utf-16): `westlimit' has value `-114.1'
Attribute(encoded: utf-16): `westlimit.units' has value `decimal degrees'
Attribute(encoded: utf-16): `xml_fragment' has value `?<?xml version="1.0" encoding="UTF-
16"?><dcmiBox:Box name="Geographic" projection="EPSG:4326"
xmlns:dcmiBox="http://dublincore.org/documents/2000/07/11/dcmi-box/">
<dcmiBox:northlimit units="decimal degrees">42.01</dcmiBox:northlimit>
<dcmiBox:eastlimit units="decimal degrees">-109.21</dcmiBox:eastlimit>
<dcmiBox:southlimit units="decimal degrees">36.98</dcmiBox:southlimit>
<dcmiBox:westlimit units="decimal degrees">-114.1</dcmiBox:westlimit>
</dcmiBox:Box>'
Attribute(encoded: utf-16): `xml_id' has value `id-Box-1.2.1.11.1'
Attribute(encoded: utf-16): `xml_matched_element' has value `Box'
Attribute(string) : `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===

 Descendant Options

 The Elements As Fragments parameter can be specified to extract the children of the matched elements as xml fragments.

 Example

 The same XML input as shown in the above example – with the Feature Paths xfMap expression set to “dcmiBox:Box”, the default options accepted in Flatten Options, and Descendant Options Elements As Fragment set to ‘dcmi:northlimit dcmi:southlimit” – will produce the following feature. (The differences compared to the previous example are highlighted in bold.)
+++
Feature Type: `XMLFragmenter_FRAGMENTS'
Attribute(encoded: utf-16): `eastlimit' has value `-109.21'
Attribute(encoded: utf-16): `eastlimit.units' has value `decimal degrees'
Attribute(string) : `fme_type' has value `fme_no_geom'
Attribute(encoded: utf-16): `northlimit' has value `42.01'
Attribute(encoded: utf-16): `northlimit.units' has value `decimal degrees'
Attribute(encoded: utf-16): `southlimit' has value `36.98'
Attribute(encoded: utf-16): `southlimit.units' has value `decimal degrees'
Attribute(encoded: utf-16): `westlimit' has value `-114.1'
Attribute(encoded: utf-16): `westlimit.units' has value `decimal degrees'
Attribute(encoded: utf-16): `xml_fragment' has value `?<?xml version="1.0" encoding="UTF-
16"?><dcmiBox:Box name="Geographic" projection="EPSG:4326"
xmlns:dcmiBox="http://dublincore.org/documents/2000/07/11/dcmi-box/">
<dcmiBox:northlimit units="decimal degrees">42.01</dcmiBox:northlimit>
<dcmiBox:eastlimit units="decimal degrees">-109.21</dcmiBox:eastlimit>
<dcmiBox:southlimit units="decimal degrees">36.98</dcmiBox:southlimit>
<dcmiBox:westlimit units="decimal degrees">-114.1</dcmiBox:westlimit>
</dcmiBox:Box>'
Attribute(encoded: utf-16): `xml_fragment_northlimit{0}' has value `<?xml
version="1.0" encoding="UTF-16"?><dcmiBox:northlimit units="decimal degrees"
xmlns:dcmiBox="http://dublincore.org/documents/2000/07/11/dcmi-box/">42.01</dcmiBox:northlimit>'
Attribute(encoded: utf-16): `xml_fragment_southlimit{0}' has value `<?xml
version="1.0" encoding="UTF-16"?><dcmiBox:southlimit units="decimal degrees"
xmlns:dcmiBox="http://dublincore.org/documents/2000/07/11/dcmi-box/">36.98</dcmiBox:southlimit>'
Attribute(encoded: utf-16): `xml_id' has value `id-Box-1.2.1.11.1'
Attribute(encoded: utf-16): `xml_matched_element' has value `Box'
Attribute(string) : `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===

 Expose Attributes

 Attributes to Expose

 Exposes any attributes so they can be used by other transformers. Type directly in the text box or click the browse button to display the editor and add attributes there.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 XML

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 XMLNamespaceDeclarer

 Declares missing namespaces in XML documents by matching prefixes from another sample XML file whose namespaces are fully declared.

 Input Ports

 Input

 Input features that contain the information of the XML documents.

 Output Ports

 Passed

 If the XML namespaces of the input document are fixed and well-formed, it will be output through this port.

 INVALID

 If a feature does not have a well-formed XML document, it will be output through this port.

 Parameters

 XML Input

 XML Input

 Select from the pull-down list to enable the selection's corresponding parameter:

 	Attribute Specifying XML Text/Attribute With XML Text: Once you connect the transformer, choose the attribute that contains XML text.

 	XML Filename/XML File: Browse to an XML file.

 	XML Text/XML Text: Opens an XML text editor.

 Sample XML File

 The sample XML file that will be used as a reference for declaring missing namespaces in the XML input documents. If the sample file has more than one namespace with the same prefix but different URI, then the first one will always be used.

 Example

 <root>

 <f:element1>

 <f:element2> some text </f:element2>

 <f:element3> some text </f:element3>

 </f:element1>

 </root>

 and the sample XML file:

 <root>

 <f:element1 xmlns:f="http://www.w3schools.com/example">

 <f:element2 xmlns:f=" http://www.w3schools.com/example"> some text </f:element2>

 <f:element3 xmlns:f=" http://www.w3schools.com/example"> some text </f:element3>

 </f:element1>

 </root>

 the output will look like this:

 <root>

 <f:element1 xmlns:f="http://www.w3schools.com/example">

 <f:element2> some text </f:element2>

 <f:element3> some text </f:element3>

 </f:element1>

 </root>

 XML Output

 XML Output Type

 Attribute to contain XML output/XML Output File: The XML features that have been successfully processed can be output to a feature attribute by specifying an attribute name in the Attribute to contain XML Output, or to a file by specifying the path to the file in XML Output File parameter.

 Error and Warning List Name: Features with at least one warning or error will be output through the Failed port with a new list attribute added to the features. If the default _xml_error is the list name, the elements of the list attribute contain the following:

 	Elements of List Attribute
 	Description

 	_xml_error{}.type
 	WARNING, ERROR or FATAL ERROR

 	_xml_error{}.file
 	the file where the warning or error occurs

 	_xml_error{}.line
 	the line where the warning or error occurs

 	_xml_error{}.col
 	the column where the warning or error occurs

 	_xml_error{}.desc
 	the details about the warning or error

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 XML

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 XMLSampleGenerator

 This transformer generates an XML document based on an XML Schema (XSD) file. While the sample document may not pass a schema validation, it will provide a generate outline of what a valid XML document looks like. The XML generated by this transformer can be used as a base for an XML template used in the XMLTemplater transformer.

 In addition to generating entire XML documents, this transformer may also be used to generate small portions of an XML document. All that is required is the path to the element which is to be generated.

 Note that in order to prevent infinite recursions, the transformer will not generate recursive complex types or substitution groups. Recursive types and substitution groups will be generated once, and nested types/groups will not be generated.

 Input Ports

 Input

 There are no special requirements for the input features of this transformer. If the Path to Element parameter is set to an attribute value, the attribute should contain a valid XML path expression.

 Output Ports

 Output

 Features output from this transformer will have an attribute containing an XML document that was generated from the XML schema file listed in the transformer parameters.

 Parameters

 Schema

 Schema Location

 This parameter specifies the location of the XSD file from which the XML will be generated. It is important that the file selected for this parameter contains the definition of the element to be generated. Since it is common for an XSD file to import other XSD files, the value of this parameter may differ depending on the desired output of the transformer.

 If an entire document is to be generated, you should select the "base" XSD file. If a specific element is to be generated, you might have to select a different XSD file.

 Path to Element

 This parameter serves two purposes:

 	 First, for XSD files that contain more than one top-level element, you can use this parameter to specify which element is to be generated.

 	 Second, you can use this parameter to instruct the transformer to generate an element that is not a top-level element. To do so, enter the path to the element as the parameter value. For example, the following path may be used to generate an animation element from the Collada 1.4 schema:

 /COLLADA/library_animations/animation

 Note that this path must be namespace correct. That is, the path elements must match the target namespaces of the XSD schemas being used. For example, to generate a Date element in the AIXM schema, the following path may be used.

 aixm:HoldingPatternTimeSlice/aixm:timeSliceMetadata/gmd:MD_Metadata/gmd:dateStamp/gco:Date

 Elements to Exclude

 This parameter may be used to exclude elements from the generated XML. Multiple element names may be entered in a space separated list. As in the path parameter, the element names in this parameter must be namespace correct; the element names must use the same namespace prefixes as the XSD files. Wildcards may be used in the element names. For example, the following value will cause all elements in the gml namespace to be excluded, along with the gmd:dateStamp element.

 gml:* gmd:dateStamp

 If the generated XML is being annotated with comments, a comment will be inserted for each excluded element.

 XML Generation

 Generate Optional Attributes

 An XML schema may designate some XML attributes as optional. If this parameter is set to Yes, the optional attributes will be included in the XML output. If this parameter is set to No, only XML attributes marked as "required" will be included in the output document.

 Generate Optional Elements

 An XML schema may designate the minimum and maximum number of times an element may occur in a particular location. If this parameter is set to No, only elements whose minimum number of occurrences is greater than zero will be included in the output XML document. If this parameter is set to Yes, all elements will be included at least once in the output document.

 Abstract Substitution Groups:

 This parameter controls the output when the XML schema contains abstract substitution groups.

 	First Member Only: This is the default value for this parameter. Only the first member of the substitution group will be generated.

 	All Members: All members of the substitution group will be generated. In general, an abstract substitution group should be substituted by a single member. This parameter may be used to examine all the possible substitution group members. Using this value may lead to an output document which is very large.

 	No Members: No substitution group members will be generated. Instead, if the ‘Annotate XML with Comments’ parameter is set to ‘Yes’, the output will contain a comment listing the path to the substitution group members. These paths could then be used in another XMLSampleGenerator to generate the individual substitution group members.

 Schema Choice Elements

 This parameter controls the output when the XML schema contains an xs:choice. An xs:choice lists a number of possible elements which may appear in the output.

 	First Option Only: This is the default value for this parameter. Only the first option in the choice will be generated.

 	All Options: All of the choice options will be generated. In general, a schema-valid document will contain only a single option. This parameter value may be used to examine all the possible choice options. Using this value may lead to an output document which is very large.

 	No Options: No choice options will be generated. Instead, if the ‘Annotate XML with Comments’ parameter is set to ‘Yes’, the output will contain a comment listing the path to the choice options. These paths could then be used in another XMLSampleGenerator to generate the individual choice options. Note that only paths to elements will be listed. Nested sequences and choices will not produce any paths.

 Generate XML Header

 If this parameter is set to Yes, the output will be prefaced with an XML header. If the parameter is set to No, the output will not contain an XML header.

 Annotate XML with Comments

 If this parameter is set to Yes, the output will contain XML comments describing the output.

 These comments will describe what is required to convert the sample XML into an XML document that is valid according to the given schema. This includes warnings about recursive complex types and substitution groups, details on the acceptable multiplicity of elements and information on the data types that an element may contain.

 Result

 Result Attribute

 This parameter specifies the attribute to which the XML document will be written. The default is _result.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 XML

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 XMLTemplater

 Populates an XML document with FME feature attribute values. The document is provided as a template, and the transformer will use XQuery to insert attribute values and geometry information into the template. The template may be loaded from an attribute, a file, or entered directly into the transformer parameters.

 For each feature that enters the Root input port, the Root XML template will be evaluated, and the result will be put into the attribute named by the Result Attribute parameter. The feature will then be output from the transformer.

 An XML template is simply an XML document that contains XQuery functions. Essentially, these functions are placeholders for data values. When the template is processed, the functions will be evaluated, and the results will be inserted into the document. Most often this is used to insert feature attribute values into the document. The names of the attributes to be inserted are specified using the same XQuery functions used in several other transformers: XMLUpdater, XQueryExtractor, XQueryExploder, etc.

 In the XMLTemplater, the fme:get-attribute, fme:get-list-attribute and fme:get-xml-attribute functions are particularly useful. Only functions which do not alter the feature are permitted. See the XQuery Functions Documentation for more information on the available functions.

 The following XML template populates an XML element with the value of the ‘id’ feature attribute.

 <road>

 <id>{fme:get-attribute("id")}</id>

 </road>

 The XQuery functions may be used to populate XML attribute values as well.

 <road id="{fme:get-attribute("id")}" />

 To populate a sequence of XML elements with the contents of a list attribute, a loop is used to iterate over the list items, as in this sample:

 <roads>

 {

 for $road_id in fme:get-list-attribute("road_ids{}")

 return <road id="{$road_id}"/>

 }

 </roads>

 A common use case is to write out an XML element only if a feature attribute has a value. To do this, an if-then-else statement is used. The following example writes out the displayName element only if the feature contains a display_name attribute, and value of the attribute is not an empty string.
<road>
{ if(fme:has-attribute("display_name") and
 not(fme:get-attribute("display_name") eq ""))
then <displayName>{fme:get-attribute("display_name")}</displayName>
else ()
}
</road>

 Sub-Templates

 When a template is evaluated, it can only access the attributes of the feature which is currently being processed. In order to allow a template to access the attributes of multiple features, the concept of sub-templates was introduced. Using the fme:process-features function, the transformer can evaluate a sub-template on a set of features, and then insert the results into the first template. In the transformer interface, each sub templates will be given a name. This name will then be used in the fme:process-features call to identify the sub-template to evaluate. In addition, a transformer input port will be created for each sub-template. The sub-template will be processed on features which enter the corresponding transformer input. Features which enter one of these input ports will be referred to as sub-features.

 In the following example, the Root template constructs a <village> element, with information from a single feature. It then populates the <houses> element, using attribute values from features which entered the HOUSE input port.

 <village>

 <name>{fme:get-attribute("name")}</name>

 <population>{fme:get-attribute("population")}</population>

 <houses>

 {fme:process-features("HOUSE")}

 </houses>

 </village>

 The template associated with the HOUSE input port creates a <house> element.

 <house>

 <address>{fme:get-attribute("address")}</address>

 <owner>{fme:get-attribute("owner")}</owner>

 </house>

 If a single feature enters the Root input and two features enter the HOUSE input, the resulting XML document could look like this:

 <village>

 <name>Anytown, USA</name>

 <population>2568</population>

 <houses>

 <house>

 <address>123 Main Street</address>

 <owner>John Doe</owner>

 </house>

 <house>

 <address>324 Main Street</address>

 <owner>Jane Doe</owner>

 </house>

 </houses>

 </village>

 A template may call many sub-templates. For example, in the above example, we could add another sub-template named BUSINESS, and then used the process-features function to run this sub-template from the Root template. Additionally, a sub-template may run another sub-template, with the restriction that a sub-template may not directly or indirectly run itself.

 Selecting the Sub-Features to Process

 Often there is a hierarchical structure to the features that enter the XMLTemplater. For example, each village will have a number of houses, and each house will have several rooms, etc. If the fme:process-features function is used as described above, the resulting document will probably not be correct. Suppose there are two villages, each with five houses. Each village and house is represented by a separate FME feature. The village features are routed into the Root input port while the house features are routed into the HOUSE input port.

 If the transformer is run with the above templates, there will be two output features, as expected. However, both of the <village> elements will include all ten <house> elements. The correct behavior is to only evaluate the sub-template on the HOUSE features which correspond to the current village feature.

 The fme:process-features function provides a way to do this. Additional function parameters may be used to filter the sub-features which are to be processed. The second parameter is a list of attribute names, and the third is a list of attribute values. Only sub-features whose attributes match the given list of attribute names and values will be processed.

 This function call will evaluate the HOUSE sub-template on all HOUSE features whose village_id attribute matches the id attribute of the current feature.

 fme:process-features("HOUSE", "village_id", fme:get-attribute("id"))

 More than one attribute/value pair can be specified. In this case, the attribute names and attribute values have to be contained in parenthesis. The following function call will evaluate the HOUSE sub-template on all HOUSE features whose village_id attribute matches the id attribute of the current feature, and whose num_floors attribute is 2.

 fme:process-features("HOUSE", ("village_id","num_floors"), (fme:get-attribute("id"), 2))

 Grouping Sub-Features

 The Group Sub-Features By parameter allows for more coarse-grained filtering of sub-features than the parameters in the fme:process-features function. When this parameter is set to a list of attribute names, the fme:process-features function will only process sub-features which have the same values for these attributes as the feature currently being processed. Note that this parameter has no effect on the Root features. Each Root feature will be processed and output from the transformer.

 When grouping sub-features, if all features in each group are consecutive, the performance of the transformer can be improved by setting the Grouped Sub-Features are Consecutive parameter to Yes. When this value is set, Root features will be processed as soon as all the applicable sub-features have arrived at the transformer. This means the transformer will operate in a non-blocking manner, rather than waiting for all features to arrive before starting to process templates. The behavior of the transformer is undefined if the features in a group do not all arrive consecutively. It is likely that some sub-features will not be processed if this happens.

 Running Multiple Sub-Templates with a Single Function Call

 It is possible to evaluate multiple sub-templates using a single function call. Simply pass a list of template names to the fme:process-features function. The sub-templates will be evaluated on each of the sub-features named in the list. The features will be processed in the order that they entered the transformer. The following function call processes the HOUSE and BUSINESS sub-templates:

 fme:process-features(("HOUSE","BUSINESS"))

 The sub-feature selection parameters may still be used when the fme:process-features function is used to evaluate multiple sub-templates.

 Running a Sub-Template on the Same Feature

 It is possible to evaluate a sub-template using the same feature which is being used to evaluate the current template. The fme:process-template function takes a name, or list of names, of sub-templates which should be evaluated. These templates will be evaluated and the results will be inserted into the current template. To evaluate a template, just enter the name of the sub-template as a function parameter. For example, while a HOUSE feature is being processed, we could evaluate the OWNER template using the following function call. The OWNER template will be evaluated using the feature that entered the HOUSE input port.

 fme:process-template("OWNER")

 To evaluate a set of templates, pass a list of names:

 fme:process-template(("OWNER","ADDRESS"))

 This technique may be used to modularize XML templates, by moving repeated template structures into a single place. For example, if both houses and businesses have an address, the address could be extracted into an ADDRESS template, and the HOUSE and BUSINESS templates could then use the fme:process-template function to insert the address values. This way, the address template does not have to be duplicated inside the HOUSE and BUSINESS templates.

 Geometry Templates

 Geometry templates can be used to write out custom XML geometry. There are a large number of functions which allow the extraction of geometric data, and the processing of sub-templates on geometries. For more information, see the XQuery Functions Documentation for a list of all the geometry functions, and how to write out geometric data using sub-templates.

 Geometry sub-templates operate in the same way as regular sub-templates, with the exception that a geometry sub-template does not create an input port on the transformer.

While a geometry template is being evaluated, the functions that access feature attributes (fme:get-attribute, etc.), are still usable.

 Automatic Generation of XML Templates

 In the XMLTemplater editor windows, the ‘Generate’ button may be used to bring up a dialog which can be used to generate an XML document which may be used as a base for an XML template. This dialog uses the same functionality as the XMLSampleGenerator transformer. For more information on how to use this dialog, refer to the XMLSampleGenerator documentation.

 Validation of Attribute and Sub-Template Names

 When specifying an XML template through the Template Expression parameter or the Template File parameter, the transformer will verify that all referenced feature attributes are present in an incoming feature. If attributes are missing (not exposed) from input features, the transformer will be highlighted red as incomplete. When this situation occurs, the transformer’s Summary Annotation will indicate the missing attributes the XML template is referencing.

 In addition, when sub-template names are passed to the fme:process-features and fme:process-template functions, the names will be validated to ensure they match the names given in the transformer interface.

 To override this additional validation behavior, set the parameter Validate Attribute/Template Names to No.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 XML

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 XMLUpdater

 This transformer modifies XML documents by performing one or more of the following actions:

 	Replace an XML element or attribute.

 	Replace the contents of an element or attribute.

 	Delete an XML element or attribute.

 	Delete the contents of an XML element or attribute.

 	Rename an element or attribute

 	Insert a new element or attribute.

 For each document update, an XML path expression is used to identify the location of the items to be modified. Note that the path may refer to more than one item. If this is the case, all the items will be modified.

 For modifications that replace existing items or insert new items, two parameters are given which specify the value to be added to the document. This value may be given as a simple text value, or it may be an XQuery expression.

 The Update features provide the attribute values used in the document update operations. The Document feature is only used to supply the XML document which is to be updated.

 For each feature that enters the Update port, all update operations listed in the transformer will be applied to each feature that entered the transformer through the Document port. Therefore, no changes will be made to the XML document if no features enter the transformer through the Update port.

 Note that if the document is entered directly into the transformer parameters, it may be processed in two different ways:

 	If no Document features are given to the transformer, a new feature will be created to store the document. Each of the updates will be applied to the document, and it will then be output through the Document port.

 	If Document features are given to the transformer, each of the updates will be applied to the document, then it will be copied to each Document input feature before these features are output from the transformer.

 Input Ports

 Document

 Input features contain the XML documents to be modified. The documents can be contained in an attribute, entered directly into the transformer, or contained in a file referenced by an attribute value.

 Update

 For each feature which enters this input port, each of the updates listed in the transformer will be executed on each document which entered via the Document input port. These features will contain the attributes values that are used in the document updates.

 Output Ports

 Document

 The Document input features will be output through this port. These features will contain the updated document, which will be stored in the attribute named in the Result Attribute parameter.

 Parameters

 Group Update Features By

 This parameter is used to specify which update features will modify a document. When this parameter is set to a list of attributes, Document features will only be modified by Update features that share the same values for these attributes. The document will be modified by all of the update features with the same attribute values. Note that a document will not be updated if no Update features with the same values for the “group by” attributes are provided to the transformer.

 XML Document

 XML Input

 This parameter is used to specify the type of XML document which is to be modified. The XML may come from the input features (Parameter Value: Text or Attribute), or it may come from an external file. (Parameter Value: XML File)

 XML Text

 When the XML Input parameter is set to Text or Attribute, this parameter is used to specify the XML file. The parameter may be set to an attribute value, or the XML document may be entered into the parameter directly.

 XML File

 When the XML Input parameter is set to XML File, this parameter is used to specify the location of the file. The file path may be entered directly into the parameter, or the path may come from an attribute value.

 Updates

 Update Type

 This parameter specifies the type of modification to apply to the XML document. The possible updates are:

 	Update Type
 	Description

 	
 Replace

 	
 Each of the items referred to by the XML Path parameter will be replaced with the value given in the Value parameter.

 	
 Replace contents

 	
 Each of the items referred to by the XML Path parameter will have their content replaced with the value given in the Value parameter.

 	
 Replace with contents

 	
 Each of the items referred to by the XML Path parameter will be replaced with their contents. That is, the node will be removed but the node's children and text content will remain.

 	
 Delete

 	
 Each of the items referred to by the XML Path parameter will be removed from the document.

 	
 Delete contents

 	
 The contents of the items referred to by the XML Path parameter will be removed from the document. If the path refers to an element, all child elements and text content of referred elements will be deleted, while attributes will be unmodified. If the path refers to an attribute, its value will be removed.

 	
 Rename

 	
 The element or attribute referred to by the path will be renamed. Note that if the Value Type parameter is XML/XQuery, then the XQuery expression in the Value parameter should evaluate to a string or a QName object.

 	
 Insert as first child

 	
 The value given in the Value parameter will be inserted as the first child of each element referred to by the XML Path parameter.

 	
 Insert as last child

 	
 The value given in the Value parameter will be inserted as the last child of each element referred to by the XML Path parameter.

 	
 Insert as previous sibling

 	
 The value given in the Value parameter will be inserted into the parent element of each item referred to by the XML Path parameter. It will appear immediately before the referred item.

 	
 Insert as next sibling

 	
 The value given in the Value parameter will be inserted into the parent element of each item referred to by the XML Path parameter. It will appear immediately after the referred item.

 XML Path

 This parameter specifies the location of the XML nodes which are to be updated. Any XQuery expression may be used here, as long as it returns nodes contained in the input document. If the path expression evaluates to more than one item, they will all be modified.

 The simplest parameter value is a path expression, for example:

 /data/record/name

 With this path expression, the transformer will modify every <name> element which is contained in a <record> element which is contained in a root <data> element. A predicate may be used to narrow down this selection. For example, to modify the <name> element in the first <record> only, the following path could be used:

 /data/record[1]/name

 Similarly, a predicate may also be used to narrow the selection based on an attribute value:

 /data/record[@id = "A-123"]/name

 Notably, since this is an XQuery expression, the FME XQuery functions may be used.

 Note that the XQuery functions used in the Path parameter will apply to the Update feature being processed, not the Document feature that is being updated

 /data/record[@id=fme:get-attribute("record_id")]/name.

 The transformer will modify only those <name> elements contained in a <record> element whose id attribute is equal to the record_id feature attribute. This also works with list attributes. The following path expression will modify all <name> elements contained in a <record> element whose id attribute is contained in the _ids feature attribute.

 /data/record[@id=fme:get-list-attribute("_ids{}")]/name

 The path expression must be namespace correct. That is, the prefixes (or lack of prefixes) must match exactly the prefixes used in the input XML document. A wildcard (*) may be used as a namespace prefix. The path /*:data will match a <data> element in any namespace, including the default namespace and empty namespace. Similarly, a wildcard may be used for an element name. The path gml:* will match any element in the namespace bound to the gml prefix. To combine these approaches, the *:* syntax may not be used. Rather, a single * character should be used.

 Value Type

 This parameter is used to indicate how the value of the Value parameter should be interpreted. The effects of the different values of this parameter are explained in the description of the Value parameter. In general, this parameter should be set to Plain Text if the transformer is intended to insert text content into the document, while it should be set to XML/XQuery if the transformer is intended to insert XML elements into the document.

