

FME Desktop ®

Database (Oracle)
Pathway Training

FME 2013-SP2 Edition

Safe Software Inc. makes no warranty either expressed or implied, including, but not limited to, any
implied warranties of merchantability or fitness for a particular purpose regarding these materials, and
makes such materials available solely on an “as-is” basis.

In no event shall Safe Software Inc. be liable to anyone for special, collateral, incidental, or consequential
damages in connection with or arising out of purchase or use of these materials. The sole and exclusive
liability of Safe Software Inc., regardless of the form or action, shall not exceed the purchase price of the
materials described herein.

This manual describes the functionality and use of the software at the time of publication. The software
described herein, and the descriptions themselves, are subject to change without notice.

Copyright
© 1994 – 2013 Safe Software Inc. All rights are reserved.

Revisions
Every effort has been made to ensure the accuracy of this document. Safe Software Inc. regrets any
errors and omissions that may occur and would appreciate being informed of any errors found. Safe
Software Inc. will correct any such errors and omissions in a subsequent version, as feasible. Please
contact us at:

Safe Software Inc.
Suite 2017, 7445 – 132nd Street
Surrey, BC
Canada
V3W1J8

www.safe.com

Safe Software Inc. assumes no responsibility for any errors in this document or their consequences, and
reserves the right to make improvements and changes to this document without notice.

Trademarks
FME is a registered trademark of Safe Software Inc.

All brand or product names mentioned herein may be trademarks or registered trademarks of their
respective holders and should be noted as such.

Documentation Information
Document Name: FME Desktop Database Pathway Training Manual
FME Version: FME 2013-SP2 (Build 13499) 32-bit
Operating System: Windows 7 SP-1, 64-bit
Database: Oracle Database Express 11g Release 2 (11.2), 32-bit
Updated: June 2013

FME Desktop Database Training Manual

Introduction Page 3

Introduction ... 5

Database Pathway ... 5
FME Version .. 5
Sample Data .. 5
Supported Database .. 5

Connecting to a Spatial Database .. 6
Client Software... 6
Basic Connection Parameters.. 6
Connecting to Oracle ... 7
Testing a Connection ... 7
Oracle Workspace Manager .. 11

Updating Features .. 12
Database Format Attributes ... 12
Parameter Priority .. 14

Time and Date Attributes in Spatial Databases ... 26
Formatting Date Attributes with Transformers.. 26

Creative Feature Reading .. 27
WHERE Clause ... 28
Search Envelope .. 28
“Rows to Read at a Time” Parameter .. 29
Concatenated Parameters ... 32
FeatureReader ... 35

Coordinate System Granularity in Spatial Databases .. 38
Supported Formats .. 38

Multiple Geometries ... 39
Multiple Geometry Writing .. 39
Multiple Geometry Reading ... 40
Creating Multiple Geometry Tables .. 40
Executing SQL Scripts ... 42

Database Transformers .. 51
SQLExecutor.. 51
SQLCreator .. 51

Transactions ... 56
Transactions and Performance .. 56
Transactions and Recovery ... 57

Creative Feature Writing .. 59
Parent/Child Tables ... 59

Session Review .. 61
What You Should Have Learned from this Session ... 61

FME Desktop Database Training Manual

Introduction Page 4

FME Desktop Database Training Manual

Introduction Page 5

Introduction

This training material is part of the FME Training Pathway system.

Database Pathway
This training material is part of the
FME Training Database Pathway.

It contains advanced content and
assumes that the user is familiar with
all of the concepts and practices
covered by the FME Database
Pathway Tutorial, and the FME
Desktop Basic Training Course.

FME Version
This training material is designed
specifically for use with FME2013-
SP2. You may not have some of the
functionality described if you use an
older version of FME.

Sample Data
The sample data required to carry
out the examples and exercises in
this document can be obtained from:

www.safe.com/fmedata

Supported Database
For the purposes of simplicity, this training includes documented steps for Oracle 11g only. In
particular it was created using Oracle Express 11g Release (11.2)

FME Desktop Database Training Manual

Connecting to a Spatial Database Page 6

Connecting to a Spatial Database

Connecting to the database is the one step all FME operations must
perform.

Connecting to a database is slightly different to selecting a file for a file/folder-based format. The
operation relies much more on format specific parameters.