 Value

 This parameter is used to specify the new values that should be inserted into the document. If the Value Type parameter is set to Plain Text, the contents of this parameter will be encoded for safe use in an XML document. That is, < characters will be encoded as <, > characters will be encoded as > and so on.

 If the Value Type parameter is set to XML/XQuery, the contents of this parameter will be interpreted as an XQuery expression. This allows the insertion of XML elements into the document. Also, this allows the use of the FME XQuery functions. For example, an XML Template (e.g., from the XMLTemplater transformer) could be entered as the parameter value. It would then be evaluated before being inserted into the document.

 Note that any FME XQuery functions used in the new value will access the Update feature, not the Document feature.

 Parameters

 Validate Attribute Names

 This parameter specifies whether or not Workbench should try to validate the attribute names which are passed to any XQuery functions used in the XML Path column and the Value column.

 Result Attribute

 This parameter specifies the attribute to which the updated XML document will be written. The default is _result.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 XML

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 XMLValidator

 Validates the syntax or schema of an XML file or text. There are different ways to specify the XML source to be validated:

 	entering the XML text in the XML Text field,

 	specifying the attribute that contains the XML text in the Attribute with XML Text parameter,

 	specifying the attribute that contains the path to XML File, or

 	picking the XML file in the XML Filename parameter.

 Parameters

 XML Input

 The choice that you make in this field enables its corresponding parameter.

 	XML Text: Click to open an editor.

 	Attribute with XML Text: Choose the attribute that contains XML Text.

 	XML Filename: Browse to the XML file or choose the attribute that contains path to XML file.

 Validation Type

 If this parameter is set to None, all features will be output through the Passed port.

 If the Validation Type is set to Syntax Only or Syntax and Schema, all features that pass the syntax only or syntax and schema validation will be output through the Passed port.

 Error and Warning List Name

 Features with at least one warning or error will be output through the Failed port with a new list attribute added to the features. If the default _xml_error is the list name, the elements of the list attribute contain the following:

 	Elements of List Attribute
 	Description

 	_xml_error{}.type
 	WARNING, ERROR or FATAL ERROR

 	_xml_error{}.file
 	the file where the warning or error occurs

 	_xml_error{}.line
 	the line where the warning or error occurs

 	_xml_error{}.col
 	the column where the warning or error occurs

 	_xml_error{}.desc
 	the details about the warning or error

 Schema Location

 Optionally, users can specify the schema location if the 'Validation Type' is set to 'Syntax and Schema'. It can be specified either as an attribute that contains the schema location or selected using the file browser. However, it is not guaranteed that the schema specified is used in the validation if the schema referenced by the XML file can be located in the default XML Schema location in FME.

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 XML

 Search FMEpedia
 Search for samples and information about this transformer on FMEpedia.

 XQueryExploder

 Uses XQuery expression to extract portions of XML text into new FME features.

 Parameters

 XQuery Type

 XQuery Input

 This parameter identifies the type of the XQuery to be executed. The possible values each correspond to ways of specifying the XQuery. It can be

 	directly specified – XQuery expression,

 	an attribute on a feature – Attribute specifying an XQuery, or

 	a path to a file – XQuery file.

 XML Source

 XML Input, XML Attribute, XML File

 This parameter identifies either an attribute that contains an XML document (XML Attribute), or specifies a file that contains an XML document (XML File). You can set this parameter to None (file is specified in query) if the XQuery parameter above refers to an XML file. If this parameter is set, the context document for the query will be set to the value of the parameter (either as a file or a string, as appropriate).

 Remove Source XML Attribute?

 If the XML document is loaded from an attribute, the Remove Source XML Attribute parameter can be set to remove the XML document after the query has been processed.

 Results

 Write XML Header?

 The Write XML Header parameter specifies whether or not the XML header should be written into the results of the XQuery. Note that for UNICODE files, the Byte Order Mark (BOM) is not written, and should be added by an additional process if desired.

 Result Attribute

 This parameter determines the attribute to which the XQuery results will be written. It is used only when the XML document is an attribute.

 For every element in the result set, a feature will be output the QueryResults port with the value of the result set to the attribute specified by this parameter.

 Query Tag Attribute Name

 If this attribute is set, the text of the query which produced each result will be written to the attribute specified. The default is _source_query.

 XQuery Functions

 FME provides several functions that can be used within XQuery scripts. These functions allow XQuery scripts to access and manipulate feature attribute values. Currently, there are no functions that allow the manipulation of feature geometry.

 See XQuery Functions.

 Examples

 XQuery Examples

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 XML

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 XQueryExtractor

 Uses XQuery expressions to extract portions of XML text into feature attributes.

 Parameters

 XQuery Type

 XQuery Input

 This parameter identifies the type of the XQuery to be executed. The possible values each correspond to ways of specifying the XQuery. It can be

 	directly specified – XQuery expression

 	an attribute on a feature – Attribute specifying an XQuery

 	a path to a file – XQuery file

 XML Source

 XML Input

 This parameter identifies either an attribute that contains an XML document (XML Attribute), or specifies a file that contains an XML document (XML File). You can set this parameter to None (file is specified in query) if the XQuery parameter above refers to an XML file. If this parameter is set, the context document for the query will be set to the value of the parameter (either as a file or a string, as appropriate).

 Remove Source XML Attribute?

 If the XML document is loaded from an attribute, the Remove Source XML Attribute parameter can be set to remove the XML document after the query has been processed.

 Results

 Write XML Header?

 The Write XML Header parameter specifies whether or not the XML header should be written into the results of the XQuery. Note that for UNICODE files, the Byte Order Mark (BOM) is not written, and should be added by an additional process if desired.

 Return Value, Result Attribute, List Result Attribute, Separator Character(s)

 The Result Attribute parameter determines which attribute the XQuery results will be written to.

 If the Return Value is set to Separated Values, the results will be written out as a delimited string, with the separator character determined by the value set for Separator Character(s). If the Return Value is set to Single value, the results will be concatenated. If the Return Value is set to List Attribute, each result will be written out to an element of the list specified by the List Result Attribute parameter.

 Attributes to Expose

 Exposes any attributes so they can be used by other transformers. Type directly in the text box or click the browse button to display the editor and add attributes there.

 XQuery Functions

 FME provides several functions that can be used within XQuery scripts. These functions allow XQuery scripts to access and manipulate feature attribute values. Currently, there are no functions that allow the manipulation of feature geometry.

 See XQuery Functions.

 Examples

 XQuery Examples

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 XML

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 XQueryUpdater

 Provides updates to an XML document using XQuery Update expressions.

 Parameters

 XQuery Type

 XQuery Input

 This parameter identifies the type of the XQuery to be executed. The possible values each correspond to ways of specifying the XQuery. It can be

 	directly specified – XQuery expression

 	an attribute on a feature – Attribute specifying an XQuery

 	a path to a file – XQuery file

 XML Source

 XML Input, XML Attribute, XML File

 This parameter identifies either an attribute that contains an XML document (XML Attribute), or specifies a file that contains an XML document (XML File). You can set this parameter to None (file is specified in query) if the XQuery parameter above refers to an XML file. If this parameter is set, the context document for the query will be set to the value of the parameter (either as a file or a string, as appropriate).

 Results

 Result Attribute

 The parameter determines which attribute the XQuery results will be written to. It is used only when the XML document is an attribute.

 For every element in the result set, a feature will be output the QueryResults port with the value of the result set to the attribute specified by this parameter.

 When the query operates directly on a file, the update will occur on the file itself, and no features will be produced. If this is not the desired result, you can read the file using an AttributeFileReader transformer and pass that feature into the XQueryUpdater transformer.

 XQuery Functions

 FME provides several functions that can be used within XQuery scripts. These functions allow XQuery scripts to access and manipulate feature attribute values. Currently, there are no functions that allow the manipulation of feature geometry.

 See XQuery Functions.

 Examples

 XQuery Examples

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 XML

 FME Licensing Level

 FME Professional edition and above

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 XSLTProcessor

 The XSLTProcessor uses an XSL (eXtensible Stylesheet Language) stylesheet to convert an XML document.

 Note: It is assumed that you have created (or have access to) an XSLT stylesheet that is applicable to your XML input source.

 Output Ports

 Transformed

 Each transformed document is output via this port. The transformed document may be either embedded in an attribute or written to a file.

 Skipped

 These features did not transform due to errors (for example, an incorrect file path).

 Parameters

 XML Source

 XML Source Type, XML File, XML Attribute

 The XML source type is either an XML file or a feature attribute whose value is the entire XML document.

 Configuration

 Configuration Type

 The stylesheet document is either an XML file, embedded in the transformer, or in a feature attribute whose value is the entire stylesheet document

 Results

 Results Type

 The results from applying the stylesheet to the input document can be either stored in an attribute value or written to a file.

 FME Licensing Level

 FME Professional edition and above

 Editing Transformer Parameters

 About Transformer Parameter Options

 Transformer Categories

 XML

 Search FMEpedia

 Search for samples and information about this transformer on FMEpedia.

 Category: Categorized

 Transformer Categories

 This folder contains all the transformers, filed according to the primary operation that each one performs.

 Category: 3D

 These transformers create and modify 3D surface and solid geometries.

 Category: Calculators

 These transformers calculate a value and supply it to a new attribute
 on a feature.

 A default name for the new attribute will be automatically chosen. To
 change it, visit the properties of the transformer once it is placed.

 Category: Collectors

 These transformers operate on collections of features at a time. The
 collection of features may be replaced by new features based upon them,
 have their attributes or geometries merged, or have their orders altered.

 Category: Coordinate Systems

 These transformers relate to coordinate systems and reprojection. You can use them to:

 	reproject geometry, attributes, angles, or lengths from one coordinate system to another using either the default CS-MAP third-party library or another library of your choice – including Esri (with ArcGIS installed), Grid InQuest
(Ireland and the UK), and Gtrans (Sweden), as well as other libraries that are separately available;

 	a selected third-party library: CS-MAP (the default), Esri (with ArcGIS installed), Grid InQuest
(Ireland and the UK), Gtrans (Sweden), or other separately available libraries;

 	retrieve, set, or clear the coordinate system metadata associated with features;

 	convert back and forth between FME's representation of coordinate system definitions and other formats' representations of coordinate system definitions.

 Category: Database

 These transformers allow interaction with external databases. Data can be extracted from databases and merged into the feature stream, or merged onto features. You can also execute arbitrary SQL statements.

 More About Databases

 Category: Embedded Transformers

 This folder contains the custom transformers that are embedded in the current workspace.

 Note that any linked custom transformers used in the current workspace do not appear in this list.

 Category: Filters

 These transformers perform tests on feature geometry or/and attributes
 and allow the feature to be routed to different destinations depending
 on the outcome of the test.

 Category: FME Store Transformers

 These transformers have been published to the FME Store, which is a location for sharing and selling custom transformers to the FME User Community.

 The FME Store contains transformers that are described as part of solutions on FMEpedia.safe.com, as well as transformers created by third parties.

 Category: Geometric Operators

 These transformers operate on the geometry of individual features, or
 groups of features. A
 wide variety of operations are available, including overlays, snapping,
 line labeling, clipping, and intersection.

 Category: Infrastructure

 These transformers provide interaction with the underlying FME translation
 engine facilities. These
 include functionality to log features, set feature colors, create individual
 features and grids of features from nothing, and invoke the FME Viewer
 on features flowing by.

 Category: JSON

 JSON (JavaScript Object Notation) is a simple, structured text format designed to be easily integrated into JavaScript applications.

 These transformers query, update and create JSON data, by performing the following operations:

 	Extract JSON values into feature attributes

 	Convert JSON values into FME features

 	Generate JSON documents

 	Update existing JSON documents

 	Validate the contents of JSON documents

 Category: KML

 These transformers manipulate feature geometry and/or attributes for output using the OGCKML Writer.

 Category: Linear Referencing

 These transformers work with linear referencing data structures on FME
 features. Some transformers allow you to create and apply measure-related information held in attributes onto the geometry of FME features.

 How FME Supports Linear Referencing

 Linear referencing uses measures to associate attributes or events to locations or portions of a linear feature.

 FME previously supported writing of measures to Geodatabase, SDE, and Shape files via a special attribute containing a comma-separated list of measure values, corresponding to the coordinates of the feature. However, in order to further support writing of measures, we still had to come up with a set of measures to populate. Rather than pulling the measures from database tables and combining them into a CSV attribute before writing them out (like some applications do) there is a transformer called the MeasureGenerator, which populates an attribute with a comma-separated list of the distances from the start of the line to each point. This can then be sent to the “shape_measures” attribute and it will be written out.

 The Snipper transformer performs the following functions:

 	
 Shortens the geometry of a line feature by snipping off a specified amount from the ends. The amount to snip from the beginning and end of the line can be specified as either a measurement in ground units or a percentage of the line's entire length, starting from the first coordinate.

 	
 Shortens the geometry of a line feature by snipping off vertices from the ends. The vertices from the original line which are to form the first and last vertices of the resulting line are specified as a numeric index, with "0" being the first vertex of the line.

 This transformer can transform data that was stored in an “LRS” way into a segmented view (if you have a table of “whole” geometries, and another event table that says where on a particular line things begin and end, you can do a join, and then a snip of some kind, and get out the segments).

 	
 The LengthToPointCalculator calculates the length of a feature from its start until the closest spot to a point, and adds it as a new attribute. This can be used to create an LRS view from a segmented view, when combined in a clever way with the ArcFactory (LineJoiner) and ReferenceFactory (FeatureMerger).

 Category: Lists

 These transformers operate on FME attribute lists. Transformers are provided for creating, exploding, searching, and extracting from FME attribute lists.

 What are lists?

 Collections of attributes may be grouped together in a single FME feature using an attribute list. An attribute list element is just like any other attribute except that it contains an integer index enclosed in braces {} as part of its name.

 By convention, the first element of a list has an index of 0.

 For example, if a feature has these attributes on it:

 ids{0} 50

 ids{1} 45

 ids{2} 10

 We would say that the feature has an unstructured list named "ids{}" with three elements. In FME Workbench, the list would be shown as part of a transformer output using its unqualified list name ids{}.

 If a feature has these attributes on it:

 overlaps{0}.direction -1

 overlaps{0}.line_id 50

 overlaps{1}.direction 1

 overlaps{1}.line_id 22

 overlaps{2}.direction 1

 overlaps{2}.line_id 40

 overlaps{3}.direction -1

 overlaps{3}.line_id 12

 We would say that the feature has an structured list named "overlaps{}" with four elements. In FME Workbench, the list would be shown as part of a transformer output by using two unqualified names – overlaps{}.direction and overlaps{}.line_id.

 Unqualified list names remind us that there are a number of actual attribute values present on the feature. However, it is not possible to directly access values from an unqualified list name. Instead, these names can be used as parameters to the various transformers that operate on lists. As well, by right-clicking on any unqualified list, a number of its elements may be exposed and from then on be accessed directly. Such attributes are called qualified list elements.

 Category: MapText

 These transformers are used to create text labels for features. They are built using technology developed by MapText, Inc.

 These transformers are available as an extra-cost package from Safe Software. Please contact Safe Software for more information.

 Category: Manipulators

 These transformers modify (manipulate) the geometry or attributes of
 individual features in isolation from other features.

 Category: MRF

 These transformers repair geometry, particularly during data migration from
 CAD to GIS. They are built upon the MRFCleanFactory,
 which is an integration of MRF Geosystems Corporation's cleaning technology into FME.

 These transformers are available as an extra-cost package from Safe Software. Please contact Safe Software for more information.

 Category: Network

 These transformers operate on linear features that are connected in a network, performing operations such as priority calculation and orientation correction.

 Category: Point Cloud

 These transformers create, use, and output point cloud features. They operate only on data consisting of point clouds.

 Category: Rasters

 These transformers create, use, and output rasters. They operate on data consisting of a regularly spaced grid of values.

 Category: Strings

 These transformers operate on character strings held in FME attributes.
 Transformers are provided for searching, replacing, changing case, and
 extracting character encodings from strings held in FME attributes.

 Category: Stylers

 These transformers are used to prepare features for output to particular formats by providing a convenient interface for setting color and other display characteristics.

 Category: Surfaces

 These transformers create, use, and output surfaces. They operate on
 data that defines a surface through the z coordinate, and then either
 output this surface in a variety of ways, or apply the surface to other
 data.

 Category: Web Services

 These transformers access web services via the HTTP protocol.

 Category: Workflow

 These transformers run workspaces either locally or on an FME server.

 Note: To use these transformers, you may need access to an
 FME Server.

 Category: XML

 These transformers work with XML data by mapping XML elements into FME features, using stylesheets to convert XML documents, and querying collections of XML data.

 About Group-Based Transformers

 A Group-Based Transformer processes a number of features simultaneously, or in a group. In most cases, the features are processed against each other; for example a PointOnAreaOverlayer. The act of processing in this way is known as Group-Based Processing.

In general, most transformers dealing with spatial data are group-based, while attribute handling transformers are mostly Feature-Based Transformers.

 Some examples of Group-Based restructuring are:

 	Polygon Creation – FME can create polygon features from a set of line features when they form a closed shape. The line features are grouped together to produce a single area feature.

 	Statistics Calculation – the StatisticsCalculator transformer calculates the mean, maximum and minimum values of an attribute for a whole group of features.

 	Intersections – calculating the intersection points of a set of lines falls under group-based restructuring because each input feature in the group affects the output.

 Grouping Behavior
(Group By Parameter)

 The default behavior for a group-based transformer is to use the entire set of features as the group. For example, an AreaBuilder transformer will attempt to build area features out of all of the features that enter.

 However, most group-based transformers have a Group By parameter. This parameter allows you to select an attribute on which groups are to be formed. For example, an Intersector with the Group By parameter set to "road_type" will only intersect features whose value for the attribute "road_type" is a match.

 Categorization

 It's somewhat difficult to categorize some transformers as being group-based transformers. The usual definition is that a number of features are processed against each other, and each feature can in some way affect the processing of the others. But this definition becomes blurred for, say, raster transformers (technically each raster is a separate feature in itself, not each cell) and for transformers such as the Snapper (where features are processed in a group, but have no effect on each other's processing).

 Memory Concerns

 A feature of group-based transformers is that they go against the general rule of FME, that features are processed one at a time, and require that a number of features be held in memory at one time. Because of this, such transformers are more prone to consume large amounts of system resources (some such as the Clipper have extra options to help mitigate this effect) but can be used creatively to handle the flow of features through a workspace.

 Output and Output Attributes

 Although all group-based transformers process features one against the other, there is a difference in the type of output returned. Some transformers output all the original features, but slightly transformed in some way – the NeighborFinder, Snapper, and Sorter are good examples of this. However, some transformers actually combine the original features together to form a new output – the PolygonBuilder, TINGenerator and Clipper are good examples of this.

When the output is a combination of several different features, most transformers will remove source attributes, the reason being there is no way of knowing which of the source attribute values should be applied when there are a number of features. The two exceptions are:

 	Using a Group By: When you do this, the Group By attributes are generally passed on to the output feature, since by definition all the source values will be the same (that's how the group is formed).

 	Using a list: Many transformers have a list option so you can keep track of source attributes by keeping all the values.

 Feature-Based Transformers

 A Feature-Based Transformer is one which processes only a single feature, one at a time and in isolation from all other features; for example, a LengthCalculator. The act of processing in this way is known as Feature-Based Processing.

 Some examples of Feature-Based restructuring are:

 	Measurements – length and area calculations are performed on only one feature at a time, and the area of one feature has no impact on the area of another.

 	Line Generalization – each line feature is generalized in turn with no reference to surrounding features.

 	Center of Gravity Calculations – FME can calculate the “center of gravity” (the geographic center) of an area feature. Each calculation is unique and independent of other features.

 In general, most transformers dealing with attribute data are feature-based, while spatial data handling transformers are mostly Group-Based Transformers.

 Categorization

 Categorizing feature-based transformers is usually straightforward, the general definition being that features are processed in isolation. When a single feature is processed by itself, but in relation to other features (for example the Snapper), then this is usually classed as a Group-Based process since the features have to be held together in memory to achieve this.

 Flow of Features

 Feature-based transformers follow the general rule of FME, that features are processed one at a time.

 FME Workbench Transformers

 In FME Workbench, source and destination data is represented by objects in the workflow. In the same way, both geometric and attribute restructuring are represented by objects called Transformers.

 A transformer is an FME Workbench object that carries out the restructuring of features. There are hundreds of different transformers that perform different types of restructuring.

 The layout of Workbench windows may vary, but by default the Workbench Navigator will have a tab called Transformer Gallery. Click this tab to view the transformer list.

 The Transformer Gallery is divided into different categories, or you can view all transformers at once.
The easiest way to find a transformer is to focus the cursor on the canvas and start typing a keyword.

 More Information

 About This Help File

 Transformer Parameters

 Transformer Defaults

 FME Desktop Help Map

 Accessing Other Documentation

 Installed product documentation is accessed from the Start menu > FME Desktop > Documentation, from any FME component Help menu, or in the FME installation directory > help.

 FME Desktop documentation includes:

 	Documentation
 	Description

 	FME Workbench
 	This is the primary FME Desktop application for translating and transforming data.

 	FME Data Inspector
 	View data in any FME-supported format. Use the Data Inspector to preview data before translation, verify it after translation, and check data at any point during a translation.

 	FME Readers and Writers
 	This is a technical reference to the 300+ spatial and non-spatial data formats that FME Workbench is capable of reading and writing. It also includes format parameters that are visible in Workbench.

 	FME Transformers
 	This is a comprehensive reference to the 400+ FME transformers. Transformers are used in FME Workbench to perform geometric and attribute restructuring of features during a translation.

 	FME Coordinate Systems
 	This is a guide to associating coordinate systems with features in FME Desktop.

 	FME Quick Translator
 	A lightweight alternative to FME Workbench, the Quick Translator allows you to perform fast and easy data conversions.

 	FME Integration Console
 	This component allows you to integrate certain third-party applications with FME Desktop.

 [image: safe_logo.png]

 Copyright and Trademark

 About This Help File

 In addition to an overview and a description of parameters, each transformer may also contain the following information.

 	Transformer Name: This is followed by a brief overview on the transformer's function.

 	Input: The name of the port(s) and/or the expected input.

 	Output: The name of the port(s) and/or the expected output.

 	Parameters: The transformer parameters and descriptions.

 	Editing Transformer Parameters: Most transformer parameters are integrated so that the options can be easily configured with other elements in the workspace. This link provides more information about the options available.

 	Usage Notes: Notes related to the transformer's function or performance.

 	Example: Some transformers include simple diagrams to illustrate functionality.

 	FME Licensing Level: If the transformer requires FME Professional Edition and above, this is noted here.

 	Transformer Category: How the transformer is categorized in the Workbench Transformer Gallery.

 	FMEpedia: Links to transformer or related workspace examples.

 	Related Transformers: Transformers that are closely related, or might be used in conjunction with this transformer.

 	Transformer History: Sometimes a transformer is renamed or changed to more accurately reflect its function. If so, the transformer history is listed here. These transformers are also aliased when you search for a transformer.

 About Parallel Processing

 Each FME translation is usually run as a single process on your computer. This means that normally, FME sequentially processes each group of features specified in the Group By parameter. Versions of FME 2012+ can use multiple-core processors, which, on modern personal computers, allows multiple tasks to be performed in parallel. FME also uses hyper-threading, a technology used to make each physical core appear as two logical processors to the host operating system. By splitting the workload between cores/processors, FME performance can improve.

 In transformers that support this feature, parallel processing lets you run a transformation as several simultaneous processes. The Group-By parameter allows you to assign features to processes. The Parallel Processing parameter allows you to define different levels of processing, from No Parallelism to Extreme.

 In the example here, the Group By parameter is set to STATE based on the reader dataset. By setting the Parallel Processing level, FME can run each state as a separate, simultaneous process.

 [image: parallel_processing_param.png]

 Parallel Processing Levels

 	Parameter
 	Number of Processes

 	No Parallelism
 	1

 	Minimal
 	cores1 / 2

 	Moderate
 	exact number of cores

 	Aggressive
 	cores x 1.5

 	Extreme
 	cores x 2

 For example, on a quad-core machine, minimal parallelism will result in two simultaneous FME processes. Extreme parallelism on an 8-core machine would result in 16 simultaneous processes. You can experiment with this feature and view the information in the Windows Task Manager and the Workbench Log window. For more information, see Parallel Processing Level Parameter, below.

 FME License: There is a limit to the number of processes available for FME licenses: Base Edition: 4; Professional Edition: 8; All other editions: 16.

 Task Manager Processes

 When parallel processing is enabled, FME processes groups of features in parallel by spawning a new fmeworker.exe instance for each group of features.

 	In the task manager, the processes are visible as additional fmeworker.exe instances:

 [image: parallel_processing_processes.png]

 Workbench Log

 In the Workbench Log, information messages show license limit (if applicable), the request, process memory usage for each "worker", and identifying information about each -WORKER_KEY:

 	
 <DATE> 11:25:16| 2.0| 0.0|INFORM|The current FME license has limited the number of workers to `16'

 <DATE> 11:25:16| 2.0| 0.0|INFORM|AreaOnAreaOverlayer: The Parallel processing level of `MODERATE' has requested `8' workers

 <DATE> 11:25:23| 0.0| 0.0|INFORM|11> START - ProcessID: 6852, peak process memory usage: 26384 kB, current process memory usage: 26384 kB

 <DATE> 11:25:23| 0.0| 0.0|INFORM|11> FME Configuration: Command line arguments are `C:\apps\FME_2013\fmeworker' `C:\Users\<USER>\AppData\Local\Temp\childProcMap1353957917240_7552.fme' `LOG_STANDARDOUT' `YES' `-WORKER_CAPABILITY' `215L804U4L92U1L10U1L5U1' `-WORKER_KEY' `4120345835'

 When FME spawns an additional process, it needs to send the input features to the new process and receive the output features from the process. This adds additional CPU overhead when compared to single-process mode.

 Parallel Processing Level Parameter

 To use parallel processing, the workflow should have several groups of features that can each be processed independently. Each group will become a separate (parallel) process. Some grouping techniques are discussed below.

 The level of parallelism (how many processes can be executed at a single time) depends on the Parallel Processing Level parameter, which has five modes:

 	No Parallelism

 	Minimal

 	Moderate

 	Aggressive

 	Extreme

 Depending on the operation performed, one mode can be more advantageous than another, and Aggressive or Extreme does not always provide the best performance: in some workspaces, parallel processing does not provide any advantage; in other workspaces, minimal or moderate levels of parallelism are the best choice (for example, surface-related transformers such as SurfaceModeller or TINGenerator usually work best with these options).

 Parallel processing is incorporated into some transformers, and you can also expose its functionality through custom transformers.

 To use Parallel Processing on a custom transformer, click the Transformer Parameters in the Navigator pane:

 [image: parallel_processing_navigator.png]

 A custom transformer with parallel processing does not have to be limited to a single transformer within it: you can use multiple transformers.

 For more information on using parallel processing with custom transformers, see The FME Evangelist.

 Usage Notes

 Parallel processing can improve FME performance; but it can also degrade it or have very little effect. When using parallel processes, it is important that the
processing (CPU) time for each group is anticipated to be significantly more
than the overhead of launching a new process and sending the features back and
forth between processes. If this is not the case,
then enabling parallel processing will be slower than using no parallelism.

 Trying a small subset of your data in multi-processing mode will help you determine whether there is an advantage to using it on an entire dataset.

 Many, Small Groups

 Parallel processing is not recommended when you have many groups, each with a small number of features. Each group spawns an FME process and that takes time. For example, with 10,000 groups of 10 features, you might find it costs more performance to start and stop FME 10,000 times than you save in parallel processing. Conversely, 10 groups of 10,000 features might be more worthwhile.

 Data Volumes

 Parallel processing only provides an advantage when data volumes are large enough: for smaller datasets, the overhead of running multiple processes can easily make the translation slower than a single process.

 Other System Resources

 You need to ensure other system resources such as memory are adequate for the task. Firing up eight processes to do heavy polygon dissolving when you have eight cores is fine, but if you only have 2GB of memory then you may actually slow down a translation.

 Parallel processing is extremely efficient when the task is being offloaded elsewhere. For example, if you have multiple requests to make via the HTTPFetcher, it might be worth using parallel processing because the impact on system resources is small.

 Writing to Disk

 When the task involves writing to disk, spawning multiple processes will not speed up the task.

 Additional Information and Examples

 FMEpedia: Parallel Processing

 The FME Evangelist

 MULTI_PROCESS

 1The processor, or CPU, is the physical part of the computer that performs mathematical calculations. It is the most important part of a computer system. Traditional processors have only one core on the processor, meaning that at any given time, only one set of calculations is being performed. If a processor is dual-core, this means the single chip contains hardware for two processors, now called cores to distinguish them from the single chip, running simultaneously, side by side.

(Source: http://www.ehow.com/facts_5730257_computer-core-processors_.html)

 About Multiple Geometry

 A multiple geometry is a collection containing parts that are interpreted to be independent geometries. Each part is treated as its own complete geometry, separate from other parts.

 For example, a multiple geometry may contain two parts, one named Area containing an area representation of a feature, and one named Point which contains a point representation of the same feature.

 Nested Geometry

 A nested geometry is a collection of geometries which may, in turn, contain other collections. The most common case of a nested geometry is an aggregate which contains aggregates. This nested behavior allows for the representation of hierarchical relationships between geometries. For example, a nested aggregate named House has child aggregates named Roof and Walls, where Walls is an aggregate which has four faces. Properties associated with the house as a whole may be stored at the top level, but properties that only pertain to a sub-group, such as shingle type, may belong to the child aggregate Roof.

 Geometry Definitions

 A geometry definition is a shared geometry that can have several geometry instances in the same or different features. A geometry instance consists of a geometry definition reference, a local origin, and a 3D affine matrix.

 Geometry definitions may contain any type of geometry, including other geometry instances. When a feature containing a geometry instance is encountered by a consumer, if it is not treated as a geometry instance, it will be instantiated so that it no longer refers to the shared geometry definition but instead becomes a transformed copy of the original geometry definition.

 Geometry instances are useful for complex geometries where many copies of the same object are required. For instance, in a visualization of a city, many copies of the same park bench may be used. If a single geometry definition is used, with many geometry instances, the overall file size and processing required to display the geometry will be greatly reduced than if many copies of the same geometry are used. With a single geometry definition, it is also possible to easily modify the geometry definition and subsequently update all instances of that definition without needing to modify every instance. For example, if a user wishes to change the park bench from red to blue, a modification can be made to the geometry definition and it will subsequently be reflected in all geometry instances.

 Keywords: MULTI_GEOMETRY BUILD_MULTI_GEOMETRY READ_AS_NESTED_GEOMETRY

 Connecting to External Databases

 Several transformers provide the ability to attach data from an external database to features as they flow from their source to their destination.

 Joiner

 SQLExecutor

 ArcSDEQuerier

 OracleQuerier

 Database Readers (Oracle, Access MDB, ODBC, dBase, CSV)

 The database reader can be used to read rows from nonspatial databases, such as Microsoft Access, ODBC, and Oracle.

Database reader feature type properties allow you to specify a complete and arbitrary SQL SELECT statement to be used to determine the features that will be returned. Click the Feature Type Parameters tab. The SELECT statement can involve joins to other tables in additional to filtering data from a single table. As well, the parameters tab allows for a WHERE clause to filter the features that are extracted.

If the attribute data is held in CSV or dBase III files, then the CSV or dBase readers can be used to directly read the data. No filtering via a WHERE clause is available in these cases.

Using a database reader in conjunction with another reader of feature data and the FeatureMerger transformer, can in some situations be more efficient than using the Joiner or SQLExecutor. This is because the Joiner and SQLExecutor make queries of the database for each feature that passes through them. However, if the relevant parts of the database can be identified ahead of time and read in a single query by a database reader, and the resulting attribute features routed to a FeatureMerger transformer as SUPPLIER features, they can efficiently be paired up to the feature data acting as a REQUESTOR in the FeatureMerger.

 How to get the most from the Curvefitter

 Examples provided by TCI Corp.

 Understanding the Curvefitter processor and how to adjust it will produce
 the most ideal results.

 What does the plug-in do?

 The FME Curvefitter plug-in smoothes lines derived from line segments,
 points or raster data, and replaces a series of line segments with the
 optimal combination of straight lines and embedded arc segments required
 to create smooth curving lines.

 Example 1: This
 simple linestring could have been extracted from any FME-supported format.
 It’s made
 up of 85 straight line segments.

 [image: Curvefitter1.gif]

 The Ideal Solution

 The ideal solution for any Curvefitter process will depend on:

 	the characteristics of the source linework

 	the goals of the operator.

 For this example, we will assume the linework represents an engineered
 feature such as a road ROW boundary. As such, the linework was probably
 originally defined by Arcs and Lines. Our
 goal is to create linework that recreates that structure while accurately
 fitting the original linework. With
 these assumptions, our “Ideal Solution” will contain very smooth linework
 because roads are usually engineered as a series of tangent segments.

 First best guess

 Finding “the right settings” to produce the “ideal solution” often requires
 some trial and error. If you are not sure which setting will yield your
 ideal solution, you may want to set up a workspace using the Inspector
 transformer to show the original linework overlaid with the Curvefitter
 results.

 First we try a precision of 0.5 feet

 [image: Curvefitter2.gif]

 [image: Curvefitter3.gif]

 This creates a solution made up of 3 arc segments. Notice that this
 solution yields a fairly smooth transition between the leftmost segment
 and the middle segment but the rightmost segment is less smooth – the
 rightmost two segments are obviously not tangent.

 Try a more precise setting

 In this situation we may get a more accurate and smoother solution by
 using a smaller Precision value. This is often the case when accuracy
 and/or smoothness are the most important aspects of the desired result.

 Next we’ll try a Precision of 0.2 feet

 [image: Curvefitter4.gif]

 [image: Curvefitter5.gif]

 This yields a solution with 4 Arc segments. It fits the original linework
 more closely and the solution is somewhat smooth but it’s not perfectly
 smooth.

 Unbalanced emphasis

 The Curvefitter allows the adjustment of 3 Weights: Compression, Smoothness
 and Accuracy. Our
 “ideal solution” is defined as very smooth (because the linework probably
 originated as engineered segments that were perfectly tangent) and we
 are not so much interested in maximum vertex reduction, so we can adjust
 the Curvefitter Emphasis to achieve that goal. We
 will express our desired ideal solution by emphasizing Smoothness the
 most, Accuracy somewhat less and compression very little.

 Curvefitter Emphasis Settings:

 	Precision: 0.2

 	Compression: 0.1

 	Accuracy: 1.0

 	Smoothness: 10

 The results – nearly perfect smoothness and still accurate to within
 0.2 feet.

 [image: Curvefitter6.gif]

 [image: Curvefitter7.gif]

 This solution uses 4 segments: an Arc, followed by a straight segment,
 followed by 2 arc segments (left to right). This is our “Ideal Solution”
 realized.

 [image: Curvefitter8.gif]

 Example 2: This
 linestring could have been extracted from any FME-supported format. It’s
 a closed polygon, very smooth and it’s made up of 440 straight line segments.

 440 straight segments

 Area = 260,909

 Our Ideal Solution

 In this example, we will assume the goal is to focus on compression
 and accuracy – with accuracy defined as polygon computed area difference.

 A close-up view of the polygon with the vertices highlighted.

 [image: Curvefitter9.gif]

 Our first guess for Precision will be 1. We
 will start with Balanced Emphasis and look at the resulting polygon overlaid
 with the original.

 Curvefitter Settings:

 	Precision: 1

 	Emphasis = Balanced (all set to 1)

 	Results

 	Vertex Reduction = 1 : 25.88

 	Area of CF polygon = 261004

 	Area Difference = 0.0364%

 [image: Curvefitter10.gif]

 We can see that these settings give us more than a 25:1 compression,
 fairly accurate reproduction of the polygon and a very slight change in
 area.

 More Compression Please

 In order to gain a higher compression (more vertex reduction), we will
 try increasing the Precision (leaving the emphasis balanced for now).

 Curvefitter Settings:

 	Precision: 2

 	Emphasis = Balanced (all set to 1)

 	Results

 	Vertex Reduction = 1 : 36.66

 	Area of CF polygon = 261162

 	Area Difference = 0.0969%

 [image: Curvefitter11.gif]

 This does give us what we wanted with a healthy increase in compression
 and although the Curvefitter algorithm naturally creates a polygon that
 tends toward maintaining equal areas, the area of this polygon has a much
 greater change than the results we saw with a precision of 1.

 Since our Ideal Solution for this example is to maintain the polygon
 area as much as possible and also to achieve a high compression, we will
 enlist the help of the Curvefitter Emphasis settings.

 Curvefitter Settings:

 	Precision: 2

 	Emphasis

 	Accuracy: 10

 	Compression: 1.0

 	Smoothness: 0.1

 	Results

 	Vertex Reduction = 1 : 33.84

 	Area of CF polygon = 261054

 	Area Difference = 0.0555%

 [image: Curvefitter12.gif]

 With these settings, we fine-tuned the conversion to give us almost
 the same compression as the balanced emphasis but with a much more accurate
 area.

 Our Ideal Solution has been realized.

 [image: Curvefitter13.gif]

 Curvefitter results – 12 segments

 11 arc segments and 1 straight segment

 Area = 261,05

 fme_geometry

 All FME features have an attribute called fme_geometry that indicates their geometry type.

 The coordinates of an FME feature may contain any of the types of geometry shown in the following table.

 	Geometry Type
 	Example
 	FME Geometry Value
 	Description

 	Point
 	
 [image: 2_7.png]

 	fme_point
 	A single x, y and possibly z set of values representing a single point on the earth's surface.

 	Line
 	
 [image: 2_4.jpg]

 	fme_line
 	A line of two or more x, y, and optionally z values. Spaghetti lines which cross them-selves are allowed, but FME always re-moves any adjacent duplicated points it finds in lines as they are read.

 	Polygon
 	
 [image: 2_10.png]

 	fme_polygon
 	A closed ring of 2- or 3-dimensional vertices that represent an area. The first and last points are identical. The polygon may follow either the right-hand or left-hand rule.

 	Donut Polygon
 	
 [image: 2_11.png]

 	fme_donut
 	A set of closed rings or polygons. The first ring defines the outer boundary of the area. The remaining rings must be completely in-side the outer boundary and define the “holes” in the area. No orientation rule is enforced.

 	Aggregate
 	
 [image: 2_12.png]

 	fme_aggregate
 	A collection of distinct geometric entities, treated as a single unit. These may or may not be homogenous.

 	no coordinates

 	
 	fme_undefined
 	If a feature has no coordinates, its geometry type is set to fme_undefined.

 fme_type

 In addition to the fme_geometry attribute which indicates what the coordinates of an FME feature are, each FME feature also has an fme_type attribute which controls the interpretation of those coordinates. For example, a feature with fme_geometry of fme_point may be used to represent a point, a text object, an arc, or an ellipse. The value of the fme_type attribute is used to indicate which interpretation should be made.

 The fme_type attribute can have one of a set number of values. Depending on the value of fme_type, there may be additional attributes required to fully interpret the geometry. The following table lists the allowed values for fme_type, the associated fme_geometry, and its additional attributes.

 	
 fme_type

 	
 fme_geometry

 	
 Additional Attributes

 	
 fme_arc

 	
 fme_point

 	
 fme_rotation: The rotation of the primary axis in degrees counterclockwise from the primary axis. If not set, then 0 is assumed.

 [image: 2_13.jpg]

 fme_primary_axis: The length of the primary semi-axis of the defining ellipse measured in ground units.

 fme_secondary_axis: The length of the secondary semi-axis of the defining ellipse measured in ground units. For circular arcs this value will be equal to the fme_primary_axis.

 fme_start_angle:

Refer to the @Arc (function) in the FME Functions and Factories manual for a detailed definition of start_angle.

 fme_sweep_angle:
Refer to the @Arc (function) in the FME Functions and Factories manual for a detailed definition of sweep_angle.

 	
 fme_area

 	
 fme_polygon or

 fme_donut or fme_aggregate

 	
 None

 	
 fme_collection

 	
 fme_aggregate

 	
 None

 	
 fme_ellipse

 	
 fme_point

 	
 fme_rotation: The rotation of the primary axis in degrees counterclockwise from horizontal. If not set, then 0 is assumed.

 fme_primary_axis: The length of the primary semi-axis of the ellipse measured in ground units.

 fme_secondary_axis: The length of the secondary semi-axis of the ellipse measured in ground units. For circles this value will be equal to the fme_primary_axis.

 	
 fme_line

 	
 fme_line or fme_aggregate

 	
 None

 	
 fme_no_geom

 	
 fme_undefined

 	
 None

 	
 fme_point

 	
 fme_point or fme_aggregate

 	
 None

 	
 fme_raster

 	
 fme_aggregate

 	
 None

 	
 fme_solid

 	
 fme_aggregate

 	
 None.

 Note: fme_solid is the fme_type for the following geometries: IFMEExtrusion, IFMEBox, IFMEBRepSolid, IFMECSGSolid, and IFMECompositeSolid. For a description of FME Surfaces and Solids, see FME 3D Support in the FME Fundamentals help file (via the Workbench Help menu).

 	
 fme_surface

 	
 fme_aggregate

 	
 None.

 Note: fme_surface is the fme_type for the following geometries: IFMEFace, IFMERectangleFace, IFMETriangleStrip, IFMETriangleFan and IFMECompositeSurface. For a description of FME Surfaces and Solids, see FME 3D Support in the help file.

 	
 fme_text

 	
 fme_point

 	
 fme_rotation: The rotation of the text in degrees counterclockwise from horizontal. If not set, then 0 is assumed.

 fme_text_string: The actual annotation string.

 fme_text_size: The height of the text measured in ground units.

 Any features with an fme_geometry value of fme_aggregate, and an fme_type other than fme_collection must be homogeneous aggregates. An fme_type of fme_collection allows the feature to have heterogeneous aggregate geometry.

 XQuery Functions

 Feature Data Functions

 Feature Processing Functions

 Geometry Data Functions

 Geometry Processing Functions

 Feature Data Functions

 FME provides several functions which may be used within XQuery scripts. These functions allow XQuery scripts and templates to access and manipulate feature attribute values. All feature functions are prefixed with the fme namespace prefix.

 fme:get-attribute

 This function retrieves the value of an attribute from the current feature. It has two declarations:

 fme:get-attribute(<attribute name>)

 fme:get-attribute(<attribute name>, <default value>)

 If a second parameter is provided, and the feature does not have a value for the given attribute name, the function will simply return the value of the second parameter. The second parameter may be any type of XQuery value: string, number, XML node, nested function call, etc.

 If a second parameter is not provided, and the feature has no value for the given attribute, the function will simply return an empty sequence.

 String values returned by this function will be converted to be serializable in the context in which they are used. In particular, if the value is being inserted into an XML document, any XML syntax will be escaped. For example, < characters will become < and > will become >. The fme:get-xml-attribute function may be used to return XML nodes. Similarly, if the value is being inserted into a JSON document, the value will be enclosed in quotes, and reserved characters will be escaped. The fme:get-json-attribute may be used to return JSON objects or arrays.

 Example:

 Consider a feature with the following attributes:

 	Attribute
 	Value

 	
 name

 	
 Oranjestad

 	
 location

 	
 <point>-70.037 12.519</point>

 The fme:get-attribute function returns the following results:

 	XQuery
 	Result

 	
 <name>{fme:get-attribute("name")}</name>

 	
 <name>Oranjestad</name>

 	
 <type>{fme:get-attribute("point_type", "city")}</type>

 	
 <type>city</type>

 	
 {

 "location" : fme:get-attribute("location")

 }

 	
 {

 "location" : "<point>-70.037 12.519</point>"

 }

 fme:get-list-attribute

 This function retrieves the contents of a list attribute from the current feature. It also has two declarations:

 fme:get-list-attribute(<attribute name>)

 fme:get-list-attribute(<attribute name>, < delimiter >)

 If no delimiter parameter is provided, the function will return the list attribute as a sequence of individual items. If a delimiter parameter is provided, the function will serialize the contents of the list attribute into a single string, using the value of the delimiter parameter as a delimiter.

 As with the fme:get-attribute function, all string values returned by this function will be converted to be valid XML or JSON strings, depending on the context of the function call. The fme:get-xml-list-attribute function may be used to retrieve a list of XML nodes, and the fme:get-json-list-attribute function may be used to retrieve a list of JSON objects or arrays.

 Example:

 Consider a feature with the following attributes:

 	Attribute
 	Value

 	
 dates{0}

 	
 21-08-2010

 	
 dates{1}

 	
 22-08-2010

 	
 dates{2}

 	
 23-08-2010

 The fme:get-list-attribute function returns the following results:

 	XQuery
 	Result

 	
 <dates>
{fme:get-list-attribute("dates")}
</dates>

 	
 <dates>
21-08-2010 22-08-2010 23-08-2010
</dates>

 	
 <dates>

 {fme:get-list-attribute("dates", ",")}
</dates>

 	
 <dates>
21-08-2010,22-08-2010,23-08-2010
</dates>

 	
 {

 "dates" : fme:get-list-attribute("dates")

 }

 	
 {

 "dates" : ["21-08-2010", "22-08-2010", "23-08-2010"]

 }

 fme:get-xml-attribute

 This function retrieves attributes containing XML nodes. It has only one declaration:

 fme:get-xml-attribute(<attribute name>)

 If the given attribute contains XML text, this function will parse the text and return an XML node. If the attribute does not contain XML text, the function will return an empty sequence.

 Example:

 Consider a feature with the following attributes:

 	Attribute
 	Value

 	
 name

 	
 Oranjestad

 	
 location

 	
 <point>-70.037 12.519</point>

 The fme:get-xml-attribute function returns the following results:

 	XQuery
 	Result

 	
 fme:get-xml-attribute("location")

 	
 <point>-70.037 12.519</point>

 	
 fme:get-xml-attribute("name")

 	

 fme:get-xml-list-attribute

 This function is similar to the fme:get-xml-attribute function, but retrieves list attributes. It has two declarations:

 fme:get-xml-list-attribute(<attribute name>)

 fme:get-xml-list-attribute(<attribute name>, <delimiter>)

 The function attempts to parse each value in the list attribute into an XML node. Values which are not valid XML will be skipped. If the delimiter parameter is provided, it will be copied into the return sequence between each parsed XML value.

 Example:

 Consider a feature with the following attributes:

 	Attribute
 	Value

 	
 person{0}

 	
 <person>
 <name>John Doe</name>
 <age>25</age>
</person>

 	
 person{1}

 	
 <person>
 <name>Juan Domingo</name>
 <age>27</age>
</person>

 	
 person{2}

 	
 <person>
 <name>Johann Deuter</name>
 <age>29</age>
</person>

 The fme:get-xml-list-attribute function may be used as shown below:

 	XQuery
 	Result

 	
 <people>
{fme:get-xml-list-attribute("person{}")
</people>

 	
 <people>

 <person>
 <name>John Doe</name>
 <age>25</age>
 </person>

 <person>
 <name>Juan Domingo</name>
 <age>27</age>
 </person>

 <person>
 <name>Johann Deuter</name>
 <age>29</age>
 </person>

 </people>

 fme:get-json-attribute

 This function retrieves attributes containing JSON objects or arrays. It has only one declaration:

 fme:get-json-attribute(<attribute name>)

 If the given attribute contains JSON values, this function will parse the text and return a JSON object or array. If the attribute does not contain JSON text, the function will return an empty sequence.

 Example:

 Consider a feature with the following attributes:

 	Attribute
 	Value

 	
 name

 	
 Oranjestad

 	
 location

 	
 {

 "type" : "point”,

 "x" : -70.037,

 "y" : 12.519

 }

 The fme:get-json-attribute function returns the following results:

 	XQuery
 	Result

 	
 {
 "location" : fme:get-json-attribute("location")
}

 	
 {

 "location" :

 {

 "type" : "point”,

 "x" : -70.037,

 "y" : 12.519

 }

 }

 	
 fme:get-json-attribute("name")

 	

 fme:get-json-list-attribute

 This function is similar to the fme:get-json-attribute function, but retrieves list attributes. It has only one declaration:

 fme:get-json-list-attribute(<attribute name>)

 The function attempts to parse each value in the list attribute into a JSON object or array. Values which are not valid JSON will be skipped.

 Example:

 Consider a feature with the following attributes:

 	Attribute
 	Value

 	
 person{0}

 	
 {

 "name" : "John Doe",

 "age" : 25

 }

 	
 person{1}

 	
 {

 "name" : "Juan Domingo",

 "age" : 27

 }

 	person{2}
 	
 {

 "name" : "Johann Deuter",

 "age" : 29

 }

 The fme:get-json-attribute function may be used as shown below:

 	XQuery
 	Result

 	
 {

 "people" : fme:get-json-list-attribute("person{}")

 }

 	
 {

 "people" : [

 {

 "name" : "John Doe",

 "age" : 25

 },

 {

 "name" : "Juan Domingo",

 "age" : 27

 },

 {

 "name" : "Johann Deuter",

 "age" : 29

 }

]

 }

 fme:get:coordinate-system

 This function allows access to a feature’s coordinate system. If a feature has a coordinate system, the function will return the name of the coordinate system. If the feature does not have a coordinate system, no value will be returned.

 fme:has-attribute

 This function is very simple. It returns a boolean (true/false) value indicating whether or not an attribute exists on the current feature. It has one declaration:

 fme:has-attribute(<attribute name>)

 Example:

 Consider a feature which has only one attribute: ‘name’. The fme:has-attribute function returns the following results:

 	XQuery
 	Result

 	
 fme:has-attribute("name")

 	
 true

 	
 fme:has-attribute("id")

 	
 false

 fme:has-all-attributes

 This function returns a boolean (true/false) value indicating whether or not all of the attributes listed as parameters exist on the current feature. It has one declaration:

 fme:has-all-attributes(<attribute names>)

 Example:

 Consider a feature which has a ‘name’ and an ‘id’ attribute. The fme:has-all-attributes function returns the following results:

 	XQuery
 	Result

 	
 fme:has-all-attributes("name")

 	
 true

 	
 fme:has-all-attributes("name", "id")

 	
 true

 	
 fme:has-all-attributes("otherattr")

 	
 false

 	
 fme:has-all-attributes("name", "other", "id")

 	
 false

 fme:has-any-attributes

 This function returns a boolean (true/false) value indicating whether or not any of the attributes listed as parameters exist on the current feature. It has one declaration:

 fme:has-any-attributes(<attribute names>)

 Example:

 Consider a feature which has a ‘name’ and an ‘id’ attribute. The fme:has-any-attributes function returns the following results:

 	XQuery
 	Result

 	
 fme:has-any-attributes("name")

 	
 true

 	
 fme:has-any-attributes("name", "id")

 	
 true

 	
 fme:has-any-attributes("otherattr")

 	
 false

 	
 fme:has-any-attributes("name", "other", "id")

 	
 true

 fme:set-attribute

 This function sets the value of a feature attribute. It has two declarations:

 fme:set-attribute(<attribute name>, <sequence of values>)

 fme:set-attribute(<attribute name>, <sequence of values>, <delimiter>)

 The feature attribute will be set to the serialized value of the sequence of values. If the sequence contains more than one value, the values will be concatenated into a delimited string, and the attribute will be set to this concatenated value. The default delimiter is a comma, but the third parameter may be used to provide a different delimiter.