Client Software
Use of an Oracle Reader or Writer in FME requires the presence of Oracle database and/or client
software.

The version of the client required is determined by the version of FME being used. 32-bit FME
requires a 32-bit Oracle Client (regardless of whether you are using a 64-bit computer). 64-bit
FME requires a 64-bit Oracle Client.

If you have both a 32-bit and a 64-bit FME installed then you will need to install both versions of
Oracle Client, ensuring that ORACLE_HOME is not defined, as that would cause problems.

Basic Connection Parameters
The basic connection parameters for an Oracle database are:

• Host (Server) Name
• Database (Service/SID) Name
• Username
• Password
• Network Port Number

These parameters may differ slightly for each format, but will always be found in any
Reader/Writer dialog by clicking on the “Parameters…” button.

FME Desktop Database Training Manual

Connecting to a Spatial Database Page 7

Connecting to Oracle
Connection is possible through either tnsnames.ora or a direct connection.

tnsnames.ora
tnsnames.ora is a file that usually resides in the Oracle client installation folder. It is a text file that
consists of a number of service definitions of the form:

<net_service_name> =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = <hostname>)(PORT = <1521>))
)
 (CONNECT_DATA =
 (SERVICE_NAME = <oracle_sid>)
)
)

When you have set up connection information in tnsnames.ora then in FME you can connect
simply by specifying the service to connect to, a username, and a password.

Oracle Direct Connection
Direct Connection is when a single string is supplied that includes all the parameters required to
connect to the database. This string should include all of the connection parameters, including
server name and port number.

The connection string is of the form: user/password@//hostname:port/sid
For example: training/training@//localhost:1521/xe

When the database is on the same machine as you are connecting from, then you might be able
to use simply: user/password@sid, for example training/training@xe

Testing a Connection
A connection can be tested using any of FME’s Oracle Readers. The Non-Spatial Reader is
preferred for a virgin database that won’t have any spatial tables.

A connection can also be tested using an alternative tool such as Oracle’s SQL Developer or
Toad™ (Tool for Oracle Application Developers). If these products can connect to your database
then there is no reason why FME should not be able to.

FME Desktop Database Training Manual

Connecting to a Spatial Database Page 8

Example 1: Connection Parameters

Scenario FME user; City of Interopolis, Planning Department

Data Census Tracts (Esri Shape)

Overall Goal Test connection parameters by writing Census Tracts data to Oracle

Demonstrates Connection parameters and database writing

Starting Workspace None

Finished Workspace C:\FMEData\Workspaces\PathwayManuals\Database1(Oracle)-Complete.fmw

Follow these steps to test the connection to your Oracle database:

1) Open SQL/Database Tool
Open a tool with which to connect to the database.

Oracle has one built in that you can open by selecting
Start > All Programs > Oracle Database > Get
Started

Get Started opens a basic interface to the Oracle
database.

Alternatively, locate and start up Oracle SQL
Developer if it is installed on your system:

2) Enter Authentication Details
When prompted enter your authentication details.

In SQL Devloper you will need to create a new Connection. In the Get Started page you’ll need to
click on the Storage Tab to be prompted.

Either click Login or Connect.

In FME training, the authentication parameters are usually:

Username training
Password training

The Get Started authentication process is really just a test of the username and password.
Success here does not guarantee a successful connection from FME.
The best test is to use a tns option in a third-party application like SQL Developer.

FME Desktop Database Training Manual

Connecting to a Spatial Database Page 9

3) Start FME Workbench
Assuming a successful test, start FME Workbench, and open the Generate Workspace dialog.
Set up a translation as follows:

Reader Format Esri Shape
Reader Dataset C:\FMEData\Data\GovtBoundaries\TravisCounty\CensusTracts.shp

Writer Format Oracle Spatial Object

For the connection parameters either enter a direct connection into the Dataset field:

…or click on the Parameters
button and enter the connection
parameters in this dialog:

In FME training this is usually:

Service: XE
Username: training
Password: training

Also set Spatial Index Creation to Yes.

Now click OK, and then OK again, to create the workspace.

4) Run Workspace
Run the workspace. The foot of the log file will report success as follows:

FME Desktop Database Training Manual

Connecting to a Spatial Database Page 10

If the log reports a message like one of these:

• ORA-01017: invalid username/password; logon denied
• ORA-12154: TNS:could not resolve the connect identifier specified

…then you should check the connection parameters entered into the dialog and, if necessary, re-
check these against the parameters entered into the Oracle Database Home Page.