 This function does not return a value.

 Example

 The following XML document is the context item for the examples in this section.

 <country>

 <name>MONTSERRAT</name>

 <area>583.776</area>

 <cities>

 <city>Plymouth</city>

 <city>Brades</city>

 </cities>

 </country>

 After running the following query:

 fme:set-attribute("name_xml", /country/name),

 fme:set-attribute("area", /country/area/text()),

 fme:set-attribute("city_list", /country/cities/city/text()),

 fme:set-attribute("city_list2", /country/cities/city/text(), "|")

 The feature has the following attributes:

 	Attribute
 	Value

 	
 name_xml

 	
 <name>MONTSERRAT</name>

 	
 area

 	
 583.776

 	
 city_list

 	
 Plymouth.Brades

 	
 city_list2

 	
 Plymouth|Brades

 fme:append-attribute

 This function is very similar to the fme:append-attribute function, but it appends to the value of a feature attribute, rather than replacing the attribute value. It has two declarations:

 fme:append-attribute(<attribute name>, <sequence of values>)

 fme:append-attribute(<attribute name>, <sequence of values>, <delimiter>)

 The serialized value of the sequence of values will be appended to the feature attribute. If the sequence contains more than one value, the values will be concatenated into a delimited string before being appended to the attribute. The default delimiter is a comma, but the third parameter may be used to provide a different delimiter.

 This function does not return a value.

 fme:set-list-attribute

 This function sets the value of a feature list attribute. It has only one declaration:

 fme:set-list-attribute(<attribute name>, <sequence of values>)

 The function serializes each value in the sequence into an element in the list attribute.

 This function does not return a value.

 Example:

 The following XML document is the context item for the examples in this section.

 <countries>

 <country>

 <name>Montserrat</name>

 <capital>Plymouth</capital>

 </country>

 <country>

 <name>Christmas Island</name>

 <capital>The Settlement</capital>

 </country>

 <country>

 <name>Aruba</name>

 <capital>Oranjestad</capital>

 </country>

 </countries>

 After running the following query:

 fme:set-list-attribute("names", /countries/country/name/text()),

 fme:set-list-attribute("capitals", /countries/country/capital)

 The feature has the following attributes:

 	Attribute
 	Value

 	
 names{0}

 	
 Montserrat

 	
 names{1}

 	
 Christmas Island

 	
 names{2}

 	
 Aruba

 	
 capitals{0}

 	
 <capital>Plymouth</capital>

 	
 capitals{1}

 	
 <capital>The Settlement</capital>

 	
 capitals{2}

 	
 <capital>Orangestad</capital>

 fme:append-list-attribute

 This function is very similar to the fme:set-list-attribute function, but it appends to the list attribute, rather than overwriting existing values. It has only one declaration:

 fme:append-list-attribute(<attribute name>, <sequence of values>)

 The function serializes each value in the sequence into an element in the list attribute. Existing list values will be preserved, with the new values appended to the end of the list.

 This function does not return a value.

 Feature Processing Functions

 Using the XMLTemplater and JSONTemplater, the template can include the results of processing a sub-template. There are two functions that allow sub-templates to be processed.

 fme:process-features

 This function will evaluate a template, or set of templates, on features which enter the transformer through the corresponding input ports. The function will return the value of the sub-templates that get processed. This function has two declarations:

 fme:process-features(<template names>)

 fme:process-features(<template names>, <attributes to filter>, <filter values>)

 In both cases, the first parameter is a template name, or list of template names. If no additional parameters are given, the function will execute the listed templates on all features which entered the transformer through the input ports which correspond to those templates. The features will be processed in the order they arrived at the transformer.

 The second and third parameters can be used to filter the features which are to be processed. The second parameter should contain an attribute name, or a list of attribute names. The third parameter should contain an attribute value, or a list of values. These parameters should always have the same number of items listed. When the function is called, it will only execute the listed sub-templates on those features which match the following criteria:

 	The feature entered the transformer through one of the input ports corresponding to one of the templates listed in the first parameter.

 	For each of the attributes listed in the second parameter, the feature’s attribute value matches the corresponding value in the third parameter.

 Example:

 The following function call will execute the HOUSE sub-template on all features that entered the transformer through the HOUSE input port.

 fme:process-features("HOUSE")

 The following function call will execute the HOUSE sub-template on all features that entered the transformer through the HOUSE input port, and the BUSINESS sub-template on all features which entered through the BUSINESS input port. These features will be processed in the order they arrived at the transformer.

 fme:process-features(("HOUSE", "BUSINESS"))

 The following function call will execute the HOUSE sub-template on all features that entered the transformer though the HOUSE input port, and whose num_floors attribute is equal to 3.

 fme:process-features("HOUSE", "num_floors", 3)

 The following function call will execute the HOUSE sub-template on all features that entered the transformer through the HOUSE input port, and whose village_id attribute is equal to the id attribute of the feature currently being processed.

 fme:process-features("HOUSE", "village_id", fme:get-attribute("id"))

 The following function call will execute the HOUSE sub-template on all features that entered the transformer through the HOUSE input port, and whose num_floors attribute is equal to 3, and whose village_id attribute is equal to the id attribute of the feature currently being processed.

 fme:process-features("HOUSE", ("num_floors", "village_id"), (3, fme:get-attribute("id")))

 fme:process-template

 This function will evaluate a template, or set of templates. Unlike the fme:process-features function, it will evaluate the template on the same feature as the template that contains the function call is being evaluated on. The function has only one declaration:

 fme:process-template(<template names>)

 The only parameter to this function is a template name, or a list of template names. If more than one name is provided, the templates will be evaluated in the order they are listed.

 Example:

 The following function call will execute the OWNER template.

 fme:process-template("OWNER")

 The following function call will execute the OWNER and ADDRESS templates.

 fme:process-template(("OWNER", "ADDRESS"))

 Geometry Data Functions

 FME provides a number of functions for accessing geometry data using XQuery. All geometry data functions are prefixed with the “geom” namespace prefix.

 geom:get-dimension

 This function returns the dimension of the geometry currently being processed, as an integer value.

 geom:get-name

 This function returns the name of the geometry currently being processed. If the geometry does not have a name, this function will not return a value.

 geom:get-trait

 This function is almost identical to the fme:get-attribute function. It returns the value of a trait on the geometry currently being processed. It has two declarations:

 geom:get-trait(<trait name>)

 geom:get-trait(<trait name>, <default value>)

 If a second parameter is provided, and the geometry does not have a value for the given trait, the function will simply return the value of the second parameter. The second parameter may be any type of XQuery value: string, number, XML node, nested function call, etc.

 If a second parameter is not provided, and the geometry has no value for the given trait, the function will not return a value.

 geom:get-x-coord / geom:get-y-coord / geom:get-z-coord

 These functions return the x/y/z values of a point geometry. They will not return a value if they are executed on a non-point geometry.

 Examples:

 {

 "x" : geom:get-x-coord(),

 "y" : geom:get-y-coord(),

 "z" : geom:get-z-coord()

 }

 <point x="geom:get-x-coord()" y="geom:get-y-coord()" z="geom:get-z-coord()" />

 geom:get-start-x / geom:get-start-y / geom:get-start-z

 These functions return x/y/z values of the start point of linear geometries, such as lines, arcs and paths. If the geometry is a point, these functions will return the x/y/z values of the point geometry. These functions will not return a value for any other type of geometry.

 geom:get-end-x / geom:get-end-y / geom:get-end-z

 These functions return x/y/z values of the end point of linear geometries, such as lines, arcs and paths. If the geometry is a point, these functions will return the x/y/z values of the point geometry. These functions will not return a value for any other type of geometry.

 geom:get-points

 This function returns a string containing the point values of all points in the geometry being processed. For curved geometries, such as ellipses and arcs, the points in the stroked version will be used. This function has three declarations:

 geom:get-points()

 geom:get-points(<axis-order>)

 geom:get-points(<axis-order>, <axis-separator>, <point-separator>)

 The axis order parameter is a string, indicating which order the x, y and z coordinates should appear in the string. If the parameter is not given, the order “xyz” is used. The second parameter indicates the delimiter which is to be used between the x, y, and z values in a point, while the third parameter indicates the delimiter which is to be used between each point. The default axis delimiter is a comma, and the default point delimiter is a space.

 Example:

 geom:get-points("xy")

 geom:get-points("yxz")

 geom:get-points("yx", "/", " ")

 geom:get-points("xyz", " ", ",")

 The last example reverses the default axis and point separators, using a space between the axes and a comma between each point.

 geom:get-arc-data

 This function returns information about arc geometries. If the current geometry is not an arc, the function will not return a value. The function has the following declaration:

 geom:get-arc-data(<data names>)

 The function expects to be passed a list of strings naming the data which it is to return. The function will return the values as a sequence, in the order they are listed in the function call. Valid names are:

 	bulge
 	primary-radius
 	secondary-radius

 	start-angle
 	sweep-angle
 	rotation

 	center-x
 	center-y
 	center-z

 	start-x
 	start-y
 	start-z

 	mid-x
 	mid-y
 	mid-z

 	end-x
 	end-y
 	end-z

 Example:

 geom:get-arc-data("sweep-angle")

 geom:get-arc-data("center-x", "center-y", "center-z")

 geom:get-ellipse-data

 This function returns data about ellipse geometries. If the current geometry is not an ellipse, the function will not return a value. The function has the following declaration:

 geom:get-ellipse-data(<data names>)

 The function expects to be passed a list of strings naming the data which it is to return. The function will return the values as a sequence, in the order they are listed in the function call. Valid names are:

 	center-x
 	center-y
 	center-z

 	rotation
 	primary-radius
 	secondary-radius

 Example:

 geom:get-ellipse-data("primary-radius", "secondary-radius")

 geom:get-ellipse-data("rotation")

 geom:get-text-data

 This function returns information about text geometries. If the current geometry is not a text geometry, the function will not return a value. The function has the following declaration:

 geom:get-text-data(<data names>)

 The function expects to be passed a list of strings naming the data which it is to return. The function will return the values as a sequence, in the order they are listed in the function call. Valid names are:

 Example:

 geom:get-text-data("rotation")

 geom:get-text-data("size", "string")

 Geometry Processing Functions

 When evaluating a template, XQuery functions now have access to geometry. By default, the geometry which is accessed is simply the geometry associated with the feature which is being processed. However, using the functions described in this section, the geometry which is being processed may be changed. For example, if a feature’s geometry is an aggregate, the geom:process-parts function may be used to sequentially evaluate a sub-template on each part of the aggregate. While these sub-templates are being evaluated, the geometry data functions listed above will access the individual parts of the aggregate, rather than the aggregate as a whole.

 Note that it is possible for a template to be called recursively, if a different geometry is being accessed in each evaluation of the template. This allows the processing of nested aggregate geometries to arbitrary depths, simply by using the geom:process-parts function.

 Each of these functions, except the geom:process-points function, takes a parameter which defines which template to run for different geometry types. This mapping is done using an XML element, named ‘conf’ which contains attributes for the different geometry types. The attribute values contain the name of the template which is to be run for that geometry type. If a geometry does not have a type attribute in the conf element, or if the attribute contains an empty string, no template will be evaluated.

 Example:

 If the following conf element is passed to a function, the function will evaluate the ROAD template on all line geometries, the POI template on all point geometries, and the PARCEL template on all polygon geometries.

 <conf line="ROAD" point="POI" polygon="PARCEL" />

 The following values are valid geometry type names for the conf element:

 	aggregate
 	box
 	brepsolid

 	composite-solid
 	composite-surface
 	csgsolid

 	donut
 	ellipse
 	extrusion

 	face
 	line
 	mesh

 	multi-area
 	multi-curve
 	multi-point

 	multi-solid
 	multi-surface
 	multi-text

 	null
 	path
 	point

 	pointcloud
 	polygon
 	raster

 	rectangle-face
 	text
 	triangle-fan

 	triangle-strip
 	
 	

 In addition to the above type names, there are a number of attributes which may be used in the conf element to name a template to run for a group of related geometry types.

 	Conf Attribute Name
 	Effect

 	all
 	The named template will be evaluated for geometries of any type.

 	area
 	The named template will be evaluated for polygon, donut and ellipse geometries.

 	curve
 	The named template will be evaluated for line, arc and path geometries.

 	collection
 	The named template will be evaluated for aggregates and multi-geometries, such as multi-points, multi-curves, etc.

 If more than one conf attribute name is applicable to a geometry, the value of the more specific attribute name will be used. Thus, the value of the ‘all’ will only be used if no other attributes are applicable.

 Example:

 If the following conf element is passed to a function, the function will evaluate the PATH template on all line and arc geometries, the PATH template on path geometries, and the OTHER template on all other geometries.

 <conf curve="SEGMENT" path="PATH" all="OTHER" />

 While these conf elements name a template to run geometries of a particular type, a geometry trait may be used to name a template which is to be run for a particular geometry instance. Setting the ‘geometry_template’ trait on a particular geometry to a template name will make the functions run that template for that geometry, rather than the template named in the conf element.

 geom:process-geometry

 This function will evaluate a sub-template, based on the type of the geometry currently being processed. This allows a different sub-template to be run for each geometry type. This function has the following declaration:

 geom:process-geometry(<conf/>)

 As described above, the conf element parameter, or the geometry_template trait will indicate which template to run for each geometry type.

 Example:

 geom:process-geometry(<conf line="ROAD" point="POI" polygon="PARCEL" />)

 geom:process-parts

 If the geometry currently being processed is a collection (an aggregate or multi-geometry), this function will evaluate a sub-template for each part of the collection. The individual geometries will be processed in the order they appear in the collection, and a sub-template will be chosen based on the type of the geometry. This function may be used to evaluate a template recursively, for example if an aggregate geometry contains another aggregate geometry. As with the other functions in this section, this function takes a conf element as a parameter, which indicates which templates to run for different geometry types.

 This function can also be used to evaluate sub-templates on the parts of geometries which are not typically thought of as collections. For example, if the geometry being processed is a path, this function may be used to evaluate a sub-template on each segment of the path. Similarly, if the current geometry is a donut, this function may be used to evaluate a sub-template on each inner boundary of the donut.

 This function does not return anything if the geometry being processed is not a collection, path or donut geometry.

 Example:

 geom:process-parts(<conf area="PARCEL" curve="ROAD" />)

 geom:process-points

 This function evaluates a sub-template on all points which make up the geometry currently being processed. For example, if the current geometry is a line, the function will evaluate a sub-template on each vertex in the line. If the current geometry is a polygon, the function will evaluate a sub-template on each vertex in the polygon boundary. Arcs and ellipses will be stroked, and a sub-template will be evaluated on each point in the stroked line or polygon. This function has one declaration; unlike the other functions in this section, it does not take a conf element, but takes a single string parameter instead.

 geom:process-points(<sub-template name>)

 Example:

 geom:process-points("WAYPOINT")

 geom:process-boundary

 If the geometry being processed is an area, this function can be used to evaluate a sub-template on the boundary of the area. This function only applies to polygon, donut and ellipse geometries. It has the following declaration.

 geom:process-boundary(<conf line="" arc="" path="" />)

 Since the boundary of an area will always be a line, arc or path, these are the only conf attributes which are used by the function, along with the more generic ‘curve’ and ‘all’ attributes. The geom:process-parts function may be used to evaluate a sub-template for each inner boundary of a donut.

 Published Parameters

 The XQueryFactory can retrieve the values of any published parameters (or macros) in a workspace (or mapping file). These values are global variables in a query, and may be accessed using the ‘fme’ prefix and the parameter/macro name. For example, to access the FME_HOME macro value, the $fme:FME_HOME variable may be used. Due to a restriction of the XQuery language, parameters/macros whose names begin with a number are not accessible in this way.

 XQuery Examples

 Here are some sample XQueries using the following XML document:
<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.0">
<Response>
<name>-122.857000,49.138000</name>
<Placemark id="p1">
<address>7455 132 St, Surrey, BC, Canada</address>
<Point><coordinates>-122.856695,49.137818,0</coordinates></Point>
</Placemark>
</Response>
</kml>

 Since the top-level node contains the namespace declaration 'xmlns', the namespace must be declared in the query and it must be used to specify every element. The query:

 declare namespace x='http://earth.google.com/kml/2.0';
/x:kml

 Results in:
`_result' has value '<kml xmlns="http://earth.google.com/kml/2.0"><Response><name>-122.857000,49.138000</name><Placemark id="p1"><address>7455 132 St, Surrey, BC, Canada</address><Point><coordinates>-122.856695,49.137818,0</coordinates></Point></Placemark></Response></kml>'

 If the top-level node had no namespace attribute (i.e. '<kml>'), then the following XPath expression would produce the same result:
/kml

 The XPath expression below will return the full XML string regardless of namespace:
/*

 Similarly, the depth of the query can be specified using the wildcard '*':
/*/*/*/*/*
`_result' has value `<coordinates xmlns="http://earth.google.com/kml/2.0">-122.856695,49.137818,0</coordinates>'

 An XPath expression beginning with '//' will specify that the search start from any node that matches the element that directly follows.
declare namespace x='http://earth.google.com/kml/2.0';
//x:Point
`_result' has value `<Point xmlns="http://earth.google.com/kml/2.0"><coordinates>-122.856695,49.137818,0</coordinates></Point>'

 The following query will match all nodes:
//*

 Seven features are returned, containing as the result the values of the kml, Response, name, Placemark, address, Point, and coordinates nodes.

 To retrieve the value of an attribute, use the following syntax:
declare namespace x='http://earth.google.com/kml/2.0';
string(//x:Placemark/@id)
`_result' has value `p1'

 In all of the above examples, the query has been a simple XPath expression. XQuery also supports more complex operations using the 'for', 'let', 'where', 'order by', and 'return' keywords. The XML source may also be specified in the query using the 'doc("file.xml")' function.
declare namespace x='http://earth.google.com/kml/2.0';
for $node in doc("address.xml")//x:Placemark

 where $node/@id = 'p1'

 return concat($node/address/text(),

 " is located at " ,

 $node/Point/coordinates/text())

 `_result' has value `7455 132 St, Surrey, BC, Canada is located at -122.856695,49.137818,0'

 Here are some sample XQuery updates using the following XML document:
<parcels>
<parcel>
<parcelLocation>
<parcelBounds>
<topLeft>49.37238665158286 -123.17986965179443 </topLeft>
<bottomRight> 49.37064012679701 -123.17738056182861</bottomRight>
</parcelBounds>
<parcelRef>49.3715203830451 -123.17888259887695 </parcelRef>
</parcelLocation>
<parcelOwner>
<owner>
<name>Alice Wight</name>
<address type="mail">1037 West 36 Ave, Vancouver, BC, CANADA</address>
<address type="email">alice.wight@example.com</address>
</owner>
</parcelOwner>
</parcel>
</parcels>

 The following query will re-name the bounding elements everywhere they occur in the document:
rename node //topLeft as "upperLeft",
rename node //bottomRight as "lowerRight"

 In the result, the lines:
<topLeft>49.37238665158286 -123.17986965179443 </topLeft>
<bottomRight> 49.37064012679701 -123.17738056182861</bottomRight>

 Are replaced with:
<upperLeft>49.37238665158286 -123.17986965179443 </upperLeft>
<lowerRight> 49.37064012679701 -123.17738056182861</lowerRight>

 Suppose that a format that uses a homespun envelope is changed to use the gml envelope. Here is an XQuery to make that modification:
declare namespace gml = "http://www.opengis.net/gml" ;
for $node in //parcelBounds
return (
delete node $node,
insert node <gml:envelope>
<gml:pos>{$node/topLeft/text()}</gml:pos>
<gml:pos>{$node/bottomRight/text()}</gml:pos>
</gml:envelope> as first into $node/..
)

 In the result, the lines:
<parcelBounds>
<topLeft>49.37238665158286 -123.17986965179443 </topLeft>
<bottomRight> 49.37064012679701 -123.17738056182861</bottomRight>
</parcelBounds>

 Are replaced with:
<gml:envelope xmlns:gml="http://www.opengis.net/gml">
<gml:pos>49.37238665158286 -123.17986965179443 </gml:pos>
<gml:pos> 49.37064012679701 -123.17738056182861</gml:pos>
</gml:envelope>

 Suppose instead that Alice Wight has sold her parcel to Henry Cooper. The following query will update the relevant information in the file "parcels.xml" (which contains the original XML sample):
for $node in doc("parcels.xml")//owner where $node/name = "Alice Wight"
return (
replace value of node $node/name with "Henry Cooper",
replace value of node $node/address[@type='mail']
with "2062 West 38 Ave, Vancouver, BC, CANADA",
replace value of node $node/address[@type='email']
with "henry.cooper@example.com"
)

 In the file "parcels.xml", these two lines:
<owner>
<name>Alice Wight</name>
<address type="mail">1037 West 36 Ave, Vancouver, BC, CANADA</address>
<address type="email">alice.wight@example.com</address>
</owner>

 Will be updated to contain the following:
<owner>
<name>Henry Cooper</name>
<address type="mail">2062 West 38 Ave, Vancouver, BC, CANADA</address>
<address type="email">henry.cooper@example.com</address>
</owner>

 LicenseChecker Scenario

 This topic outlines the steps required to license a custom transformer or workspace (author/publisher), and download the custom transformer or workspace to use (end-user).

 Author/Publisher Steps

 Company ABC has created an FME custom transformer called XTransformer, which performs geometry manipulations. ABC wants to publish XTransformer to the FME Store and protect this transformer by licensing.

 Step 1: Register with Safe Software

 First, the author (company ABC) needs to register with Safe Software Inc. in order to publish transformers to FME Store. Upon registration, the author will receive its unique registration code (for example, 45671111) from Safe Software.

 Step 2: Validate Using the LicenseChecker

 The author creates the XTransformer in FME Workbench and adds the LicenseChecker transformer to the data flow so that the translation succeeds only if the LicenseChecker transformer passes. Within the LicenseChecker, the author needs to specify the Vendor Registration received in step 1 and assign a custom key specifically for this XTransformer product.

 [image: 02000001.jpg]

 A license file name needs to be specified in LicenseChecker. This file name will remain the same for all the licenses issued to the future end-users. To avoid possible conflict with other licenses, the license file name should be as unique as possible and include the publisher name. For example, xtransformer_com_abc.fmelic.

 [image: licensecheckerparameters.png]

 Step 3: Password Protect Transformer and Publish to FME Server

 The author saves the XTransformer with password protection. (Open the Navigator and click Transformer Properties > Advanced > Password). The author then publishes the XTransformer to the FME_Store repository.

 [image: 02000003.jpg]

 Step 4: Licensing the Transformer for an End-User

 If an FME user wants to download and use the XTransformer, the user will contact the author by sending an e-mail with his or her FME registration key. Upon receiving the user’s key, the author will run the LicenseGenerator tool provided by Safe and generate a license file for the user. The license file should be named the same as the one specified in the LicenseChecker in Step 2.

 A license file may support licensing single or multiple products. If the author has more than one product (for example, custom transformers or workspaces), these product names can be included in one license file and validated by separate LicenseChecker transformers.

 For example, if the author has another custom transformer called YTransformer that does some attribute manipulations, ABC can use the LicenseGenerator tool to add both XTransformer and YTransformer to the same license file:

 [image: vendor_license_generator.png]

 [image: 02000005.jpg]

 End-User Steps

 Step 1: User Downloads Transformer from the FME Store

 An FME user sees the XTransformer published by company ABC in the FME Store and downloads it to his local computer.

 [image: 02000006.jpg]

 Step 2: Create and Run Workspace

 The user creates an FME workspace that includes the newly downloaded XTransformer.

 [image: 02000007.jpg]

 When running this workspace, the FME translation fails and gives an error message that says something like XTransformer is not licensed. Please contact author@abc.com for purchasing.

 [image: 02000008.jpg]

 Step 3: Send License Request

 The user will send a license request to the author, along with their FME registration key.

 Step 4: License the Transformer

 If the license request is granted by company ABC, the user will receive a license file xtransformer_com_abc.fmelic by e-mail. The user needs to copy this license file to the licenses subfolder of the FME installation directory (for example, C:\Program Files\FME\licenses).

 Step 5: Run the Workspace with the Licensed Transformer

 When the user runs the workspace with XTransformer again, the translation will succeed.

 Copyright and Trademark Notices

 Copyright

 Copyright © 1994–2014 Safe Software Inc. All rights reserved.

 Information in this document is subject to change without notice. The
 software described in this document is furnished under a license agreement.
 The software may be used only in accordance with the terms of the agreement.

 Contact

 Safe Software Inc.

 Suite 2017 – 7445 132nd
 Street

 Surrey, B.C. V3W 1J8
 Canada

 www.safe.com

 Trademarks

 FME® is a registered trademark of Safe Software Inc.

 Other brands and their products mentioned herein may be trademarks or
 registered trademarks of their respective holders and should be noted
 as such.

 Safe Software may provide links to third-party websites for your reference or convenience. Such third-party web sites are not under Safe Software's control, and Safe Software is not responsible for and does not endorse the content of these sites.

 Version: FME Desktop 2014

 Revision: December 2013

 all.htm

 categorized.htm

 embedded transformers.htm

 recent.htm

 search results.htm

 Working with Transformer Parameters

 Every transformer contains at least one parameter: the Transformer Name. Most transformers also have additional parameters that you can change to suit your workspace.

 Properties Button Colors

 The properties button on a transformer is color-coded to reflect the
 status of its parameters.

 	

 [image: Propbutton_blue.png]

 	
 A blue properties button (or one that
 matches the color of its transformer) indicates that the default transformer
 parameters have been checked and amended as required, and the transformer
 is ready to use.

 	

 [image: Propbutton_yellow.png]

 	
 A yellow properties button indicates
 that the default parameters have not yet been checked. You can use a transformer that is in this state, but the workspace results may be unpredictable.