5) Check Result
In SQL Developer the result of the translation will appear as a new table, CENSUSTRACTS:

In the FME Data Inspector (with a
background map and the area fill set to
50% transparency) the data looks like
this:

Advanced Task
As an advanced task, try converting the following dataset to Oracle:

Reader Format LizardTech MrSID
Reader Dataset C:\FMEData\Data\Raster\130105.sid

As a raster dataset you’ll need to use the
Oracle Spatial GeoRaster writer. You’ll also
need the full Oracle database – Oracle XE
and Locator do not support raster.

If you are interested in less-common types of data, then be aware that both Oracle and
FME support Point Cloud datasets. In fact, like raster, FME has a specific format for this
type of data.

FME Desktop Database Training Manual

Connecting to a Spatial Database Page 11

Oracle Workspace Manager
The Oracle Workspace Manager is basically a form of versioning for an Oracle database.

FME lets you select an Oracle workspace to read from, and decide which to write to. The
parameter is found in the same location on the Reader and Writer parameters dialog:

If this value is left empty then
the default LIVE workspace will
be used.

From a Reader, you can determine which features came from which Oracle Workspace by
using the format attributes fme_dataset and fme_feature_type

FME Desktop Database Training Manual

Updating Features Page 12

Updating Features

Updating entire tables is simple enough, but updating individual
features is a task that requires a little more finesse.

Once information is stored in a database, it’s unlikely it will stay static. Changes will occur.

Sometimes the update will involve reloading an entire set of data, totally replacing the existing
data. Sometimes the table will also be replaced, and sometimes just emptied and refilled.
Feature Type parameters such as ‘Drop Table’ and ‘Truncate Table’ can help with this task.

However, most often only certain features need to be updated. The source data may indicate
which features require updates, but sometimes it is necessary to go through a process of change
detection to decide what to update.

Database Format Attributes
To carry out specific actions on specific features, Format Attributes must be used.

You’ll recall that operations on a Reader or Writer (i.e. at the database level) are carried out using
Reader/Writer Parameters, located in the Navigator window.

Operations on a feature type (i.e. at the database table level) are carried out using Feature Type
Parameters, located both in the Navigator window and the Feature Type Properties dialog.

However, operations on individual features are carried out using Format Attributes. For databases
there are two particular format attributes that control updates on individual features.

FME Desktop Database Training Manual

Updating Features Page 13

fme_db_operation
fme_db_operation is a format attribute whose value denotes how a database writer should handle
that feature. Very simply, it may take the value DELETE, INSERT or UPDATE.

fme_where
fme_where is a format attribute whose value denotes a match that identifies which database
record(s) this feature should update.

The structure is usually:

<database field> <operator> <value>

For example an fme_where statement of MyField = 4 says to update features where the
database column named “MyField” has a value of 4.

fme_where can be constructed in FME using either a StringConcenator or AttributeCreator
transformer. Integrated attribute handling allows a where clause to be constructed that matches
the value of an attribute on a feature, for example:

If the value part of the where clause is a string, then the string part must have single quotes
around it, for example MyField = 'abc', or MyField = '@Value(myAttribute)'

As an alternative to using the fme_where format attribute, you can use the “Update Key
Columns” parameter on the writer feature type. One advantage there is that you can
easily select multiple columns

FME Desktop Database Training Manual

Updating Features Page 14

Identifying Features
When an entire database or table needs updating, it’s easy to identify which features are to be
processed in which way. However, when only certain features need to be updated it’s important
to be able to identify which features they are.

In this scenario the source data sometimes indicates which features require updates. On other
occasions it’s necessary to go through a process of change detection.

A typical Change Detection workspace uses a ChangeDetector or Matcher transformer
(sometimes in a Custom Transformer like the UpdateDetector) and will look like this:

Parameter Priority
The basic rule for parameters is that any higher-level
parameter affects every component below it. For example, a
Reader Parameter affects all Feature Types that belong to
that particular reader.

Database writing mode does work in this way in general. For
example, if the writer level is set to INSERT then ALL
features are written to tables as an insert.

However, this mode can be set not only at the Writer level,
but also at the Feature Type level, or on individual features
with a format attribute; and this causes a different effect.

When the same parameter exists at multiple levels, the
higher-up parameter only applies when the lower-down
parameters are not set (or are set to “INHERIT FROM
WRITER”). When the same parameter is set at different
levels, then the lower-level parameter wins out.

For example, a Writer might be set as INSERT mode; but a table is set to UPDATE mode. In that
case the Feature Type level parameter wins out, and features are written to that table as an
update.

FME Desktop Database Training Manual

Updating Features Page 15

Example 2: Feature Updates

Scenario FME user; City of Interopolis, Planning Department

Data Address Data (GeoMedia Access Warehouse)

Overall Goal Load address data and updates

Demonstrates Feature-level updates

Starting Workspace None

Finished Workspace C:\FMEData\Workspaces\PathwayManuals\Database2(Oracle)Loader-Complete.fmw
C:\FMEData\Workspaces\PathwayManuals\Database2(Oracle)Updater-Complete.fmw

The city has a set of address data, plus a set of updates. This example will show how to load the
data (with a Loader workspace) and apply the updates (with an Updater workspace). It also
highlights some of the pitfalls and problems that can occur during such a process.

1) Create Loader Workspace
Start Workbench if necessary and open the Generate Workspace dialog.
Set up a translation as follows:

Reader Format Intergraph GeoMedia Access Warehouse
Reader Dataset C:\FMEData\Data\Addresses\roadAllowancesAndAddressPoints.mdb

Reader Parameters
Table List Click the Table List button

Choose ADDRESS_POINTS as the
source table to read

Writer Format Oracle Spatial Object
Writer Parameters Enter the database connection parameters as before
Spatial Index Creation Yes

A spatial index makes it more efficient for querying and updating data in the database table. In
particular, it can really speed up a spatial query such as an envelope search.

Click OK, and OK again, to create the workspace.

Loader

FME Desktop Database Training Manual

Updating Features Page 16

2) Check Parameters
Check that the writer
parameter ‘Writer Mode’ is set
to INSERT.

Next check that the Feature
Type parameters
‘Create Table’ and ‘Drop
Existing Table’ are both
set to Yes.

3) Save and Run
Workspace
Save the workspace, and
then run the workspace.

The process will take about
10 seconds to load 12,292
features.

Use the FME Data Inspector to inspect the contents of the newly written table.
Notice that the attribute PRIMARYINDEX is a unique ID number for each address.

Once you have set the connection parameters a few times, and are sure they are correct, then
choose the “Save as My Defaults” option at the foot of the parameters dialog.

This will save the parameters and prevent them having to be entered again and again.

You can rearrange the order of columns in the Data Inspector Table View by dragging a
column into a new position.

FME Desktop Database Training Manual

Updating Features Page 17

4) Inspect Updates File
In a text editor open the file C:\FMEData\Data\Addresses\AddressUpdates\AddressUpdates.txt

This file contains updates to the main address database. It has almost exactly the same schema,
but has an additional field called UPDATE_TYPE, which records the type of edit to carry out:

I [I]nsert this record to the database as a new address
D [D]elete this record from the database as an old address
U [U]pdate this record as a changed address

5) Create Updating Workspace
Back in FME Workbench (it’s easiest to start a new instance of Workbench) create a workspace
to translate the updates file into Oracle.

Reader Format Comma Separated Value (CSV)
Reader Dataset C:\FMEData\Data\Addresses\AddressUpdates\AddressUpdates.txt

Reader Parameters
File Has Field Names Yes Lines to Skip (Header) 1

Attributes
For the Attributes section, locate X_COORD and Y_COORD and change their attribute types to
x_coordinate and y_coordinate. This will set the geometry of the features being read.

Writer Format Oracle Spatial Object

Check the option to “Import
Feature Type Definitions” and
click OK.

Updater

FME Desktop Database Training Manual

Updating Features Page 18

6) Select Writer Feature Types
When prompted, we should set the format and dataset where the feature types can be imported
from. By default this should be the Oracle database, so the fields may not need much editing:

Click the Parameters button, and use the table selection tool to select the newly created
ADDRESS_POINTS table (it will be named TRAINING.ADDRESS_POINTS or possibly
FMEDATA.ADDRESS_POINTS depending on the Oracle database definition):

Click OK and then OK again. A workspace will be created that looks like this:

FME Desktop Database Training Manual

Updating Features Page 19

7) Assign Operation Type
The different action types defined in the updates file need to have different values for
fme_db_operation in order to carry out the different action for each.