 	

 [image: Propbutton_red.png]

 	
 A red properties button indicates that
 there is at least one setting for which FME cannot supply a default value.
 You must provide a value for the required parameter(s) before you can use the transformer. These transformers are listed as Incomplete Transformers in the Navigator:

 [image: incomplete_transformer_icon.png]

 Accessing Parameters

 Click the Properties
 button to the top right of each transformer to open a dialog. This dialog contains defaults
 that Workbench initially sets for the transformer.

 In many cases, you can
 use the transformer without changing the default values; however, sometimes
 you will need to perform an action before you can use the transformer. In these cases, the transformer parameter will be highlighted red, as shown in the Buffer Amount parameter below:

 [image: transformer_requiredfield.png]

 Transformer Parameter Menu Options

 Advanced transformer parameters are integrated in most transformer dialogs, so that the options can be easily configured with other elements in the workspace. Click the menu button [image: menu_button.png] to access these parameters.

 Advanced parameters can be set, changed, published or unpublished, set to an attribute value, or linked to another parameter. Additional functions, such as an advanced editor and an arithmetic editor, are also available in some transformers.

 Note: In many cases, you can use the default transformer parameters without having to access the transformer parameter menu.

 See Transformer Parameter Options.

 Saving Defaults

 See
 Transformer Defaults for information
 on saving default values.

 Transformer Defaults

 Especially if you are a regular FME user, you will notice that you are
 always using the same transformers, and the same parameters in these transformers
 (for example, the same password in a Joiner or the same tolerance in a
 Snapper). Transformer defaults allow you to override FME defaults and
 save these parameters in individual transformers.

 All transformer dialogs have a Defaults button, with the following options:

 	
 Save as My Defaults: Edit a field, then choose
 this option to save the parameter.

 	
 Reset to FME Defaults: Changes the field back
 to the standard (FME) defaults

 	
 Reset to My Defaults: If you manually edit this
 field, you can reset it back to your own defaults. Note, however, that
 you cannot restore your own defaults after resetting to FME defaults.

 This example sets the default values of the Sampler to sample every
 10 features (the usual default is 1).

 You can set the sampling amount to 10 and then choose Save as My Defaults.

 [image: transformer_defaults.gif]

 Now whenever you place a Sampler transformer, its parameters will take
 your own values as defaults.

 Transformer Parameter Menu Options

 Most transformer parameters are now integrated so that the options can be easily configured with other elements in the workspace.

 This means that the parameters can be set, changed, published or unpublished, set to an attribute value, or linked to another parameter. More advanced functions, such as an advanced editor and an arithmetic editor, are also available in some transformers.

 It's important to remember that you can still use a transformer with its default values, as long as there are no required parameters (red-shaded fields). The parameter menu allows easy access more advanced settings.

 Accessing the Parameter Menu

 The options that will appear for a transformer depend on the type of transformer that you are using. If the transformer supports it, the menu displays after you open the transformer properties and click the parameter menu [image: xform_menu_button.png] button on the right side. This menu will usually display different options for each transformer parameter. The most common parameters are described below.

 Parameter Menu Options – General Parameters

 These menu choices are available in most transformers:

 	Menu Choice
 	Available
 	Description

 	

 [image: link_to_parameter_icon.png] Link to Parameter

 	For all parameters except transformer name and new attribute names
 	
 This will set the value of the parameter to a user or system parameter.

 There are three ways you can set to a parameter:

 If the transformer is connected, you can select an existing user parameter from the list.

 Create a user parameter by selecting Create New User Parameter. This will open the Add/Edit Parameter dialog.

 Select a system parameter. These are built-in parameters that FME always defines. For more detail on each system parameter see System Parameters.

 	

 [image: clear_value.png] Clear Value

 	Always
 	
 Clears all values and returns the parameter to an empty state.

 For choice parameters, Clear Value will take you back to the drop-down list.

 	

 [image: set_to_attr_value.png] Set To Attribute Value

 	If the parameter can take the value of an existing attribute from the input feature
 	
 Set a parameter value to the value of an existing attribute.

 Even if the parameter takes only a simple Yes/No value, you might want to ensure that you carry this value through to other transformer parameters without having to explicitly set them.

 Parameter Menu Options - Transformer Parameters

 Some parameter menu choices that appear depend on the transformer parameter type. Because each transformer parameter is unique, the associated parameter menu is also unique.

 The table below lists some of the more common transformer parameters:

 	Menu Choice
 	Description

 	

 [image: change_selection.png] Change Selection

 	Opens a dialog that allows you to choose multiple list items. For example, all transformer Group By parameters display this menu choice.

 	

 [image: select_attribute.png] Select Attribute

 	Select an attribute from the list.

 	

 [image: choose_font.png] Choose Font

 	In transformers that include font definitions, this menu choice displays the font chooser dialog.

 	
 [image: arithmetic_editor_icon.png] Open Arithmetic Editor

 	Opens a dialog that allows you to input an arithmetic equation, such as “1+2”, that will be evaluated at runtime.

 	
 [image: open_editor.png] Open Editor

 	Opens the basic or advanced text editor, depending on the settings in FME Options.

 	

 [image: select_color.png] Select Color

 	
 For any parameters that accept color definitions, this menu choice opens the color picker.

 	

 [image: select_coord_sys.png] Select Coordinate System

 	
 For any parameters that accept coordinate system definitions, this menu choice opens the Coordinate System Gallery.

 	

 [image: select_source_filename.png] Select Directory/Source Filename/Dataset File

 	Opens a directory/file browser in transformer parameters that require directories or files as input.

 	Select Format
 	Allows you to select the format of a reader or writer.

 	
 Select FME Workspace

 	Opens a file browser when selected in transformers that work with FME Server.

 	
 Select Raster

 	Opens a dialog that allows you to select raster bands and palettes.

 	

 [image: select_xml_input.png] Select XML Input

 	Opens a file browser when selected in transformers that work with XML files.

 	

 [image: set_geometry.png] Set Geometry

 	
 Opens a dialog that allows you to define geometry.

 System Parameters

 System parameters reference a specific system setting. Obtaining a value from a system parameter is often easier than having to define a value at run-time.

 System parameters have various uses, including:

 	Paths or directories might be used as a means to define the location of a file to be read during the translation; for example you might set an AttributeFileReader transformer to read a file from ($FME_MF_DIR)myFileName.txt.

 	Other parameters might be used to control the action of a workspace, or direct features to different parts of a workspace in order to process them differently. For example, FME_BUILD_NUM could be checked to ensure the FME engine running the workspace is sufficiently new; this could be of particular interest on FME Server where multiple engines might each be a different build number. Another example is FME_SECURITY_ROLES, which might help to filter features in a workspace dependent on the access rights given to a particular user.

 System parameters are listed in the table below:

 	Parameter
 	Description

 	FME_BUILD_DATE
 	The date the installation running the translation was built.

 	FME_BUILD_NUM
 	Contains the build number of the FME engine that is executing the workspace.

 	FME_DATA_REPOSITORY
 	Contains the name of the directory used by FME Server’s Web User Interface for temporarily uploading data.

 	FME_ENGINE
 	
 Contains the name of the FME Engine running the workspace.

 This parameter applies only to workspaces run on FME Server.

 	FME_HOME
 	Expands to the directory where the FME executable resides. It includes a trailing slash, independent of the platform.

 	FME_HOME_UNIX
 	Similar to FME_HOME, but in UNIX format

 	FME_JOB_ID
 	
 FME Server job identifier for the job that invokes this workspace.

 This parameter applies only to workspaces run on FME Server.

 	FME_MF_DIR
 	Contains the name of the directory in which the current workspace resides and, in some cases, the location of the source datasets.

 	FME_MF_NAME
 	Name of the mapping file used for the translation.

 	FME_PRODUCT_NAME
 	Name of this FME Desktop product release.

 	FME_SECURITY_ROLES
 	
 Contains the role of the user who is running the workspace. For example, Administrator and Author are two common roles.

 This parameter applies only to workspaces run on FME Server.

 	FME_SECURITY_USER
 	
 Contains the username of the person who is running the workspace.

 This parameter applies only to workspaces run on FME Server.

 	FME_SERVER_HOST
 	
 The FME Server host name used to invoke this workspace.

 This parameter applies only to workspaces run on FME Server.

 	FME_SERVER_PORT
 	
 The FME Server port used to invoke this workspace.

 This parameter applies only to workspaces run on FME Server.

 	FME_SERVER_REQUEST_HEADERS
 	
 The FME Server Web Service request header information, which includes the client IP of requests used to invoke this workspace.

 This parameter applies only to workspaces run on FME Server.

 	FME_SERVER_REQUEST_URI
 	
 The FME Server Web Service URI used to invoke this workspace.

 This parameter applies only to workspaces run on FME Server.

 	FME_SERVER_WEB_URL
 	
 The FME Server Application Server root URL used to invoke this
workspace.

 This parameter applies only to workspaces run on FME Server.

 	FME_TOPIC
 	
 Name of the FME Server Notification Service topic used to invoke this workspace.

 This parameter applies only to workspaces run on FME Server.

 Geometry Types

 This topic is duplicated. The master topic is in FME_Transformers.flprj.

 	Geometry Object
 	Description

 	Null
 	Creates an object without geometry. For some applications, it can be useful to have such an object available; for example, when you are using a CSV writer but you want to output a header or footer.

 	Point
 	Creates a single point at the given coordinates.

 	Text
 	Creates a single text object at the given coordinates, using the text string, height and rotation.

 	Line
 	
 Creates a single line object using the specified coordinate pairs. If you want to create an area, use the Polygon option instead. Even if you specify the first and last coordinate pairs to be the same, the type of the object generated will still be fme_line.

 	Arc
 	
 Creates an arc using the specified parameters.

 The primary axis parameter specifies the length of the primary axis, and the secondary axis parameter specifies the length of the secondary axis. The start angle parameter specifies the start angle for the arc, measured in degrees counterclockwise from horizontal. The sweep angle parameter specifies the number of degrees on the ellipse that define the arc, measured in degrees counterclockwise. The rotation parameter specifies the angle in degrees from the horizontal axis to the primary axis in a counterclockwise direction. A circle can be created by setting the primary and secondary axis to the same length and using a sweep angle of 360 degrees.

 [image: start_sweep_small.gif]

 Please note that not all transformers or output feature types work well with arcs. You may need an ArcStroker transformer to simplify it.

 	Ellipse
 	
 Creates an ellipse using the specified parameters. In order to create a circle, make sure the primary and secondary axes have the same length.

 Please note that the ellipse generated by this is an arc feature. Not all transformers or output feature types can work with arc features, so you may need an ArcStroker transformer to simplify it.

 	Polygon
 	Creates a polygon feature. Works in the same way as the line option, but it will warn you if you forget to close the polygon.

 	
 Box

 	
 Creates a rectangular prism in 3D space. It is defined by a minimum corner and a maximum corner, but unlike a Rectangle Face, these two coordinates must not share identical x-, y-, or z-values.

 The two corner points unambiguously represent a unique rectangular prism, in which all faces are parallel to the coordinate planes.
If the first point is the minimum point, then the surface normal points out from the box; otherwise, the box has been flipped inside-out and the surface normal points into the box.
With conjunction of a 4×4 transformation matrix, a Box can be used to represent boxes that are not parallel to the coordinate planes. This matrix can store affine transformations.

 	
 Rectangle Face

 	
 Creates an optimized rectangular face representation that lies parallel on a coordinate plane (either xy-, xz-, or yz-plane).

 This face specifies its position by using two points, the minimum corner and maximum corner. Because the face must lie parallel to a coordinate plane, the corner points share a common coordinate value. For example, if the rectangular face lies on the xy-plane, the corner points share a common z-value.
The surface normal of this rectangular face depends on the order of the specification of the first and second points, as described in the following table.

 	Plane to which rectangle is parallel
 	Order of specification of (coordinates of) the corners
 	Direction of the surface normal

 	XY
 	Min-corner, max-corner

 	Positive Z-axis

 	YZ

 	Min-corner, max-corner

 	Positive X-axis

 	XZ

 	Min-corner, max-corner

 	Positive Y-axis

 	XY
 	Max-corner, min-corner

 	Positive Z-axis

 	YZ

 	Max-corner, min-corner
 	Positive X-axis

 	XZ

 	Max-corner, min-corner
 	Positive Y-axis

 The surface normal determines the orientation of the rectangular face; that is, the direction in which the surface normal points indicates which side is the front.
With conjunction of a 4×4 transformation matrix, a Rectangle Face can be used to represent rectangular faces that are not parallel to the coordinate planes. This matrix can store affine transformations.

 	Triangle Strip
 	
 Creates a triangle strip, which is a series of connected triangular faces.

 These faces are defined by three consecutive points in a point list. The first three vertices (labelled below as v1, v2, and v3), define the first triangular face. A new triangle is formed by connecting the next point with its two immediate predecessors. That is, every additional point vi defines a new triangular face with vertices vi–2, vi–1, and vi.
For example, the second triangle is defined by v2, v3, v4, the third by v3, v4, v5, etc. The following diagram illustrates a typical Triangle Strip.

 [image: trianglestrip.png]

 The orientation of the entire triangle strip is determined by the orientation of the first triangle. If the vertices of the first triangle are ordered counterclockwise, then the front of the strip is displayed; otherwise, the back of the strip is displayed. If the triangle strip has been flipped, then the front/back of the entire strip is actually the reverse of what the first triangle indicates.

 	
 Triangle Fan

 	
 Creates a triangular fan, which is a series of connected triangular faces. The fan differs from a Triangle Strip in the way that vertices define faces.

 The first three vertices (labelled below as v1, v2, and v3), define the first triangular face. A new triangle is formed by connecting the next point with its immediate predecessor and the first point of the triangle fan. That is, every additional point vi defines a new triangular face with vertices v1, vi-1, and vi.
For example, the second triangle is defined by v1, v3, v4, the third by v1, v4, v5, etc. The following diagram illustrates a typical Triangle Fan.

 [image: trianglefan.png]

 The orientation of the entire triangle fan is determined by the order of vertices of any triangle within the fan (all the triangles are already oriented in the same direction). When they are ordered counterclockwise, the front is displayed; otherwise, the back is displayed.

 	Face
 	
 Creates a planar area in 3D space. The planar structure can be a polygon, an ellipse or a donut.

 The orientation of a Face is determined by using the following rule: if the fingers of your right hand curl along the order of the vertices, the direction that the thumb points to is the front of the face. This thumb direction also describes the surface normal of the face, a vector that points outwards perpendicular from the area.

 Curve closing method: This method controls how the curve is closed. It is applicable only if the first and last coordinates entered do not match X, Y or Z coordinate values. It ensures that the coordinates of the start and end points match so that it is a valid area.

 Average: An additional point is added that connects the start and end point of the area. This point is computed by the average of the start and end points.

 Extend: The start and end points are connected with no additional points.

 Extend or Average Based on Z: The area is closed using the Average method if – and only if – the start and end points lie on the same coordinate plane (i.e. they share the same X, Y or Z coordinates). Otherwise, the Extend method is used to close the area.

 	
 Custom

 	
 Creates an object based on an XML representation.

 Arithmetic Editor

 [image: arithmetic_editor_icon.png]

 The Arithmetic Editor provides a convenient way to construct math expressions from various data sources, such as attributes, parameters, and feature functions, where the result is used directly inside a parameter.

 For example, you might wish to calculate the size of a buffer from various other attributes, functions, or parameters.

 In this example, the source data has a vehicle speed attribute for each point. The data is converted into point features, and the individual buffers are then merged into a single area feature. You want to show areas where vehicle speed is low, to indicate traffic congestion zones.

 By using the Arithmetic Editor, you can directly attach the calculation to the Buffer Amount parameter:

 [image: bufferer_example.png]

 Using the Arithmetic Editor, you can create a buffer around each point, where buffer radius = speed * 4:

 [image: bufferer_example3.png]

 Similarly, in the AttributeCreator transformer, you could create an attribute such as a property’s Taxable Value using an expression such as (@Value(TaxBand) * @Area())/$(AssessedValue).

 The numbers 1-5 show the order in which the elements were added to the editor:

 [image: arithmetic_editor_example.png]

 Attributes

 After the transformer is connected in the workspace, this section lists the available attributes. You can use attributes to supply a value for use within the arithmetic expression.

 Published/Private Parameters

 This is a list of the published/private parameters (if any) that are in the workspace. You can use published parameters to supply a user-defined value for use within the arithmetic expression.

 System Parameters

 In some scenarios, it can be useful to use the value of System Parameter as part of the workspace.

 Feature Functions

 The available Feature Functions are FME functions that are capable of returning a numeric value. The numeric value returned by the function is then substituted into the arithmetic expression where defined.

 For more information, see Feature Functions.

 Math Functions/Math Operators

 For a detailed explanation of Math Operators and Functions, see ExpressionEvaluator.

 Text Editor

 The Text Editor provides a convenient way to construct text strings (including regular expressions) from various data sources, such as attributes, parameters, and constants, where the result is used directly inside a parameter.

 Workbench provides options to use both Basic and Advanced Editors. You can set this option as the default from the Tools > FME Options menu, or as required by clicking the Switch to Advanced button on the transformer's parameters dialog.

 For example, you want to combine the park name and area attributes into a single label:

 Connect a StringConcatenator transformer. In the Basic Text Editor, select the attributes to concatenate, and constants and a New Line to complete the label:

 [image: texteditor_example.png]

 For information about supported functions for manipulating strings, see String Functions.

 Advanced Text Editor

 The Advanced Editor supports syntax highlighting, and it includes more editing options.

 The concatenation example shown in the Basic Text Editor looks like this in the Advanced Editor:

 [image: texteditor_advanced.png]

 String Expression

 	FME Feature Attributes - The exposed user attributes specific to the feature types of the data being transformed.

 	Published Parameters

 	Private Parameters

 	System Parameters

 	Special Characters

 	FME Feature Functions

 	String Functions

 	Math Functions - See ExpressionEvaluator

 Options Menu

 	Option
 	Description

 	Syntax Highlighting
 	
 Sets the highlighting scheme to the given language. If FME syntax highlighting is selected, then:

 	valid attribute names are in yellow

 	functions are shown in blue

 	valid parameters in purple

 	invalid parameters/attributes are shown in red.

 	Select Font
 	Opens the font dialog and changes the editor font.

 	Show Line Numbers
 	When selected, shows the line numbers to the left of the text.

 	
 Show Brace Matching

 This option is valid only if Syntax Highlighting specifies a programming language such as Python.

 	
 When selected, shows brace matching.

 Matching braces on the left side of the text allow you to collapse the braced section so only the first line is in view.

 	Show Spaces/Tabs
 	When selected, shows a different character in the text for spaces, newlines and tabs.

 	Word Wrap
 	When selected, wraps lines that continue past the end of screen onto the next line. Otherwise, it keeps the line intact and shows a horizontal scroll bar.

 	Switch To Basic
 	Switches from the advanced to the basic text editor.

 	Default To Advanced Editor
 	
 Sets Workbench to always show the advanced editor.

 You can also set this option from the Tools > FME Options menu.

 Creating a User Parameter

 Creating a user parameter is a simple way to quickly expose a parameter in the workspace. This is useful if you want to set visible default values, or if you want to be able to easily change a parameter from workspace to workspace.

 There are different ways to create user parameters:

 	add a new user parameter

 	create a user parameter from an existing transformer or workspace parameter

 The method you choose will determine the fields that show in the Add/Edit Parameter dialog. Fixed parameters will not be shown; all parameters are described following the table.

 Tip: If you have never worked with Parameters, it is easier to start with an existing parameter because the Type will automatically be chosen.

 	User Parameter Type
 	Description
 	Add/Edit Parameter Dialog

 	To add a new user parameter that has no existing properties
 	
 Right-click the User Parameters icon in the Navigator, and
 click Add Parameter.

 This is a new parameter, so you will have to fill in all required fields.

 Click OK to add the parameter to the workspace.

 	
 [image: parameter_new.png]

 	To create a user parameter from an existing workspace parameter
 	
 Right-click a Workspace Parameter in the Navigator, and click Create User Parameter.

 Most fields are already filled in based on the parameter's existing information. You can edit the fields; however, changing the Type is not recommended.

 Click OK to add the parameter to the workspace.

 Detailed example: See Publishing a Parameter in the FME Workbench help.

 	
 [image: menu_adduserparam1.png]

 	To create a user parameter from an existing transformer parameter (Navigator)
 	
 Right-click a Transformer parameter in the Navigator, and click Create User Parameter.

 Most fields are already filled in based on the parameter's existing information. You can edit the fields; however, changing the Type is not recommended.

 Click OK to add the parameter to the transformer.

 	
 [image: menu_adduserparam2.png]

 	To create a user parameter from an existing transformer parameter (Transformer Parameters menu)
 	
 Click the Transformer Parameters menu [image: menu_button.png] and click Link to Parameter > Create User Parameter.

 You can edit all the fields.

 Click OK to add the parameter to the transformer.

 	
 [image: menu_adduserparam3.png]

 Parameters

 You can create many different parameter types and options.

 Type

 Choice: Creates
 a parameter that allows you to choose
 one of two values.

 Choice (Multiple): Creates
 a parameter that allows you to choose from multiple values.

 Choice or Text: Enter a text string or select one from a pick-list.

 Choice with Alias: Add selected readers, writers, or coordinate systems.

 Choice with Alias (Multiple): Similar to Choice with Alias but the display alias for this type is mapped to an internal value, and is returned as the parameter value instead.

 Color Picker: Creates
 a parameter for changing the FME
 color value.

 Coordinate System Name: Creates a parameter for choosing a coordinate system.

 Directory: Creates
 a parameter that allows you to choose the
 name (and path) of a directory.

 Filename (Existing): Creates a parameter for choosing the name and path of a file.

 Filename (Output): Creates a parameter for choosing the name and path of the output file.

 Float: Creates a parameter for choosing a floating point number.

 Integer: Creates a parameter for choosing an integer.

 Password: Creates a parameter for entering a password.

 Scripted (Python): Creates a parameter from a Python script (Private parameter only). Python is described in more detail in FME Workbench help.

 Scripted (Tcl): Creates a parameter from a Tcl script (Private parameter only). Tcl is described in more detail in FME Workbench help.

 Slider: Creates a bounded numeric value.

 Text: Creates a parameter for entering a text string.

 Text (Multiline): Opens an editor to enter a multi-line text string. The first line will show in the parameter but to edit the text, you must open the editor.

 Published

 If you uncheck this box, the parameter will be created as a Private parameter.

 Optional checkbox

 It might not be important in every instance to use the value from this particular published parameter. Flagging the parameter as Optional ensures that it can continue with an empty value.

 Configuration

 The parameters required in this field are dependent on the Parameter
 Type you choose. Click the browse button beside the parameter to see the applicable configuration choices. For example, you can:

 	Populate a list and the contents
 will be displayed in a pull-down menu when the parameter is published;

 	Point to a file or directory;

 	Import attribute values from other datasets;

 	Add readers, writers and coordinate systems by clicking Add to choose from the galleries.

 Name

 Enter a name. This will appear under the Published Parameters icon in
 the Navigator pane.

 Prompt

 Enter the prompt that will appear when you run the workspace.

 Default Value

 Choose the default value that will be used.

 All user parameters will be listed in the User Parameters section of the Navigator.

 Usage Notes

 	After you create a Published Parameter, run the workspace by clicking Prompt and Run Translation [image: promptandrun.png]. You will get a good idea how the parameters will affect the workspace just by viewing the prompt dialogs and parameter choices. (Note that this will not work for Private Parameters, since they are not prompted.)

 	You can reorder the parameters in the Navigator by dragging them up or down.

 	Reader and Writer dataset parameters are published by default. If, for example, a file is missing, you will see a warning.

 Modifying a User Parameter

 Edit

 	Select the parameter, right-click, and select Edit Value or Edit Definition.

 	Edit the desired fields and click the OK button.

 Tip:
 To quickly change a value only, double-click on a Parameter.

 Delete

 	Select a parameter, right-click, and select Delete.

 Apply to

 	Select the parameter, right-click, and select Apply to.

 	In the Apply Published Parameter dialog, click
 the checkbox next to other workspace parameters.

 Note: If you filter the list by keyword, the list
 will dynamically update as you enter the keyword –
 clicking OK will close the dialog.

 	Click OK to copy the published parameter to the
 additional selected parameters.

 Converting Between Published and Private Parameters

 	Right-click on the parameter and select Convert To Private Parameter or Convert to Published Parameter, or

 	Edit the Parameter settings and uncheck the Published checkbox.

 Function Return

 Area

 The @Area function calculates the area of a polygonal feature. The function
 correctly handles both polygonal features and polygonal features with holes.
 For point and linear features, 0 is returned. The optional multiplier can be
 used to convert the return value from ground units squared to units more
 useful to the caller.

 Syntax
@Area([[(SLOPED_AREAS|VOLUME),]<multiplier>])

 Count

 This function provides a mechanism for generating unique numbers and
 assigning them to feature attributes during a translation. Because it outputs
 the final counts in each of the domains to the log file, it can also be used
 as a feature function to count features that matched the correlation lines.
 In this case, the log file records the total number of times the function was
 invoked, even though its result was not stored in any attribute.

 Syntax
@Count([<domain>[,<startVal>[,<modulo>]]][,NO_LOG])

 Dimension

 The dimension that the feature will be forced to.

 Syntax
@Dimension([(2|3)])

 Evaluate

 This function evaluates an arithmetical expression and returns the result.
 The operators permitted in the expressions to be evaluated are a subset of
 the operators permitted in C expressions. They have the same meaning and
 precedence as the corresponding C operators.

 Tip: If the expression contains spaces or nested parentheses, it should be
 placed in quotes.

 Syntax
@Evaluate(<expression>)

 GeometryType

 The fme_type being set on the feature.