The workspace must be set up to assign the following:

Update Type fme_db_operation
I INSERT
D DELETE
U UPDATE
N <none>

In FME2013-SP1 (or newer) this can be done with an AttributeCreator transformer using new
Conditional Mapping functions.

Place an AttributeCreator transformer and connect it to the Reader Feature Type, like so:

8) Set up INSERT
Open the AttributeCreator parameters dialog. Enter fme_db_operation as the Attribute Name to
be created. Open the Value drop-down menu and choose “Set to Conditional Value”.

FME Desktop Database Training Manual

Updating Features Page 20

In the Condition Definition
dialog there is a line for each
test to be carried out. To start
with double-click in the first “If”
condition.

This opens up a Tester-
like dialog. In here enter a
test to check whether the
incoming feature is an
INSERT:

Back in the Condition Definition
dialog, set the output value
(remember we are setting
fme_db_operation here) to
INSERT

9) Set up UPDATE/DELETE
Now repeat this process to set
up Conditional Mapping for the
U (UPDATE) and D (DELETE)
update types.

FME Desktop Database Training Manual

Updating Features Page 21

10) Assign WHERE Clause
The AttributeCreator dialog will now show there are 4 possible values for fme_db_operation
(INSERT, UPDATE, DELETE, <Do Nothing>).

Now we can set up a WHERE clause by creating fme_where.

In the AttributeCreator parameters dialog, click on the entry for fme_db_operation and then click
the Duplicate button. This sets up a duplicate set of conditions/values and is the easiest method
to use where all of the tests (here for Update Type) will be the same.

Change the newly created attribute name from fme_db_operation(1) to fme_where and select
“Set to Conditional Value”.

Because this is a set of duplicate conditions, in the Condition Definition dialog we can leave the
Test Conditions to be the same and now only need to start editing the output values.

Where UPDATE_TYPE is “I”, the output value can be left empty, as a WHERE clause is not
required for an INSERT. So set the output value to “Do Nothing”:

FME Desktop Database Training Manual

Updating Features Page 22

Where UPDATE_TYPE is “U” the output value needs to be a SQL WHERE clause. So click the
drop-down menu and select Open String Editor.

In the String Editor dialog, use either the Basic or Advanced version to create a string matching a
field called PRIMARYINDEX to the value of the attribute called PRIMARYINDEX.

In the basic editor it will look
something like this:

The Advanced Editor will merely
show the string: PRIMARYINDEX =
@Value(PRIMARYINDEX)

Now repeat the process for the
DELETE update type (it will have
the exact same WHERE clause):

You could, of course, delete the existing DELETE condition and duplicate the UPDATE one.

FME Desktop Database Training Manual

Updating Features Page 23

11) Set Last Update Field
So that it’s possible to recognize the updated data, add another attribute to the AttributeCreator
transformer to create LA_UPD_BY (Last Updated By) and set its value to be a constant such as
your own name.

Connect the AttributeCreator to the output feature type and your workspace now looks like this:

12) Check Parameters
The workspace is now complete, but the
parameters need attention.

At this point the Writer (database)
parameters probably look like this:

…and the writer Feature Type (table)
parameters like this:

FME Desktop Database Training Manual

Updating Features Page 24

Obviously we don’t want to drop or re-create the table, merely update selected records.

So set:
 Create Table = No.

When you do this, Drop Existing Table is automatically grayed-out, and Writer Mode changes
from <Unused> to INHERIT_FROM_WRITER.

The question now is one of Writer Mode. There are parameters on both the Writer (seen in the
Navigator screen shot) and on the Feature Type. Currently:

Writer: Writer Mode INSERT
Feature Type: Writer Mode INHERIT_FROM_WRITER

We have already defined writer mode (through fme_db_operation) to be a separate action
(INSERT, UPDATE, DELETE) for individual features. According to the FME Readers and Writers
Manual, this will work “unless the parameter at the feature type level is set to INSERT”!
In other words, to force FME to use fme_db_operation you need to set Writer Mode: UPDATE

There are two options here:

• Leave the writer:Writer Mode parameter as-is, and set the feature type:Writer Mode
parameter to UPDATE.

• Set the writer:Writer Mode parameter to UPDATE, and leave the feature type:Writer
Mode parameter as-is.

Choose one of these methods to change writer mode to UPDATE. Q: Are there any obvious
benefits to choosing one over the other?

13) Save and Run Workspace
Save the workspace, and then run it. The workspace will take about 25 seconds to complete.
There are 1465 features processed and, counting the updates file, I find out that there are:

INSERTS 284
DELETES 604
UPDATES 577

So, two calculations are important:

Original Features (12,292) + INSERTS (284) – DELETES (604) = 11972
There should now be 11,972 records in the database.

INSERTS (284) + UPDATES (577) = 861
There should be 861 records now tagged with LA_UPD_BY = <YourName>

Query the database (using SQL Developer or a similar tool) to find out if these calculations are
correct:

FME Desktop Database Training Manual

Updating Features Page 25

Advanced Tasks
Can you use the FME Universal Viewer to check whether there are now 861 records tagged with
your name as the LA_UPD_BY?

Can you use a transformer to set a value for LA_UPD_DAT as the update date/time?

What would happen if the X_COORD or Y_COORD attributes were the part that had changed in
a "U" (Updated) record? The CSV Reader will use those coordinates in the new feature, but what
Writer (Format Parameter) would you need to ensure is set to update the geometry?

Lessons to Learn!
Besides how to apply updates to a database, there are two important lessons to take from this
exercise:

• Always check your writer parameters carefully. Then check them again.
And again.

• Don’t assume because the translation was successful, that the data was written correctly!

Always inspect the output to make sure it is what you were expecting.

FME Desktop Database Training Manual

Time and Date Attributes in Spatial Databases Page 26

Time and Date Attributes in Spatial Databases

Time and Date Attributes are among the more tricky to get into,
and out of, a database.

Time and date attributes are complicated territory because each different database format may
have its own unique structure for dates.

Oracle
Oracle expects DATE values in the format YYYYMMDDHHMMSS even though when you display
a date field from an Oracle table it shows something like this: 01-JAN-08 12:00:00

Microsoft SQL Server
DateTime fields represent date and time data from January 1, 1753 to December 31, 9999.
For example, a value of 20061231235959 represents 11:59:59PM on December 31, 2006.
When writing to the database, the writer expects the date attribute to be in the form
YYYYMMDDHHMMSS

SmallDateTime fields represent date and time data from January 1, 1900 to June 6, 2079.
For example, a value of 20060101101000 represents 10:10:00AM on January 1, 2006.
When writing to the database, the writer expects the date attribute to be in the form
YYYYMMDDHHMMSS

IBM Informix
The Informix reader returns two attributes for each DATE field.

The first attribute has the name of the database column, and the form YYYYMMDD
The second attribute has a suffix of .full and is of the form YYYYMMDDHHMMSS

For example, if the date field is called UPDATE_DATE, the attributes are UPDATE_DATE and
UPDATE_DATE.full

The Informix writer looks for both attributes when a DATE or DATETIME column is being output.
Either may be specified. If both attributes are specified, then <name>.full takes precedence.

Formatting Date Attributes with Transformers
To write dates to a database DATE or DATETIME field you can use the TimeStamper or
DateFormatter transformer to get the date into the correct format.

A format string of ^Y^m^d^H^M^S will return a date-time in the form YYYYMMDDHHMMSS
A format string of ^Y^m^d will return a date in the form YYYYMMDD

New for FME2013, the DateFormatter now also allows you to specify the source date format using
the same format strings. Also provided are default output strings of the most common output
formats.

FME Desktop Database Training Manual

Creative Feature Reading Page 27

Creative Feature Reading

Rather than a plain reader, there are some quite creative ways by
which database features can be read using Workbench.

Using FME to read from a database should be carefully planned and considered. Frequently not
every feature in every table is required, and yet that is what a user might be doing.

The fewer features that are read from the database, the quicker the read will be, the less system
resources are used, and the faster the overall translation will be.

There are a number of items of functionality that can improve the performance of database
reading in this way:

• WHERE Clause
• Search Envelope
• “Records to Read at a Time” parameter
• Concatenated Parameters
• FeatureReader transformer
• Oracle Workspace Manager

Chef Bimm says…

‘Think of a database like a restaurant. A sensible person would browse the
menu, and order just the dishes that they want. A foolish person would order
everything and waste the food they didn’t really need.