 Syntax
 @GeometryType()
 @GeometryType((fme_point|fme_line|fme_polygon))
 @GeometryType((fme_line|fme_polygon),HANDLE_ARCS_AND_ELLIPSES)
 @GeometryType(fme_polygon,CHECK_Z_IN_DUPLICATE_POINTS_REMOVAL)
 @GeometryType(fme_arc,[rotation],<primaryRadius>,[secondaryRadius],<startAngle>,<sweepAngle>)
 @GeometryType(fme_ellipse,<primaryRadius>,[secondaryRadius],[rotation],<orientation>)
 @GeometryType(fme_text,<textString>,<textSize>,[rotation])
 @GeometryType(fme_face, <toleranceValue>)
 @GeometryType(fme_extrusion, <extrusionX>, <extrusionY>, <extrusionZ>)
 @GeometryType(fme_composite_surface)
 @GeometryType(fme_brep_solid)
 @GeometryType(fme_point_cloud)

 Length

 Specifies whether the 3rd dimension is used in the length calculation. The
 default is 2, meaning only the x and y coordinates are used in the
 calculation. If 3 is specified and the feature has only 2 dimensions, no
 error will be flagged and the length will be calculated on the 2 available
 dimensions.

 Syntax
@Length([<dimension>[, <multiplier>]])
 @Length(TO_POINT, <dimension>, <point x>, <point y> [, <point z>])
 @Length(ALL_LENGTHS[, <dimension>[, <multiplier>]])
 @Length(ALL_LENGTHS_AS_MEASURES, <dimension>, <multiplier>
 [, <measure name>])

 NumCoords

 This function returns the number of coordinates that define the feature's
 geometry.

 Syntax
@NumCoords([FLATTEN_AGGREGATE])

 UUID

 This function generates and returns a universally unique identifier (UUID),
 which is almost guaranteed to be unique across time and all clients. The
 identifier is created from a combination of the computer's hardware
 characteristics, the current time, and a sequence number. Characteristics of
 the actual feature data are not used to assist in UUID generation.

 Syntax
@UUID()

 Value

 This function returns the value of the attribute <attrName>. If the attribute
 does not exist, then an empty string is returned.

 Syntax
@Value(<attrName>)

 XValue

 This function may be used as either a feature function or an attribute value
 function. When used as a feature function, the optional x-value parameter
 must be specified. In this case, the @XValue function stores the specified
 value as the x coordinate of the feature.

 If a list attribute is specified in place of a value, then all the values in
 that list are supplied as coordinates to the feature; each coordinate is
 supplied in the same way as a single value.

 If the optional Reset parameter is specified, then the coordinates of the
 feature are cleared before the x value is added. If it is not specified, then
 the x value is added to the current feature's geometry, either extending a
 line if the feature was linear or creating a Point-In-Polygon feature out of
 a polygonal feature.

 When used as an attribute value function, the x-value parameter is not
 specified. In this case, @XValue returns the value of the first x coordinate
 of the feature. This value is then stored in the attribute.

 Warning: @XValue() should generally be used in conjunction with
 @YValue(). If @XValue() is used on its own, it is possible to create a
 feature with a different number of X and Y values.

 Syntax
 @XValue([(<x-value>|<list attribute>)][, Reset])

 YValue

 This function is identical in its operation to the @XValue function, except
 it operates on the Y coordinate rather than on the X coordinate.

 ZValue

 This function stores the specified value as the z coordinate in the
 feature. If the feature contains multiple coordinates, then all coordinates
 will be set to the specified z-value.

 If a list attribute is specified in place of a value, then all the values in
 that list are supplied as successive coordinates to the feature.

 When used as an attribute value function, the z-value parameter is not
 specified. In this case, @ZValue returns the value of the first z coordinate
 of the feature. This value is then stored in the attribute.

 Warning: @ZValue() should generally be used in conjunction with @XValue()
 and @YValue(). If @ZValue() is used on its own, it is possible to create a
 feature with a different number of X, Y and Z values.

 FME Feature Functions

 FME Feature Functions return a numeric value and can be used in expressions, where supported.

 Abort

 Aborts the translation and outputs the message specified by msg.

 This function is the equivalent of the Terminator transformer.

 Syntax

 @Abort(STRING msg)

 Area

 Calculates the area of a polygonal feature. The function correctly handles both polygonal features and polygonal features with holes. For point and linear features, 0 is returned.

 Syntax

 @Area([[(SLOPED_AREAS|VOLUME),]<multiplier>])

 Arguments

 <multiplier>

 By default, the area returned is in coordinate units squared. The multiplier, if specified, can be used to convert to other units. For example, (@Area()*10.764) could be used to calculate the area of a feature in a coordinate system with meters as the units, to a result in square feet. The default is 1.

 Range: Real Number

 SLOPED_AREAS

 Calculates the area of the planar polygon or face with respect to the plane.

 VOLUME

 Calculates the volume of the solid (not the area).

 Count

 Generates unique numbers and assigns them to feature attributes during a translation. Because it outputs the final counts in each of the domains to the log file, this function can also be used to count features that matched the correlation lines. In this case, the log file records the total number of times the function was invoked, even though its result was not stored in any attribute.

 Syntax

 @Count([<domain>[,<startVal>[,<modulo>]]][,NO_LOG])

 Arguments

 <domain>

 A counter name. Each time @Count is invoked, it returns and increments the count associated with the domain name. This allows many different counters to be used during a single translation. For example, unique line numbers starting at 0 can be assigned to all lines by invoking @Count(lineCounter). During the same run, unique polygon numbers starting at 0 can be assigned to all polygons by using @Count(polygonCounter). If this parameter is not specified, the default domain is assumed.

 Range: Any String

 <startVal>

 The starting value of the counter. The counter is incremented from the start value. This is useful for applications where ranges of values have meanings in the problem domain.

 Range: Any Integer

 <modulo>

 The modulo value of the counter. The counter returns a value between zero and <modulo> - 1. This is useful when using counters as lookup values with the @Lookup function.

 Range: Any Integer

 NO_LOG

 Prevents FME from logging this domain.

 Configuration

 The @Count function accepts the following configuration line:

 Count MAX_TO_LOG <number>

 If this configuration line is not present, a maximum of 50 count domains are logged by default.

 <number>

 Integer >= -1

 Sets the maximum number of count domains that are logged. If -1 is specified, all count domains are logged.

 Dimension

 Returns the dimension of the feature as either 2 or 3. If no parameters are specified, the dimensions of the feature are returned. If 2 or 3 is specified as a parameter, the function forces the feature to that dimension and returns the new dimension of the feature.

 Syntax

 @Dimension([(<dimension>)])

 Arguments

 <dimension>

 The dimension to which the feature will be forced.

 Range: (2|3)

 Evaluate

 Uses Tcl to evaluate the input mathematical expression and returns the result.

 Syntax

 @Evaluate(STRING expression)

 GeometryType

 Returns the geometry type of the feature as a string.

 Syntax

 @GeometryType()

 Length

 Calculates the length of features. For polygonal features, the length is equal to the sum of its perimeter and the perimeter of any holes within it.

 Syntax

 @Length([<dimension>[, <multiplier>]])

 @Length(TO_POINT, <dimension>, <point x>, <point y> [, <point z>])

 @Length(ALL_LENGTHS[, <dimension>[, <multiplier>]])

 @Length(ALL_LENGTHS_AS_MEASURES, <dimension>, <multiplier>

 [, <measure name>])

 Arguments

 <dimension>

 Specifies whether the 3rd dimension is used in the length calculation. The default is 2, meaning only the x and y coordinates are used in the calculation. If 3 is specified and the feature has only 2 dimensions, no error is flagged and the length will be calculated on the 2 available dimensions.

 If the first argument is TO_POINT, this argument is required.

 Range: 2|3

 <multiplier>

 By default, the length returned is in ground units. The multiplier, if specified, can be used to convert to other units. The default is 1.

 Range: Real Number

 TO_POINT

 If the first argument is TO_POINT, the function calculates the length of a feature up to the vertex specified by <point x>, <point y> [, <point z>]. The value returned is the length of the line up until the closest spot on the feature to the point that was passed in. For example, if there is a line that goes from (0,0) to (0,100) and passes in a point (50,50), the closest spot on the line would be (0,50), and the value returned would be the length from (0,0) to (0,50), which is 50. Depending on the <dimension> argument, either a 2D or 3D length is calculated.

 <point x>

 The x coordinate for the vertex up to which the length is to be calculated. Used if the first argument is TO_POINT.

 Range: Real Number

 <point y>

 The y coordinate for the vertex up to which the length is to be calculated. Used if the first argument is TO_POINT.

 Range: Real Number

 <point x>

 The z coordinate for the vertex up to which the length is to be calculated. Used if the first argument is TO_POINT.

 Range: Real Number

 ALL_LENGTHS

 If the first argument is ALL_LENGTHS, the function returns a comma-separated list of values, in which each value is the distance from the start of the feature up to that vertex in the feature.

 For example, a feature has 4 points: A,B,C and D.

 AB, BC and CD are the distance between two consecutive vertices:

 If AB = 1, BC = 2, and CD = 3, the value returned by the function is 0,1,3,6.

 ALL_LENGTHS_AS_MEASURES

 If the first argument is ALL_LENGTHS_AS_MEASURES, the function calculates values as with the ALL_LENGTHS option, but these are set as a measure on the geometry itself. The name of the new measure can be given by the <measure name> parameter.

 <measure name>

 Specifies the name of the measure to set. If left blank or omitted, the default measure is set.

 Range: String

 Examples

 This example calculates the length of a feature in a coordinate system with meters as units, to obtain a result in feet:

 (@Length()*3.2808)

 NumCoords

 Returns the number of coordinates that define the feature’s geometry.

 Syntax

 @NumCoords([FLATTEN_AGGREGATE])

 Arguments

 FLATTEN_AGGREGATE

 In the case of multi-part or aggregate features, this flag ensures that the actual number of coordinates are returned for the aggregate feature, instead of the actual storage used for the feature. (An aggregate feature may use more storage space than the actual coordinates of the feature.)

 The number of coordinates returned with FLATTEN_AGGREGATE excludes any internal FME meta information.

 UUID

 Creates and returns a new Universally Unique Identifier (UUID) for the feature.

 Syntax

 @UUID()

 Value

 Returns the value of the specified input attribute attr.

 Syntax

 @Value(STRING attr)

 XValue

 This function may be used as either a feature function or an attribute value function. When used as a feature function, @XValue stores the specified value as the x coordinate of the feature.

 When used as an attribute value function, @XValue returns the value of the first x coordinate of the feature. This value is then stored in the attribute.

 @XValue() should generally be used in conjunction with @YValue(). If @XValue() is used on its own, it is possible to create a feature with a different number of X and Y values.

 Syntax

 @XValue([(<x-value>|<list attribute>)][, Reset])

 Arguments

 <x-value>

 The value of the x coordinate stored in the feature. When used as a feature function, this parameter must be specified. When used as an attribute value function, this parameter is not specified.

 Range: Real Number

 <list attribute>

 The name of a list attribute that contains coordinates to be stored in the feature. All the values in the list are supplied as coordinates to the feature; each coordinate is supplied in the same way as a single value.

 Range: attribute name containing {} exactly once.

 , Reset

 Specifies that the coordinates of the feature are cleared before the x value is added. If not specified, then the x value is added to the current feature's geometry, either extending a line if the feature was linear or creating a Point-In-Polygon feature out of a polygonal feature.

 YValue

 This function may be used as either a feature function or an attribute value function. When used as a feature function, @YValue stores the specified value as the y coordinate of the feature.

 When used as an attribute value function, @YValue returns the value of the first y coordinate of the feature. This value is then stored in the attribute.

 @YValue() should generally be used in conjunction with @XValue(). If @YValue() is used on its own, it is possible to create a feature with a different number of X and Y values.

 Syntax

 @YValue([(<y-value>|<list attribute>)])

 Arguments

 <y-value>

 The value of the y coordinate stored in the feature. When used as a feature function, this parameter must be specified. When used as an attribute value function, this parameter is not specified.

 Range: Real Number

 <list attribute>

 The name of a list attribute that contains coordinates to be stored in the feature. All the values in the list are supplied as coordinates to the feature; each coordinate is supplied in the same way as a single value.

 Range: attribute name containing {} exactly once.

 ZValue

 This function may be used as either a feature function or an attribute value function. When used as a feature function, @ZValue stores the specified value as the z coordinate of the feature. If the feature contains multiple coordinates, then all coordinates are set to the specified z-value.

 When used as an attribute value function, @ZValue returns the value of the first z coordinate of the feature. This value is then stored in the attribute.

 @ZValue() should generally be used in conjunction with @XValue and @YValue(). If @ZValue() is used on its own, it is possible to create a feature with a different number of X, Y and Z values.

 Syntax

 @ZValue([(<z-value>|<list attribute>)])

 Arguments

 <z-value>

 The value of the z coordinate stored in the feature. When used as a feature function, this parameter must be specified. When used as an attribute value function, this parameter is not specified.

 Range: Real Number

 <list attribute>

 The name of a list attribute that contains coordinates to be stored in the feature. All the values in the list are supplied as successive coordinates to the feature.

 Range: attribute name containing {} exactly once.

 [bookmark: MadCap_TOC_511_4]String Functions

 FME Workbench supports the following string manipulation functions:

 Commas (,) and quotes (") inside string input parameters must be escaped. Escape commas by enclosing in quotes (","). Escape quotes by preceding with a backward slash (\").

 FindRegEx(string str, string regExp, [int startIdx], [bool caseSensitive], [-1])

 Returns the index in string str starting at startIdx that matches regExp , or -1 if the string is not found. If startIdx is not specified, the search starts at index 0. If caseSensitive is FALSE, the search is case insensitive. Otherwise, the search is case sensitive. If -1 is specified, FindRegEx() returns the index in str starting at startIdx from the end of str going backwards.

 Equivalent transformer: StringSearcher

 FindString(string str, string findStr, [int startIdx], [bool caseSensitive])

 Returns the index in string str starting at startIdx that matches findStr , or -1 if the string is not found. If startIdx is a negative integer, FindString() returns the index in str starting at startIdx from the end of str , then matching findStr going forward (from left to right). If startIdx is not specified, the search starts at index 0. If caseSensitive is FALSE, the search is case insensitive. Otherwise, the search is case sensitive.

 Equivalent transformer: StringSearcher

 Format(string formatStr, float num)

 Formats the specified number as specified by formatStr and returns the resulting string. This function calls Tcl function format to format the number by creating a command string in the form format {formatStr} {num}. For more information about specifying formatStr, see http://www.astro.princeton.edu/~rhl/Tcl-Tk_docs/tcl/format.n.html or the equivalent transformer: StringFormatter.

 FullTitleCase(string str)

 Returns a string with the first letter of each word, rather than just the first letter in the string, converted to its Unicode title case variant (or to uppercase if there is no title case variant) and the rest of the string lowercase. The function ignores parentheses if they start the string or follow whitespace, and treats hyphens (-) as whitespace characters.

 Equivalent transformer: StringCaseChanger

 GetWord(string str, int wordNum)

 Returns the wordNumth word in str . If wordNum is a negative integer, GetWord() returns the wordNumth word from the end of str. If there is no word at wordNum, an empty string is returned. Words in str must be delineated by blank spaces (space, tab, return carriage, and others).

 Left(string str, int n)

 Returns a substring that contains the n leftmost characters of str.

 LowerCase(string str)

 Returns a string with all letters in str converted to lower case.

 Equivalent transformer: StringCaseChanger

 PadLeft(string str, int n, [string char])

 Returns the input string with at least n characters. If the input string str is not n characters long, it is padded with a prefix to this length with the specified char. If no char is specified, then a space is used.

 Equivalent transformer: StringPadder

 PadRight(string str, int n, [string char])

 Returns the input string with at least n characters. If the input string str is not n characters long, it is padded with a suffix to this length with the specified char. If no char is specified, a space is used.

 Equivalent transformer: StringPadder

 ReplaceRegEx(string str, string regExp, string newStr, [bool caseSensitive])

 Returns a string with all character sequences that match regExp replaced with newStr. If caseSensitive is FALSE, the search is case insensitive. Otherwise, the search is case sensitive.

 Equivalent transformer: StringReplacer

 ReplaceString(string str, string oldStr, string newStr, [bool caseSensitive])

 Returns a string with every instance of oldStr in str replaced with newStr. If caseSensitive is FALSE, the search is case insensitive. Otherwise, the search is case sensitive.

 Equivalent transformer: StringReplacer

 Right(string str, int n)

 Returns a substring that contains the n rightmost characters of str.

 StringLength(string str)

 Returns the length of the input string.

 Equivalent transformer: StringLengthCalculator

 Substring(string str, int startIdx[, int n])

 Returns a substring of str starting at startIdx and includes n characters. If startIdx is a negative integer, Substring() returns a substring of str, starting at StartIdx from the end of str going backwards, and including n characters counting forward (from left to right). If n is not specified, then the substring starts at startIdx and goes to the end of the string. If startIdx is greater than the length of str, an empty string is returned.

 TitleCase(string str)

 Returns a string with the first character in str converted to its Unicode title case variant (or to uppercase if there is no title case variant) and the rest of the string lowercase.

 Equivalent transformer: StringCaseChanger

 Trim(string str, [string chars])

 Returns a string with the leading and trailing characters in str that match the input characters in chars. If chars is not specified, whitespace is removed (tab, space, carriage return).

 TrimLeft(string str, [string chars])

 Returns a string with the leading characters in str that match the input characters in chars. If chars is not specified, whitespace is removed (tab, space, carriage return).

 TrimRight(string str, [string chars])

 Returns a string with the trailing characters in str that match the input characters in chars. If chars is not specified, whitespace is removed (tab, space, carriage return).

 UpperCase(string str)

 Returns a string with all letters in str converted to upper case.

 Equivalent transformer: StringCaseChanger

 WordCount(string str)

 Returns the number of words in str. Words are delineated by blank spaces (space, tab, return carriage, and others).

 [bookmark: MadCap_TOC_512_4]Transformers

 Select Tools > FME Options and
 click the Transformers icon.

 Display Options

 Show transformer version in tooltip

 With new releases
 of FME, transformers are sometimes upgraded to include new functionality.
 If you have a large workspace whose history spans multiple FME versions,
 it may also span multiple transformer versions.

 Previous versions of transformers
 will work the same way they always did, but you might also find it useful to
 enable transformer tooltips to show the transformer version (especially if
 you have different versions of the same transformer). In this example, the transformer version is 2:

 Truncate transformer names on

 This option allows you
 to specify text abbreviations from the left, right, or center. For example,
 if your text consists of frequently occurring prefixes, you may want to
 truncate names from either the center or the left so you can see more
 text at a glance.

 Use Drag-and-Insert Transformers

 Enables a feature that
 allows you to drop a transformer onto an existing connection. The selections for multiple input ports and multiple output ports will be the default port
 connections.

 Quick Add Options

 	Show Quick Add on first keypress: Enables the Quick Add search functionality on the Workbench canvas.

 	Auto connect after Quick Add: If you select a Feature Type before initiating the Quick Add search, the transformer will connect automatically to the feature type.

 	Quick Add placement follows mouse: The transformer will be placed underneath your cursor.

 [bookmark: BasicAdvancedEditor]Editor Preferences

 These settings apply to Transformer Parameter menus:

 	Use Advanced Editor: This setting determines which text editor will open by default when you select Open Editor.

 	Replace tabs with spaces: Replace tab characters with spaces.

 	Default Indentation Width: Sets the number of spaces used to replace tabs. The default is 4.

OPS/Examples/Raster/rasterresampler_small.png

OPS/Resources/Images/SchemaMapper/addfilter.png
Feature Type Map...
Attribute Map...
New Attribute...

OPS/Resources/Images/SchemaMapper/03000005.png
Create Actions

cick Add, and sel
delog,

Actons

Acton Description
Map Feature Types colo-> cols
Filter Features call = colz

OPS/Examples/KML/KMLRegionSetter.png
& Edit KM(RegionSetter Parameters

Transformer

Transformer Name:

Bounding Box

e
—

Masimum ¥: | <Unused>
Display Criteria

Minimu Display Size (pixek): 256 -
"Maximum Dispay Size (pixek):

Minimum Fade Extent (ixek): 0 -
Maxinum Fade Extent (ixek): 0 -

) [ean] o[em

OPS/Examples/KML/GE_RegionSetter_Inactive.png

OPS/Examples/aggregator.png
Y N

OPS/Examples/Curvefitter3.gif

OPS/Examples/Curvefitter4.gif

OPS/Examples/rubbersheeter_precorrection.gif

OPS/Examples/Curvefitter5.gif

OPS/Examples/rubbersheeter_postcorrection.gif

OPS/Examples/Curvefitter6.gif

OPS/Examples/Curvefitter7.gif

OPS/Examples/Curvefitter8.gif

OPS/Examples/Curvefitter9.gif

OPS/Examples/Curvefitter10.gif

OPS/Examples/Curvefitter11.gif

OPS/Resources/Images/SchemaMapper/03000002.png
¢ Create Feature Type Map
Create Feature Type fop
Source Feature Type Fieki cold

Destinaton Feature Type Field: | ot

Sehema Happing Table

Selected Tbl: Schema Mapper Example 1

oo ot oz s

OldPipeType Ppesizeatiibute Ppesie NewPipeType
Ppesie 3 Gassmall
Ppesie 1 GasMedium
Ppesie Gastarge

Water Dineter Watersmall

Water Oineter WaterMedium

Water Oineter Waterlarge

Sewage Fipebiam Sewagesmall

Sewage Fipebiam SewageMedium

Sewage PipeDiam Sewagelarge

o o]

OPS/Examples/Curvefitter12.gif

OPS/Examples/reprojector.gif

OPS/Examples/Curvefitter2.gif

OPS/Examples/aggregator2.png

OPS/Examples/amalgamator_greay.png

OPS/Examples/amalgamator_amalgamated.png

OPS/Examples/amalgamator_triangles.png

OPS/Examples/amalgamator_grey2.png

OPS/Examples/amalgamator_holes.png
l.
a

OPS/Examples/amalgamator_binary.png

OPS/Examples/amalgamator_selfamalg.png

OPS/Examples/amalgamator_selfbinary.png

OPS/Examples/Raster/rastertiler.png

OPS/Welcome/safe_logo.png
SAFE SOFTWARE"

OPS/parallel_processing/parallel_processing_param.png
Transformer

Transformer Name: AreaOnAreaOveriayer_2

sowr: e @E

OPS/parallel_processing/parallel_processing_processes.png
fmeworkbench.exe *32
fmeworker.exe =32
fmeworker.exe =32
fmeworker.exe =32
fmeworker.exe %32

BEGGS

113,456 K
2,004K
24092K
2,080K
23,296K

FME Workbench
FMEBE
FEBE
FEBE
FVEEE

OPS/parallel_processing/parallel_processing_navigator.png
4 {5 Transformer Parameters
) Paralle Processing Level: No Parlllism
) Paralle Process By <not set>
£33 Parallel Process Groups are Ordered: No

OPS/Examples/Curvefitter1.gif

OPS/Examples/Amalgamator/0003.jpg

OPS/Examples/Amalgamator/0001.jpg

OPS/Examples/amalgamator_maxtrianglelen.png
Length = length of longest side of triangle

OPS/Examples/Amalgamator/0005.jpg

OPS/Examples/anchoredsnapper.gif

OPS/Resources/Images/sherbendgeneralizer/03000002.png

OPS/Resources/Images/sherbendgeneralizer/03000003.png

OPS/Resources/Images/sherbendgeneralizer/03000004.png

OPS/Examples/labeller.gif
%
&
o
N

OPS/Resources/Images/sherbendgeneralizer/03000005.png

OPS/Examples/labelpointreplacer.gif
>

JISPRINGDALERD

705 CONGRESS AVS
39 oLTORFSTY!

OPS/Examples/sliverremover.png
Output

OPS/Examples/leftrightspatialcalculator.png
The LeftRightSpatialCalculator computes the position
of candidate features with respect to base features
Example features 1-6 below are candidates.

Legend:

o left 4 _
W right .

undefined

OPS/Examples/snapper.png

OPS/Resources/Images/sherbendgeneralizer/03000001.png

OPS/Examples/KML/KMLViewSetter.png
& Edit KMLViewSetter Parameters

Transformer

Transformer Name: KMLViewSeter

Location
Longitude: -123.9360987375452 -
Latiude: 49.16657755159795 B

Alttude ode: [Absolte =
Atide: 0 -
Vew

e

Headng: -127.7560751717922 -
it 54, 17160084688164 -
Roll: [<Unused>

Range: 917.564541277138 -

o (oo <] o] (o

OPS/Examples/KML/GE_ViewSetter_result.png

OPS/Examples/arcestimator.gif

OPS/Examples/Curvefitter13.gif

OPS/Examples/Fundamentals/2_7.png

OPS/Examples/Fundamentals/2_4.jpg

OPS/Examples/Fundamentals/2_10.png

OPS/Examples/KML/GE_RegionSetter_Active.png

OPS/Examples/sectorgenerator0.png
”

OPS/Examples/Fundamentals/2_11.png

OPS/Examples/sectorgenerator1.png
240°

OPS/Examples/Fundamentals/2_12.png

OPS/Examples/KML/GE_Styler_Result.png
Google

OPS/Examples/sectorgenerator2.png
300% 60°

OPS/Resources/Images/2_13.jpg
primary axis

swaep 45°
e atant 450

rotator 450

OPS/Resources/Images/LicenseCheckerScenario/02000001.jpg
b PASSED

b FAILED

» outRUT

» outRUT

» ourPur

OPS/Examples/KML/KMLTimeSetter_Timestamp.png
€ Edit KMLTimeSetter Parameters.