Like a restaurant, it’s expensive and time-consuming to order all data from a
database just to discard most of it. Far better to order only the data you intend
to consume in the current session!’

FME Desktop Database Training Manual

Creative Feature Reading Page 28

WHERE Clause
Most database readers will have a WHERE
clause parameter. Here a query can be set, so
that only features that pass the query will be
returned to FME.

This employs database query tools – which in
turn make use of database indices – and is a
lot more efficient than reading an entire table
and then filtering it with a Tester transformer.

The WHERE clause can also be
set on each individual Reader
Feature Type:

Search Envelope
Similar to a WHERE clause, “search envelope” parameters set a spatial query; only features that
fall inside the specified extents will be returned to FME.

Again, this employs native database functionality, and is more efficient than reading the entire
table and then clipping it with a Clipper transformer.

An optional “Clip to Search Envelope”
parameter defines whether features will
be clipped where they cross the defined
extents, or be allowed to pass completely
where at least a part of them falls inside
the extents.

Of course the limitation here is that the
four parameters only define a rectangular
envelope.

FME Desktop Database Training Manual

Creative Feature Reading Page 29

For convenience, each reader also has a parameter called “Search Envelope Coordinate System”.
This allows the search envelope coordinates to be provided in a different coordinate system to
that of the actual data.

For example, the coordinates could be provided in Lat/Long format (degrees) to use as a search
envelope for data stored in State Plane (metres/feet).

As with the WHERE clause, the
Search Envelope can also be set
on each reader feature type.

Search Envelope Relationship
The Search Envelope is also used by a parameter called “Relationship to Query Feature”.

This allows the user to query
features based on their spatial
relationship to the Search Envelope.
For example the user may wish to
retrieve features that are entirely
within the envelope, or that intersect
the search envelope.

“Rows to Read at a Time” Parameter
This parameter defines how many records will be fetched at a time from the database. Tweaking
it allows the user to tune the performance of the reader.

Too low a number and FME will spend
excessive time making read requests.
Too high a number and database
performance might be slowed down for
other users.

To use a search envelope requires a spatial index to exist for that table; FME can’t do a spatial
query without one. If a format doesn’t support a spatial index being created on a view, then
FME will not be able to do spatial queries on that view.

FME Desktop Database Training Manual

Creative Feature Reading Page 30

Example 3: WHERE Clause

Scenario FME user; City of Interopolis, Planning Department

Data Oracle Spatial Object (Address Point Data)

Overall Goal Read address data with a query

Demonstrates WHERE Clause parameters

Starting Workspace None

Finished Workspace C:\FMEData\Workspaces\PathwayManuals\Database3(Oracle)-Complete.fmw

To test the previous example, it’s time to read back some data – but only for a specific zipcode.

1) Start FME Workbench
Start Workbench if necessary and begin with a blank workspace.

2) Add Reader
Add a Reader using Readers > Add Reader. Set it up as follows:

Reader Format Oracle Spatial Object

Reader Parameters
Database Connection Enter the database connection parameters as before
Table List Select the ADDRESS_POINTS table

Click OK, and OK again to close the dialogs and add the new reader.

3) Add Inspector
Connect an Inspector transformer to the reader feature type.

4) Save and Run Workspace
Save and run the workspace. Note how many features were read and how long it took.

5) Set WHERE Clause
Locate the WHERE Clause parameter in the Navigator Window, and double-click it.
In the Edit Parameter box, enter:

ZIPCODE=78723

6) Re-run Workspace
Re-run the workspace. Note how many features were read now and
compare how long it took.

FME Desktop Database Training Manual

Creative Feature Reading Page 31

Advanced Task
As a side-example, why not try reading back the census data loaded in example 1?

Because it was created with a spatial index you can use a Search Envelope to read it back.
Experiment with all of the different parameters and then try to match the following screenshots to
the parameters used:

Clip: No Clip: Yes
Relationship: Any Relationship: Overlap/Intersect

Clip: Yes Clip: Yes
Relationship: Any Relationship: Inside

FME Desktop Database Training Manual

Creative Feature Reading Page 32

Concatenated Parameters
The problem with the WHERE clause – as with similar parameters – is that it is difficult to get user
input and apply it to the clause.

Simply publishing the parameter is not useful because the user would have to enter the full
clause (<field> = <value>), when often only the <value> part is required as input.