Transformer
Transformer Name:

=

R = —

v oo«
N———
Period End (optional): | <Unused>

) [een] o[em

OPS/Resources/Images/sherbendgeneralizer/03000006.png

OPS/Resources/Images/LicenseCheckerScenario/licensecheckerparameters.png
& LicenseChecker Parameters 2]l = |

Transformer
Transformer Name: - LicenseChecker

Parameters
Vendor : 1234
Vendor RegstrationKey: 45671111
Lcense Fle Name: xransformer_com_sb. el

DEEE

Product Name: XTransformer

[neo] [locs v] [0][concel |

OPS/Examples/KML/KMLTimeSetter_Timeperiod.png
& Edit KMLTimeSetter Parameters. SR

Transformer

Transformer Name: KMLTmeSetter

=
R —
e [T
-

) [ean] [][em

OPS/Resources/Images/sherbendgeneralizer/03000007.png

OPS/Resources/Images/LicenseCheckerScenario/02000003.jpg
Publish Custom Transformer
Select a repository and name for your Custorm Transformer on FME Server. If you want to
Uptate an existing Custom Transformer, select it from the list,

Reposory Name: (FVE_Sire =)
1

Custam Transformer Name:

Existing Custorm Transformer List:

% Custom Transformers

OPS/Resources/Images/sherbendgeneralizer/03000008.png

OPS/Examples/arcstroker.gif

OPS/Examples/polygonbuilder.gif

OPS/Examples/areaonareaoverlayer.png

OPS/Examples/attributecopierexample.png

OPS/Examples/SpatialFilterRelator/1_8.jpg

OPS/Examples/SpatialFilterRelator/1_9.jpg

OPS/Examples/SpatialFilterRelator/1_11.jpg

OPS/Examples/SpatialFilterRelator/1_13.jpg

OPS/Examples/SpatialFilterRelator/1_15.jpg

OPS/Examples/SpatialFilterRelator/1_16.jpg

OPS/Resources/Images/attributevaluemapper1.png
'Mapping Parameters
fn—— &

Value Map

K river
k railroad

OPS/Examples/SpatialFilterRelator/1_18.jpg

OPS/Resources/Images/attributevaluemapper2.png
Attribute Selection

B = —]

Destnation Attrbute: fne_color

‘Defauit Value: - unknown =&

Mapping Parameters.

[— &

Value Map

Source Value Destination Velue
& <null>
K rver 9 Attribute Value ,
k rairozd
Open Text Edtor..
49 Open Arithmetic Edito
4= 2 v o= 3@ UserParameter ,
2 N N \]
(i) & ClearValue

OPS/Examples/SpatialFilterRelator/1_20.jpg

OPS/Examples/AttributeValueMapper.png
Non-Residential

Residential

:ﬁ%AttributeVaIueMapper@:

OPS/Examples/SpatialFilterRelator/1_21.jpg

OPS/Resources/Images/attributevaluemapper3.png
€ AtributeValueMapper Parameters U5 e

Transformer

Transformer Name: AttributeValueMapper

Mapping Parameters.

[— &

o
Soncevie et

Kk river k 001

k railroad k 111

OPS/Examples/SpatialFilterRelator/1_23.jpg

OPS/Examples/attributecopierexample1.png

OPS/Examples/attributecopierexample3.png

OPS/Examples/attributecopierexample2.png

OPS/Examples/attributecopierexample5.png
& AttributeCopier pam_

Transformer

Default Volue
@ e e

<9 DVIDED divided

<9 TRVLDIR tridir

<9 ROADSID roads_id

¥ -

OPS/Examples/attributecopierexample4.png
roads_id

v Output.

ROADS_ID

[onviED
[TRVDR

OPS/Examples/attributecreator4.gif

OPS/Examples/special_char2.png
String Type.

String Value
L]l

]

OPS/Examples/special_char1.png

OPS/Examples/attributecreator.png
Transformer Name: AttrbuteCreator

Mltiple Feature Atrbute Support

N———
et
1 vt s s ool
Atvbute Relcement ke =

Attrbutes To Set

Attribute Name
Pop_2000
Pop_2007

OPS/Examples/linecloser.gif

OPS/Examples/linejoiner.gif

OPS/Examples/SpatialFilterRelator/1_2.jpg

OPS/Examples/lineonareaoverlayer.gif

OPS/Examples/SpatialFilterRelator/1_3.jpg

OPS/Examples/SpatialFilterRelator/1_5.jpg

OPS/Examples/SpatialFilterRelator/1_6.jpg

OPS/Examples/attributecreator3.gif
e It it

OPS/Examples/attributecreator2.png

OPS/Examples/attributecreator6.png
Text Editor - Advanced

String Expression

FME Feature Afirbutes.

9 _creatior
9 Latitude
9 Longitude
featurel-2]
4 _creation instance
9 Latitude
9 Longitude
featurel-1]
4 _creation instance
9 Latitude
9 Longitude
featurel+1]
4 _creation instance
9 Latitude
9 Longitude
featurel+2]
4 _creation instance
9 Latitude
9 Longitude
 Publshed Parameters
© Private Parameters
1 Special Characters
1 FME Feature Functons
- FME String Functons.
4 FVE Math Functons

= | [@average(@Vahue(festurel-2] Latiude), @Value(featurel-1] Lattude))

ié
!

OPS/Examples/attributecreator5.png
& Amm

Transformer

Transformer Name: AttrbuteCreator

Mltiple Feature Atrbute Support

Number of Prior Features: 2

Number of Subsequent Features: 2

[@jajc)

¥ttt Mesing or il (IS -
Atrbute Replacement ae: [<Urused> =lc)
Atrbutes Toset
Attiute Name Value
last_2_average lat Kk @average(@Value(feature[-2] Latitude), @Value(feature[-1].Latitude))

lest 2_average long K _@averoge(@Value(feature|-2]Longitude), @Value(featurel-1]Longitude))

C= e)

OPS/Examples/attributedeferencer.png

OPS/Examples/matcher.gif
features to match matched

OPS/Examples/centerlinereplacer.gif
Jo

=

OPS/Examples/centerofgravityreplacer.gif

OPS/Examples/changedetector.gif
added

deleted

original revised

unchanged

OPS/Examples/attributefilter_processingsumm.png
Processing Summary

Features scanned: 2661
Unique attrbute vakes found: 3.

OPS/Examples/attributefilter.png

OPS/Examples/statisticscalculator.gif
ity [region _[potential [observed
[surrey [Vancouver |nigh e
[Vancouver |Vancouver [nigh 12|
Prince George |Cariboo |medium 74|
Richmond |Vancouver |medium 23|
Nelson Kootenay [nigh 14|
Ferrie Kootenay [nigh &5|
[Terrace Northwest [1ow o3|
prince Rupert |Northwest |medium 11]
|Gotden kootenay _|medium 03]

Values
region [~ potential [sum of observed Average of observed Count of observed
SCariboo medium 74 74 1
=Kootenay _ high s 255 2
medium 03 03 1
= MNorthwest low o3 o3 1
medium 11 11 1
= Vancowver high 5 23 2
medium 28 28 1

OPS/Examples/attributepivoter2.png
region __|potential |observed Average |observed Count |observed sum
[cariboo | medium 7.4 1 7.4
Kootenay |high .95 2| 3.9
Kootenay | medium 0.9 1 0.9
Northwest [low 93 1 93
Northwest | medium 11] 1 11]
[Vancouver | high 23 2| 4.6
|Vancouver | medium 43| 1] 43|

OPS/Examples/attributepivoter.png
‘AtirbutePivoter [AtrbutePivoter: 1]

Row Group Attributes: region potential

Column Group Attrbutes: <notset>

Atirbute To Analyze: observed

Pivot Summar Statistic Types: Count Sum Average:
Version:

Festure Type: <Default (from fne_feature_type) >
Schema Definiton: <Defalt (from Feature Type Name)>
Schema Source(s): regional_data [CSV]

Dataset: ap_out 2013 [CSV]

Geometry: <Defauit>

Parameters:

Append to file: INHERIT_FROM_WRITER

Output Feki Names: INERIT_FROM_WRITER

Feature Type: summary
Dataset: ap_out 2013 [CSV]

Geometry: Al

Parameters:

‘Append to file: INHERIT_FROM_WRITER
Output Feki Names: INERIT_FROM_WRITER

OPS/Examples/attributepivoter3.png
region potential |observed Average |observed Count |observed sum
region Total 4222222922 9| 33
cariboo [potential Total 7.4 1 7.4
Kootenay |potential Total 3.5 3 10|
Northwest |potential Total 5. 2| 10.4]
|Vancouver |potential Total 3.133333333] 3| 9.4

OPS/Examples/SpatialFilterRelator/1_25.jpg

OPS/Examples/SpatialFilterRelator/1_26.jpg

OPS/Examples/SpatialFilterRelator/1_28.jpg

OPS/Examples/SpatialFilterRelator/1_29.jpg

OPS/Examples/SpatialFilterRelator/pointCandidate.png

OPS/Examples/boundingboxaccumulator.gif

OPS/Examples/SpatialFilterRelator/lineCandidate.png

OPS/Examples/SpatialFilterRelator/areaCandidate.png

OPS/Examples/boundingboxreplacer.gif
e

OPS/Examples/connectlogger.png
‘Connect Visualzer
Attach Annotation

‘Show Summary mm&

Expose Attrbutes...
Pair With...

OPS/Examples/SpatialFilterRelator/pointBase.png

OPS/Examples/SpatialFilterRelator/ContainsPointPoint.png

OPS/Examples/SpatialFilterRelator/NA.png

OPS/Examples/bufferer_round.png

OPS/Examples/bufferer_square.png

OPS/Examples/bufferer_none.png

OPS/Examples/attributerenamer.png
Transformer
Transformer Name: | AttrbuteRenamer
Attributes To Rename.

Old Atribute New Attribute

CAPITAL
v
COUNTRY
COUNTY
DAM_NAME
DAM_TYPE
DAMS00X020 |
DRAIN_AREA

4 |LATITUDE
LONGITUDE

=)
WA STOR
(e (Er=|

NID_HEIGHT
NIDID
NORMAL STO
OTHER NAME
OWN_NAME
OWN_TYPE

|

OPS/Examples/AttributeSplitter2.png
Safe Software, Suite 2017 7445 132 St, Surrey, BC V3W 1J8

;:% AttributeSplitter

Safe Software

Suite 2017

7445 132 St

BC

V3W 1J8

OPS/Examples/attributesplitter_exposeelements.png
=l
__speces(} o

Rerame

OPS/Resources/Images/ConvexityFilter_SomethingToWatchFor.png
Insufiicient coordinate precision could
create an inward bend, as shown here
(exaggerated for illustration purposes)

CONVEX ROTATION

or some other operation
that preserves shape

CONCAVE

OPS/Resources/Images/ConvexityFilterExample.PNG

OPS/Examples/3.2.1.gif

OPS/Examples/3.4.1.gif

OPS/Examples/3.4.2.gif

OPS/Examples/3.4.3.gif

OPS/Examples/3.4.4.gif

OPS/Examples/coordinaterounder.gif
415.366,-28.2821 §154,283

§16.6651,34.9403 > §167,:140

§26.9852,-38.2100 77,382

OPS/Examples/Chopper.png
Before After

Max Vertices = 3 *—e

12
Approx Length = 12 @——@——0——@ *—0 0—0 6—0

Max Vertices = 4 O @
Approx Length O @

OPS/Examples/mrf_workflow.gif
Read Input Elements

1

Complex Element Stroking

)

Short Element Processing

()

Line Simplfication

]

Extension

[}

Clustering and Splitting

]

Duplicate Removal

)

Element Joining 1

]

Conflation

Y

Element Joining 2

Y

Dangle Removal

)

Element Joining 3

]

Output

OPS/Examples/clipper.png

OPS/Examples/contourgenerator.gif

OPS/Resources/Images/start_sweep_small.gif

OPS/Examples/trianglestrip.png
v6

v4

v2

vi

v5

v3

v7

OPS/Examples/trianglefan.png
v2

va

vs

v6

v7

OPS/Examples/creator_workspace1.png

OPS/Examples/creator_workspace2_tester.png
Test Expression: [}

‘Comparison Mode: | Autometic (compare s numbers f possile)

OPS/Examples/creator_workspace2.png

OPS/Examples/3.4.5.gif

OPS/Examples/3.4.6.gif

OPS/Examples/coordinateswapper0.png

OPS/Examples/3.5.1.gif

OPS/Examples/3.5.2.gif

OPS/Examples/figure5.1.gif
N Y

OPS/Examples/coordsys_attr_value1.gif
[createD

CHI903.V03 B oeat..stance.
B atir

Right dick n the CREATED port and
choose Add Attrbute, In this example, we
caleditcs_atr.

Choose Insert > Constant.
Enter the coordinate system name.
Connect the constant to the attrbute.

OPS/Examples/figure5.2.gif

OPS/Examples/coordsys_attr_value2.gif
Transformer Name:

Coordinate System:

Hep.

CoordinateSystemsetter Parameters

CHI903.V03 B eat..stance.

Brcs atr

OPS/Examples/figure5.3.gif

OPS/Examples/figure5.4.gif
[VEAY,

OPS/Examples/densifier.png
Before After
Interval
Uniform ~ @———@————@ *—o—0—0—0

Interval

Bactt @ @@ *r—0-0—0-0

OPS/Examples/densitycalculator1.png

OPS/Examples/densitycalculator2.png

OPS/Examples/densitycalculator3.png
Select Correct Zipcode Area |

b CLIPPED_INS...
b CLIPPED_OU...

Clip cycle routes
to zipcode area

OPS/Examples/curvefitter_new.gif

OPS/Examples/deaggregator.png
o b

OPS/Examples/deaggregator2.png

OPS/Examples/dissolver.png

OPS/Examples/donutbridgebuilder.png

OPS/Examples/donutbridgebuilder1.png

OPS/Resources/Images/LicenseCheckerScenario/02000005.jpg
€] Q [| < localDisk(C) » TEMP » licenses | Search licenses ’

Organize ~ New folder

Date mocified
. Libraries

| Documents No items match your search.

& Music

. Pictures.

& videos

4 BETR

& Computer
& Local Disk (C)
& My Book (E)

<[

File name:

Save as type: [FME License Files (+fmelic *3rdlic)

' Hide Folders

OPS/Resources/Images/LicenseCheckerScenario/02000006.jpg
%" Download from FME Server

Download Repositary Item
Select a repository, then select an iter to download,

Repository Name: [FME_Store.

Selected Item Name: XTransformer.fim

Repository Browser

'8 Custom Formats
4 % Custom Transformers
& XTransform erfmx
‘& Workspaces

Download additional resources, if present

OPS/Resources/Images/LicenseCheckerScenario/02000007.jpg
_conve..n_resul

_oteal.instance |

OPS/Resources/Images/LicenseCheckerScenario/02000008.jpg
Log

Message is 'XTransformer is not licensed. Please contact author@abe.com for purchasing
Message is 'XTransformer is not licensed. Please contact author@abe.com for purchasing

memory usage: 30776 kE.

Message is 'XTransformer is not licensed. Please contact author@abe.com for purchasing

OPS/transformer_parameters/Examples/Propbutton_blue.png

OPS/Resources/Images/LicenseCheckerScenario/vendor_license_generator.png
Vendor License Generator | /| 2 | %

License Keys.
Vendor D: 1234
Vendor Regisration Key: 45671111
FMERegstiaton Key: 0649364753

[C] Temporary License:
Expiration Date: [201303:02

Enabled Vendor Products.

XTransformer
Vransformer

OPS/transformer_parameters/arithmetic_editor_icon.png

OPS/transformer_parameters/open_editor.png

OPS/transformer_parameters/select_color.png

OPS/transformer_parameters/select_coord_sys.png

OPS/transformer_parameters/select_source_filename.png

OPS/transformer_parameters/select_xml_input.png

OPS/transformer_parameters/set_geometry.png

OPS/transformer_parameters/change_selection.png

OPS/transformer_parameters/select_attribute.png

OPS/transformer_parameters/choose_font.png

OPS/transformer_parameters/incomplete_transformer_icon.png
4§ Incomplete Transformers.
B Bufferer [Bufferer]

OPS/transformer_parameters/Examples/transformer_requiredfield.png
Transformer

Transformer Name:
Group By: 1o tems selected, =&
(—— 5

o
i . [7]
— ©
StokngDenst: & [7]
UstName: [

[reo) (oetous ~ o | [Ccanel]

OPS/transformer_parameters/menu_button.png

OPS/Examples/transformer_defaults.gif
Transformer Name: Sampler
GroupBy: o tems selected.

Save s My Defauls |

Reset to FME Defaults
Resetto My Defaults

OPS/transformer_parameters/Examples/XformerParam/xform_menu_button.png

OPS/transformer_parameters/link_to_parameter_icon.png

OPS/transformer_parameters/clear_value.png

OPS/transformer_parameters/set_to_attr_value.png

OPS/transformer_parameters/Examples/Propbutton_yellow.png

OPS/transformer_parameters/Examples/Propbutton_red.png

OPS/Examples/SpatialFilterRelator/areaBase.png

OPS/transformer_parameters/GIFs/options_xformerversion.png
Tester [Tester:2]
Test Description: ™"

TEST @Value(name_alt) CONTAINS Golf
Condition: OR

Version: 2

OPS/Examples/SpatialFilterRelator/ContainsAreaPoint.png

OPS/Examples/SpatialFilterRelator/ContainsAreaLine.png

OPS/Examples/SpatialFilterRelator/ContainsAreaArea.png

OPS/Examples/SpatialFilterRelator/CrossesLineLine.png

OPS/Examples/SpatialFilterRelator/CrossesLineArea.png

OPS/Examples/SpatialFilterRelator/CrossesAreaLine.png

OPS/transformer_parameters/menu_adduserparam2.png
5 Ad/EditParameter =
=
Name: MAYFEATS Publshed (] Optonal

Prompt: Maximum Logged Features:

Configuraton:

Default Valve: 20 =

Cre] [][ew)

OPS/transformer_parameters/menu_adduserparam3.png
5 Add/Edit Parameter

==
Prompts Mo Logged Fatres:
Defeutvoe: 20 =

o) []

OPS/Examples/SpatialFilterRelator/lineBase.png

OPS/Examples/promptandrun.png
»

OPS/Examples/SpatialFilterRelator/ContainsLinePoint.png

OPS/transformer_parameters/Resources/Images/LengthFunction_ALL_LENGTHS_example.png

OPS/Examples/SpatialFilterRelator/ContainsLineLine.png

OPS/transformer_parameters/GIFs/options_transformers.gif
Transformers

OPS/transformer_parameters/bufferer_example3.png
Value (Speed)™4

OPS/transformer_parameters/arithmetic_editor_example.png
Jue (T2282n0) @AveaQ/S(Assessedvalue)

OPS/transformer_parameters/texteditor_example.png
& StringConcatenator Parameters - Basic

Transformer
Transformer Name: _StringConcatenator

Destination Attribute: _labelAttribute

String Parts
String Type String Value 2
Constant k Park: =
Attribute Value 4 name =
New Line B
Constant k Area:

Attribute Value 4 ParkSize
Constant k sqft

Concatenated Result

Park: @Value(narme) P
\Area: @Value(Farksize) sq ft

Switch To Advanced | [Help | [ok | [cancel

OPS/transformer_parameters/texteditor_advanced.png
& StringConcatenator Parameters - Advanced

Transformer
Transformer Name: _StringConcatenator

Destination Attribute: _concatenated

String Expression

{

1 FME Feature Attributes Park: @Value(name) =
(0 Published Parameters | |Are2: @Value(Parksize) sq t
ErTrr—

[“options_~

OPS/transformer_parameters/parameter_new.png

OPS/transformer_parameters/menu_adduserparam1.png
Name: MAX FEATIRES V] Publshed [¥] Optional

Prompt: Max Features to Read:

T I
eftvae: 00 [

Cre] [J[em])

OPS/transformer_parameters/start_sweep_small.gif

OPS/transformer_parameters/trianglestrip.png
v6

v4

v2

vi

v5

v3

v7

OPS/transformer_parameters/trianglefan.png
v2

va

vs

v6

v7

OPS/transformer_parameters/bufferer_example.png
& Bufferer Parameters

Transformer

Transformer Name: Bufferer

Group By: No items selected. E&®
[EAT—— 5

Parameters

e amanss [

P —
‘Stroking Density: 8 &
st

o [em

Lo]

Attribute Value ,
Open Arithmetic Editor..
User Parameter ,

Conditional Value...

Clear Value

OPS/Examples/SpatialFilterRelator/WithinPointArea.png

OPS/Examples/SpatialFilterRelator/WithinLineLine.png

OPS/Examples/SpatialFilterRelator/WithinLineArea.png

OPS/Examples/SpatialFilterRelator/WithinAreaArea.png

OPS/Examples/SpatialFilterRelator/DisjointPointPoint.png

OPS/Examples/SpatialFilterRelator/TouchesAreaPoint.png

OPS/Examples/SpatialFilterRelator/TouchesAreaLine.png

OPS/Examples/SpatialFilterRelator/TouchesAreaArea.png

OPS/Examples/SpatialFilterRelator/WithinPointPoint.png

OPS/Examples/SpatialFilterRelator/WithinPointLine.png

OPS/Examples/SpatialFilterRelator/OverlapsAreaArea.png

OPS/Examples/SpatialFilterRelator/TouchesPointLine.png

OPS/Examples/SpatialFilterRelator/TouchesPointArea.png

OPS/Examples/SpatialFilterRelator/TouchesLinePoint.png

OPS/Examples/SpatialFilterRelator/TouchesLineLine.png

OPS/Examples/SpatialFilterRelator/TouchesLineArea.png

OPS/Examples/SpatialFilterRelator/EqualsPointPoint.png

OPS/Examples/SpatialFilterRelator/EqualsLineLine.png

OPS/Examples/SpatialFilterRelator/EqualsAreaArea.png

OPS/Examples/SpatialFilterRelator/OverlapsLineLine.png

OPS/Examples/figure5.10.gif
i

OPS/Examples/statisticscalculator3.png
Generate statstics for the observed atirbute,
grouping by the region and potential atirbutes.
Effectvely creating a fiat version of a pivot table.

OPS/Examples/figure5.11.gif

OPS/Examples/statisticscalculator2.gif
region __|potential |sum_of_observed _|average of_observed |count_of_observed
[cariboo | medium 72| 7.4] 1]
Kootenay |nigh s3] 25| 2|
Kootenay |medium os| o3| 1
Northwest |low o3| o3| 1
Northwest |medium 11] 11] 1
[Vancouver [nigh 45| 23| 2|
[vancouver |medium 23] 23] 1

OPS/Examples/sqlcreator.png
P SQLCreator §j1

Jeff

Sales

[/~

€D

<>
T
%ﬂm

Phil

Products

OPS/Examples/figure5.5.gif

OPS/Examples/figure5.6.gif
e

OPS/Examples/sqlexecutor.png
Jeff

Phil

1

o[~/

SQLExecutor E:V"

Jeff

Sales

Vancouver

)
g

Phil

Products

Toronto

OPS/Examples/figure5.7.gif

OPS/Examples/figure5.8.gif

OPS/Examples/figure5.9.gif

OPS/Examples/SpatialFilterRelator/DisjointAreaLine.png

OPS/Examples/SpatialFilterRelator/DisjointAreaArea.png

OPS/Examples/spikeremover.png

OPS/Examples/SpatialFilterRelator/DisjointPointLine.png

OPS/Examples/SpatialFilterRelator/DisjointPointArea.png

OPS/Examples/SpatialFilterRelator/DisjointLinePoint.png

OPS/Examples/SpatialFilterRelator/DisjointLineLine.png

OPS/Examples/SpatialFilterRelator/DisjointLineArea.png

OPS/Examples/SpatialFilterRelator/DisjointAreaPoint.png

OPS/Examples/creator_pubparam0.png
45 Creator [Creator]
) Transformer Name: Creator
£3 Geomelry Source: Geomelry Object
£3 Geomelry Object: <o version="_.(
£} Coordnate st <notset>
£ Coordnate System: <ot set>

443 Number to Create: 1]

£ Greste Atend: o

OPS/Examples/creator_pubparam1.png
=

e Publshed] Optonal
Prompt: Number o Create:

ntgraters][]
Defadtvae: 0

] [J(em)

OPS/Examples/parameterfetcher3.png
€ ParameterFetcher Parameters

Transformer

Transformer Name: ParameterFetcher

Parameters to Fetch
Parameter Name Target Attribute:
NUM result
+ -

OPS/Examples/stringconcatenator.png
Safe Software | Suite 2017

7445132 St

V3W 1J8

;:% StringConcatenator |3_—“

Safe Software, Suite 2017 7445 132 St, Surrey, BC V3W 1J8

OPS/Examples/offsetcurvegenerator.png
red = LINES, green = LEFT, blue = RIGHT

OPS/Examples/stringlengthcalculator_1.png
(4 ourur

OPS/Examples/Raster/offsetter.png

OPS/Examples/stringlengthcalculator_2.png
Attribute Name Attribute Value

OPS/Examples/orientor.gif
3

OPS/Examples/StreamOrderCalculator1.png
© = network
node

What you see on a
map; streams, lakes

Anincorrect
network; river

increasing width. | shores are vi

banks and lake

ble

Avalid centre-Jined
network. This can
be processed by
the algorithm.

OPS/Examples/neighborfinder.gif
_closest candidate_y CCandidate_angle

dosest_base.y angle

_closest buse x |

closest_candidate x

OPS/Examples/LevelPriorityCalculator_1.png
Weight

Destination

Length,

Weight=Length

Source 3

Weight=Longth

Weight=Length

Weight=Length

Source 1

Weight=Length

Weight=Length

Source 2
@ Dsstination
@ source

— Secondary
— Primary

OPS/Examples/LevelPriorityCalculator_2.png
Source 1
Source 3

Weight=Length

Weight=Length,

Weight=Lengih
o 9 Weight=Length

Source 2

Destination

@ source

— Secondary

Destination
Primary

Iteration 1: Reach destination from Source 1 (furthest source from destination)

OPS/Examples/neighborhoodaggregator.gif

OPS/Examples/LevelPriorityCalculator_3.png
Source 1

Weight=Lenat 'Weight=Length

Weight=0

Weight=Length Source 2

@ Destination

@ source

Destination — Secondary
— Primary

Iteration 2: R tination from Source 2 (nearest source from d

OPS/Examples/LevelPriorityCalculator_4.png
Source 1

Weight=Length Source 2

Destination

@ soue

— Secondary
— Primary

Destination

tion 3: Reach destination from Source 3

OPS/Examples/LevelPriorityCalculator_5.png
Forword Woiht-25
Reverso Weight-0sssss

Forward Weiht-0
Revarse Weght- 966899

Forward Weight-0
Reverso Waighe-ssssss

Forward Woigh-0

ovrsa Woige-sass) E5%) Boerso Weight 9099868

Calculator

0
=

Forward Wit
Rovors Wag

Rovarse Waght-sessss

orrd Woight-5 Forwart Waihn-0

Rovorso Wt 995599 [@ Daginaton Rovorse Wegh- 669699 | @ Drsination
@St | Swroe

Source 2 [oo

< Nework inas = Py s

Input

OPS/Examples/LevelPriorityCalculator_6.png
Forwand Weiht
Revars Wag

Forward Wit

ot W Forwar
ovrse Woig

Revarse Wght-

Forword Woight-0
Revarse Wag-0

Forward Waiht-5
Reverse Weigh-5

Forword Woight-0
Gevar Wa

Forward Woiht- 10
fevarse Wegh10

StreamPriority
Calculator

Forward Woight_0
Rovarse Wight0

Forward Woigh_10

A e) A

Revarse W ® pesinoton ReverseWegh0 [@ eiraior |
@soueo [@sumi |
S 2
Sourco? S
< Nework nes = Pray s

Input Output

OPS/Examples/donutbuilder.gif
L

input polygons result

OPS/Examples/terminator_redirect.png
4 {5} Workspace Properties
€25 Workspace Tite: <not set>
£3 Workspace Descrpton: <ot set>
£ LogFie: <notset>
£3 Source Redrect: No Redrect

ﬁ Destination Redrect: No Redrect

OPS/Examples/donutholeextractor.gif
> AN

input donut outer shell hole

OPS/Examples/tester_compositetest.png
Left Value
1 value
2 value
3 value

Operator

Right Velue
H

10

%

OPS/Examples/testfilter_buttons.png
Add a row

Delete selected row (Thers is no
"unda’ for this action.)

Mave selected row up
Move selected row down

OPS/Examples/PointCloud/PointCloudCreator.png

OPS/Examples/parameterFetcher1.gif
Creator [Creator]
Geametry Source: Geometry Object
CourdnateSystem: <not set>
Number To Create: 10

ParameterFetcher [ParameterFetcher]
Parameter Name 1: NUM
Target Attrbute 1: resut

OPS/Examples/parameterfetcher2.gif
Feature:1 of 10

Feature Type: | ParameterFetcher_OUTPUT

Coord Sys: Unknown

‘Atirbute Name ‘Atirbute Value.
_test_attr> 0
Fne_geometry fne_undefined
fne_type fne_no_geom

result 10

OPS/Examples/surfacedraper.gif
\ 7

2d features draped features

3d surface map

OPS/Examples/surfacemodeller.png

OPS/toc.xhtml

 Contents

 		

 2DArcReplacer

 		

 2DBoxReplacer

 		

 2DEllipseReplacer

 		

 2DForcer

 		

 2DGridAccumulator

 		

 2DGridCreator

 		

 3DAffiner

 		

 3DArcReplacer

 		

 3DForcer

 		

 3DInterpolator

 		

 3DRotator

 		

 Affiner

 		

 AffineWarper

 		

 AggregateFilter

 		

 Aggregator

 		

 Amalgamator

 		

 AnchoredSnapper

 		

 AngleConverter

 		

 AngularityCalculator

 		

 AppearanceExtractor

 		

 AppearanceJoiner

 		

 AppearanceRemover

 		

 AppearanceSetter

 		

 AppearanceStyler

 		

 ArcEstimator

 		

 ArcPropertyExtractor

 		

 ArcPropertySetter

 		

 ArcSDEGridSnapper

 		

 ArcSDEQuerier

 		

 ArcStroker

 		

 AreaBuilder

 		

 AreaCalculator

 		

 AreaOnAreaOverlayer

 		

 AttributeClassifier

 		

 AttributeCompressor

 		

 AttributeCopier

 		

 AttributeCreator

 		

 AttributeDecompressor

 		

 AttributeDereferencer

 		

 AttributeExploder

 		

 AttributeExposer

 		

 AttributeFileReader

 		

 AttributeFileWriter

 		

 AttributeFilter

 		

 AttributeKeeper

 		

 AttributePivoter

 		

 AttributeRangeFilter

 		

 AttributeRangeMapper

 		

 AttributeRemover

 		

 AttributeRenamer

 		

 AttributeReprojector

 		

 AttributeRounder

 		

 AttributeSplitter

 		

 AttributeTrimmer

 		

 AttributeValueMapper

 		

 BaseConverter

 		

 BinaryDecoder

 		

 BinaryEncoder

 		

 BMGReprojector

 		

 BoundingBoxAccumulator

 		

 BoundingBoxReplacer

 		

 BoundsExtractor

 		

 Bufferer

 		

 BulkAttributeRemover

 		

 BulkAttributeRenamer

 		

 CenterLineReplacer

 		

 CenterOfGravityReplacer

 		

 CenterPointReplacer

 		

 ChangeDetector

 		

 CharacterCodeExtractor

 		

 CharacterCodeReplacer

 		

 Chopper

 		

 CircularityCalculator

 		

 Clipper

 		

 Cloner

 		

 CommonLocalReprojector

 		

 CommonSegmentFinder

 		

 ContourGenerator

 		

 ConvexityFilter

 		

 CoordinateConcatenator

 		

 CoordinateCounter

 		

 CoordinateExtractor

 		

 CoordinateRemover

 		

 CoordinateRounder

 		

 CoordinateSwapper

 		

 CoordinateSystemDescriptionConverter

 		

 CoordinateSystemExtractor

 		

 CoordinateSystemRemover

 		

 CoordinateSystemSetter

 		

 Counter

 		

 CRCCalculator

 		

 Creator

 		

 CSGBuilder

 		

 CSGEvaluator

 		

 CsmapAttributeReprojector

 		

 CsmapReprojector

 		

 Curvefitter

 		

 DatabaseDeleter

 		

 DatabaseUpdater

 		

 DateFormatter

 		

 Deaggregator

 		

 Decelerator

 		

 DecimalDegreesCalculator

 		

 DEMDistanceCalculator

 		

 DEMGenerator

 		

 Densifier

 		

 DensityCalculator

 		

 DGNStyler

 		

 DimensionExtractor

 		

 DirectTweeter

 		

 Displacer

 		

 Dissolver

 		

 DMSCalculator

 		

 DonutBridgeBuilder

 		

 DonutBuilder

 		

 DonutHoleExtractor

 		

 DuplicateRemover

 		

 DWGStyler

 		

 ElevationExtractor

 		

 EllipsePropertyExtractor

 		

 EllipsePropertySetter

 		

 EnvironmentVariableFetcher

 		

 EsriReprojector

 		

 ExpressionEvaluator

 		

 Extender

 		

 Extruder

 		

 FaceReplacer

 		

 FeatureColorSetter

 		

 FeatureHolder

 		

 FeatureMerger

 		

 FeatureReader

 		

 FeatureTypeExtractor

 		

 FeatureTypeFilter

 		

 FilenamePartExtractor

 		

 FMEFunctionCaller

 		

 FMEServerJobSubmitter

 		

 FMEServerJobWaiter

 		

 FMEServerLogFileRetriever

 		

 FMEServerNotifier

 		

 FMEServerWorkspaceRunner

 		

 Generalizer

 		

 GeographicBufferer

 		

 GeometryCoercer

 		

 GeometryColorSetter

 		

 GeometryExtractor

 		

 GeometryFilter

 		

 GeometryInstantiator

 		

 GeometryPartExtractor

 		

 GeometryPropertyRenamer

 		

 GeometryPropertyRemover

 		

 GeometryPropertyExtractor

 		

 GeometryPropertySetter

 		

 GeometryRefiner

 		

 GeometryRemover

 		

 GeometryReplacer

 		

 GeometryValidator

 		

 GeometryValidator Issues Table

 		

 GeometryValidator Issues Table

 		

 GeoRSSFeatureExtractor

 		

 GeoRSSFeatureReplacer

 		

 GMLFeatureExtractor

 		

 GMLFeatureReplacer

 		

 GOIDGenerator

 		

 GridInQuestReprojector

 		

 GtransAttributeReprojector

 		

 GtransReprojector

 		

 HoleCounter

 		

 HTMLToXHTMLConverter

 		

 HTTPDeleter

 		

 HTTPFetcher

 		

 HTTPFileUploader

 		

 HTTPHeader

 		

 HTTPMultipartUploader

 		

 HTTPUploader

 		

 HullAccumulator

 		

 HullReplacer

 		

 ImageFetcher

 		

 ImageRasterizer

 		

 InlineQuerier

 		

 InsidePointExtractor

 		

 InsidePointReplacer

 		

 Inspector

 		

 Intersector

 		

 JMSReceiver

 		

 JMSSender

 		

 Joiner

 		

 JSONExtractor

 		

 JSONFlattener

 		

 JSONFormatter

 		

 JSONFragmenter

 		

 JSONTemplater

 		

 JSONUpdater

 		

 JSONValidator

 		

 KMLPropertySetter

 		

 KMLRegionSetter

 		

 KMLStyler

 		

 KMLTimeSetter

 		

 KMLTourBuilder

 		

 KMLViewSetter

 		

 Labeller

 		

 LabelPointReplacer

 		

 LatLongToMGRSConverter

 		

 LeftRightSpatialCalculator

 		

 LengthCalculator

 		

 LengthToPointCalculator

 		

 LicenseChecker

 		

 LineCloser

 		

 LineJoiner

 		

 LineOnAreaOverlayer

 		

 LineOnLineOverlayer

 		

 ListBasedFeatureMerger

 		

 ListBuilder

 		

 ListConcatenator

 		

 ListCopier

 		

 ListDuplicateRemover

 		

 ListElementCounter

 		

 ListExpressionPopulator

 		

 ListExploder

 		

 ListHistogrammer

 		

 ListIndexer

 		

 ListPopulator

 		

 ListRangeExtractor

 		

 ListRenamer

 		

 ListSearcher

 		

 ListSorter

 		

 ListSummer

 		

 LocalCoordinateSystemSetter

 		

 Logger

 		

 MapInfoStyler

 		

 MapnikRasterizer

 		

 MapTextLabeller

 		

 MapTextStyler

 		

 Matcher

 		

 MeasureExtractor

 		

 MeasureGenerator

 		

 MeasureRemover

 		

 MeasureSetter

 		

 MeshMerger

 		

 MGRSGeometryExtractor

 		

 MGRSGeometryReplacer

 		

 MGRSToLatLongConverter

 		

 MinimumAreaForcer

 		

 MinimumSpanningCircleReplacer

 		

 ModuloCounter

 		

 MRF2DCleaner

 		

 MRF2DConflator

 		

 MRF2DDangleRemover

 		

 MRF2DDuplicateRemover

 		

 MRF2DExtender

 		

 MRF2DGeneralizer

 		

 MRF2DIntersector

 		

 MRF2DJoiner

 		

 MRF2DShortGeometryRemover

 		

 MRF3DCleaner

 		

 MRFCleaner Modules

 		

 MRFCleaner: General Processing Tips

 		

 MRFCleaner Sample Results

 		

 MultipleGeometryFilter

 		

 MultipleGeometrySetter

 		

 NeighborFinder

 		

 NeighborhoodAggregator

 		

 NeighborPairFinder

 		

 NetworkCostCalculator

 		

 NetworkFlowOrientor

 		

 NetworkTopologyCalculator

 		

 NullAttributeMapper

 		

 NumericRasterizer

 		

 OffsetCurveGenerator

 		

 Offsetter

 		

 OrientationExtractor

 		

 Orientor

 		

 ParameterFetcher

 		

 PartCounter

 		

 PathBuilder

 		

 PathSplitter

 		

 PDFStyler

 		

 PlanarityFilter

 		

 Player

 		

 PointCloudCoercer

 		

 PointCloudCombiner

 		

 PointCloudComponentAdder

 		

 PointCloudComponentCopier

 		

 PointCloudComponentKeeper

 		

 PointCloudComponentRemover

 		

 PointCloudComponentRenamer

 		

 PointCloudComponentTypeCoercer

 		

 PointCloudConsumer

 		

 PointCloudCreator

 		

 PointCloudExpressionEvaluator

 		

 PointCloudExtractor

 		

 PointCloudFilter

 		

 PointCloudOnRasterComponentSetter

 		

 PointCloudPropertyExtractor

 		

 PointCloudReplacer

 		

 PointCloudSplitter

 		

 PointCloudThinner

 		

 PointCloudTransformationApplier

 		

 PointConnector

 		

 PointOnAreaOverlayer

 		

 PointOnLineOverlayer

 		

 PointOnPointOverlayer

 		

 PointOnRasterValueExtractor

 		

 ProxixGeocoder

 		

 PythonCaller

 		

 PythonCreator

 		

 RandomNumberGenerator

 		

 RasterAspectCalculator

 		

 RasterBandAdder

 		

 RasterBandCombiner

 		

 RasterBandInterpretationCoercer

 		

 RasterBandKeeper

 		

 RasterBandMinMaxExtractor

 		

 RasterBandNameSetter

 		

 RasterBandNodataRemover

 		

 RasterBandNodataSetter

 		

 RasterBandOrderer

 		

 RasterBandPropertiesExtractor

 		

 RasterBandRemover

 		

 RasterBandSeparator

 		

 RasterCellCoercer

 		

 RasterCellOriginSetter

 		

 RasterCellValueCalculator

 		

 RasterCellValueReplacer

 		

 RasterCellValueRounder

 		

 RasterCheckpointer

 		

 RasterConsumer

 		

 RasterDEMGenerator

 		

 RasterExpressionEvaluator

 		

 RasterExtentsCoercer

 		

 RasterExtractor

 		

 RasterGCPExtractor

 		

 RasterGCPSetter

 		

 RasterGeoreferencer

 		

 RasterHillshader

 		

 RasterInterpretationCoercer

 		

 RasterMosaicker

 		

 RasterNumericCreator

 		

 RasterPaletteAdder

 		

 RasterPaletteExtractor

 		

 RasterPaletteGenerator

 		

 RasterPaletteInterpretationCoercer

 		

 RasterPaletteNodataSetter

 		

 RasterPaletteRemover

 		

 RasterPaletteResolver

 		

 RasterPropertiesExtractor

 		

 RasterPyramider

 		

 RasterReader

 		

 RasterReplacer

 		

 RasterResampler

 		

 RasterRGBCreator

 		

 RasterRotationApplier

 		

 RasterSelector

 		

 RasterSingularCellValueCalculator

 		

 RasterSlopeCalculator

 		

 RasterSubsetter

 		

 RasterToPolygonCoercer

 		

 RasterTiler

 		

 Recorder

 		

 ReframeReprojector

 		

 ReprojectAngleCalculator

 		

 ReprojectLengthCalculator

 		

 Reprojector

 		

 Rotator

 		

 RubberSheeter

 		

 S3Downloader

 		

 S3Uploader

 		

 Sampler

 		

 Scaler

 		

 SchemaMapper

 		

 SecondOrderConformer

 		

 SectorGenerator

 		

 SherbendGeneralizer

 		

 ShortestPathFinder

 		

 SliverRemover

 		

 Snapper

 		

 Snipper

 		

 SNSSender

 		

 SolidBuilder

 		

 Sorter

 		

 SpatialFilter

 		

 SpatialRelator

 		

 Spatial Relations Defined

 		

 SpikeRemover

 		

 SQLCreator

 		

 SQLExecutor

 		

 SQSReceiver

 		

 SQSSender

 		

 StatisticsCalculator

 		

 StreamOrderCalculator

 		

 StreamPriorityCalculator

 		

 StringCaseChanger

 		

 StringConcatenator

 		

 StringFormatter

 		

 StringLengthCalculator

 		

 StringPadder

 		

 StringPairReplacer

 		

 StringReplacer

 		

 StringSearcher

 		

 SubstringExtractor

 		

 SummaryReporter

 		

 SurfaceBuilder

 		

 SurfaceDraper

 		

 SurfaceModeller

 		

 SurfaceOnSurfaceOverlayer

 		

 SurfaceReverser

 		

 SurfaceSplitter

 		

 SystemCaller

 		

 TclCaller

 		

 TCPIPReceiver

 		

 TCPIPSender

 		

 Terminator

 		

 Tester

 		

 TestFilter

 		

 TextAdder

 		

 TextDecoder

 		

 TextEncoder

 		

 TextLocationExtractor

 		

 TextPropertyExtractor

 		

 TextPropertySetter

 		

 TextStroker

 		

 TextureCoordinateSetter

 		

 Tiler

 		

 TimeStamper

 		

 TINGenerator

 		

 TopologyBuilder

 		

 TransporterReceiver

 		

 TransporterSender

 		

 Triangulator

 		

 Tweeter

 		

 TweetSearcher

 		

 TwitterStatusFetcher

 		

 UUIDGenerator

 		

 VariableRetriever

 		

 VariableSetter

 		

 VectorOnRasterOverlayer

 		

 VertexCreator

 		

 VolumeCalculator

 		

 VoronoiCellGenerator

 		

 VoronoiDiagrammer

 		

 WebCharter

 		

 WebMapTiler

 		

 WebSocketReceiver

 		

 WebSocketSender

 		

 WhiteStarLeaseBuilder

 		

 WorkspaceRunner

 		

 XMLAppender

 		

 XMLFeatureMapper

 		

 XMLFormatter

 		

 XMLFlattener

 		

 XMLFragmenter

 		

 XMLNamespaceDeclarer

 		

 XMLSampleGenerator

 		

 XMLTemplater

 		

 XMLUpdater

 		

 XMLValidator

 		

 XQueryExploder

 		

 XQueryExtractor

 		

 XQueryUpdater

 		

 XSLTProcessor

 		

 Category: Categorized

 		

 Category: 3D

 		

 Category: Calculators

 		

 Category: Collectors

 		

 Category: Coordinate Systems

 		

 Category: Database

 		

 Category: Embedded Transformers

 		

 Category: Filters

 		

 Category: FME Store Transformers

 		

 Category: Geometric Operators

 		

 Category: Infrastructure

 		

 Category: JSON

 		

 Category: KML

 		

 Category: Linear Referencing

 		

 Category: Lists

 		

 Category: MapText

 		

 Category: Manipulators

 		

 Category: MRF

 		

 Category: Network

 		

 Category: Point Cloud

 		

 Category: Rasters

 		

 Category: Strings

 		

 Category: Stylers

 		

 Category: Surfaces

 		

 Category: Web Services

 		

 Category: Workflow

 		

 Category: XML

 		

 About Group-Based Transformers

 		

 Feature-Based Transformers

 		

 FME Workbench Transformers

 		

 About This Help File

 		

 About Parallel Processing

 		

 About Multiple Geometry

 		

 Connecting to External Databases

 		

 How to get the most from the Curvefitter

 		

 fme_geometry

 		

 fme_type

 		

 XQuery Functions

 		

 XQuery Examples

 		

 LicenseChecker Scenario

 		

 Copyright and Trademark Notices

 		

 Working with Transformer Parameters

 		

 Transformer Defaults

 		

 Transformer Parameter Menu Options

 		

 System Parameters

 		

 Geometry Types

 		

 Arithmetic Editor

 		

 Text Editor

 		

 Advanced Text Editor

 		

 Creating a User Parameter

 		

 Modifying a User Parameter

 		

 Function Return

 		

 FME Feature Functions

 		

 String Functions

 		

 Transformers

OPS/Examples/pointconnector.png

OPS/Examples/NeighborColorSetter_2.png
60
10,30,50

9
20
10,30, 40,60
1 8
10 20 2
20,60 10,30, 40,60 o
10,20,50
3
E)

20, 40,50

OPS/Examples/NeighborColorSetter_1.png
60
10,30,50

10
20,60

3
E)
20, 40,50

OPS/Examples/featuremerger.png
1 | Jeff

2 | Phil

L

Sales

i
1

Products

Jeff

Sales

E FeatureMerger E:

Phil

Products

OPS/Examples/Raster/pointonrastervalueextractor_small.png
o,

OPS/Examples/featurereader.png
Vancouver
Target
.

FeatureReader %

Walmart

Vancouver

. .
°, & = Points

M = Areas

OPS/Examples/runtime_icon_python.png
=am

Runtime.

OPS/Examples/featuretypeextractor.png
fme_dataset
fme_feature_type
fme_il_color

fme_ptation
fme_secondary_ads
fme_stat_angle
fme_swesp_sndle
fme_text_size
fme_text_sting

Descct A

[
[
[
[
[
[
fme_primary_axis [
[
[
[
[
[
[

_'I'I'I'I'I'I'I'I'IYI'I'I

£

Apply to... oK Cancel

OPS/Examples/facereplacer_sideview.png
Side View with Average Surface Normals

Thickness = 0

Planar if tolerance >= 0.5 Planar for any tolerance

Non-planar otherwise

OPS/Examples/2darcreplacer.png

OPS/Examples/TextStroker.png
SO—

OPS/Examples/extender.gif

OPS/Examples/extruder.png

OPS/Examples/PointCloud/PointCloudThinnerSource.png

OPS/Examples/tiler.gif

OPS/Examples/PointCloud/PointCloudThinner_dest.png

OPS/Examples/facereplacer_input.png
xxxxx

OPS/Examples/fmeserverjobsubmitter_add.png
Add single items using the file
browser, or use the advanced
browser to add multiple files
and directories.

OPS/Examples/Raster/rasterbandseparator_small.png

OPS/Examples/geometrycolorsetter1.png

OPS/Examples/Raster/rastercellcoercer.png
Coordinate Listing:

(-57.523750000000433, 30.13625, 168.0)

OPS/Examples/geometrycolorsetter2.png

OPS/Examples/geometrycolorsetter3.png

OPS/Examples/featuretypefilter.png
Transformer
Transformer Name: FeatureTyperiter

Feature Type Names:

<BLANK>
<UNFILTERED>
dams00:020

pop_pnt
il |

OPS/Examples/featuretypefilter1.png
i

b ame B
[+ o> -
(b camsoox00 B>
i
> rai) >

OPS/Examples/fmeserverworkspacerunner1.png
ResultProcessing
Do not donrload resuts

Download results

Y e—

‘Emai resultnk when job is complete:

T —

OPS/Examples/Raster/rastercellvaluecalculator.png
10

10

OPS/Examples/geometryfilter0.png

OPS/Examples/geometryfilter1.png
“Attrbute Neme T Attrbute Vake

HAZARD H
LaTITUDE 4518833
LONGITUDE 59,755
MAX_STOR 600
mult_reader flid 0
mult_reader id 0

mult reader_keynord | SHAPE 1
multreader_type | SHAPE
NID_HEIGHT £

NIDID w0748

NORMAL_STO 5200

OPS/Examples/Raster/rasterdemgenerator.png

OPS/Examples/convexhullcreator.gif

OPS/Examples/convexhullreplacer.png
oY,

OPS/Examples/inlinequerier.png
1 .JeffI
oL
2| Phi Jeff | Sales
Sales g , . =[] 2| Pnil | Products
[InlineQuerier a

Products < o L 1| Bil |Sakes

) U 2 | Ted | Products
1 | Bil
2 [Ted '

OPS/Examples/inspector_button.png

OPS/Examples/intersector.gif

OPS/Examples/joiner.png
Jeff
i

Phil |

Joiner

=

Jeff

Sales

c =
=

Phil

Products

OPS/Examples/tingenerator_new.png

OPS/Examples/topologybuilder.gif

OPS/Examples/voronoidiagrammer.gif

OPS/Examples/webcharter1.gif
Fivot Table Evample.

Generate statstos or he cbserved sbute,
goupingbyihe regon and potental atbutes.
Efectivlycreatng 3o versin of 3 pivat sl

euT

[regon | [stemsties - = sorTeD
| ptents | [recen | [region >
[observed | potentat | otenta g

counto. zerved
2um o _.sarved
sverage..zerved

cout_o..zerved B
s o . sarved B
sversgs..zerved B

|
Dot

P o
b oo o
b

B crenervatabe

[# outPuT b
|

- INPUT
5] AGGREGATE _lbm

—

-
Foueer

- _eur

[# ResteR [
e
P |
Boime_baserame

OPS/Examples/webcharter2.gif
Sum of Observed Mineral values grouped by Region and Potential Impact

Kootenay - high——————
—— Cariboo - medum
Kootenay - medium

Vancouer - medium
Northwest - low

Northwest - medium- Vancouwer -high

OPS/Examples/voronoicellgenerator3.png

OPS/Examples/voronoicellgenerator4.png

OPS/Examples/voronoicellgenerator5.png

OPS/Examples/voronoicellgenerator1.png

OPS/Examples/voronoicellgenerator2.png

OPS/Examples/Raster/rasterinterpretationcoercer.png
Uint16.

12000

44000

Uints

256

65535

OPS/Examples/Raster/rastermosaicker.png

OPS/Examples/Raster/rastergeoreferencer.png
Cell Size =0.5

Cell Size =0.4