This is where a concatenated parameter comes in. It is a parameter that is built of a constant
string (the <field> part) and a user-defined value (the <value> part).

NB: Scripted Parameters are a similar tool, but would be used in scenarios where the value
needs more complex processing that requires using a Python or Tcl script. For example, a
scripted parameter would be useful for manipulating the search envelope parameter values.

Example 4: Concatenated Parameter

Scenario FME user; City of Interopolis, Planning Department

Data Oracle Spatial Object (Address Point Data)

Overall Goal Read address data with a user-defined query

Demonstrates Concatenated parameters for a database

Starting Workspace C:\FMEData\Workspaces\PathwayManuals\Database4(Oracle)-Begin.fmw

Finished Workspace C:\FMEData\Workspaces\PathwayManuals\Database4(Oracle)-Complete.fmw

Continue on from the previous example….

1) Start FME Workbench
Start Workbench if necessary and open the workspace from the previous example. Or open
 C:\FMEData\Workspaces\PathwayManuals\Database4(Oracle)-Begin.fmw

2) Add Parameter
Right-click on “User Parameters” in the Navigator
window and choose Add Parameter.

When prompted, choose a parameter
of type Text.

Set the name to UserZipCode and the
prompt to ZipCode:

FME Desktop Database Training Manual

Creative Feature Reading Page 33

3) Add Parameter
In the Navigator window, right-click the Oracle
Reader WHERE Clause parameter and choose
Create User Parameter.

This time create the parameter with the following settings:

Type Text
Published Uncheck this flag, so the user is not prompted to set this private parameter
Value ZIPCODE=$(UserZipCode)

Notice how this published
parameter makes a
reference to the one
previously created
(UserZipCode).

4) Run Workspace
Run the workspace using Prompt and Run Translation.
When prompted, enter a zipcode into the field provided.

Valid values are:

• 78722
• 78723
• 78724
• 78751
• 78752
• 78753
• 78754

Each different zipcode will change the database WHERE clause and return a different set of data.

FME Desktop Database Training Manual

Creative Feature Reading Page 34

Advanced Task
If you have a little time, recreate the UserZipCode parameter to be a choice, rather than a text
parameter. The choices should reflect the above list of valid zipcodes for Interopolis.

But if you did have to find the list of unique zipcodes in the data, how would you do it?!

Mr. Saif-Investor says…

“Notice that a WHERE clause on the reader applies the same query to ALL tables
being read. This can be useful, but also inefficient.

So be aware that there is also a WHERE clause parameter on each feature type,
so different queries can be applied to individual tables.”

FME Desktop Database Training Manual

Creative Feature Reading Page 35

FeatureReader
The FeatureReader transformer is one that acts – as the name suggests – as a reader in its own
right. FeatureReader will read data, from a database, and use incoming features as the basis for
a spatial or non-spatial query.

Incoming features are known as initiators. Each input feature causes a single query to be carried
out through the reader configured in the FeatureReader. The query can use the geometry of the
incoming feature as a base against which to test a spatial predicate, and the reader returns one
or more features as the result of the query.

For example, an incoming line feature (maybe a road) can be used to define the base for an
intersection query against linear database features such as rivers or rail. Or a polygon feature
could be used as a boundary within which to select point features.

NB: This transformer is designed to replace both the OracleQuerier and ArcSDEQuerier.

Example 5: FeatureReader

Scenario FME user; City of Interopolis, Planning Department

Data Census Data (Oracle Spatial Object) Address Point Data (Oracle Spatial Object)

Overall Goal Read address data within a user-defined census area

Demonstrates FeatureReader Transformer

Starting Workspace None

Finished Workspace C:\FMEData\Workspaces\PathwayManuals\Database5(Oracle)-Complete.fmw

1) Start FME Workbench
Start Workbench if necessary and begin with a Blank workspace.

2) Add Reader
Add a reader (using Readers > Add Reader) to read the following dataset:

Reader Format Oracle Spatial Object

Reader Parameters
Database Connection Enter the database connection parameters as before
Table List Select the CENSUSTRACTS table from the first example.

Click OK, and OK again to close the dialogs and add the new reader.

The FeatureReader works best when there is a spatial index on the table being read. For that
reason it’s best to not use this transformer with a View (that does not support spatial indexing)
but only with a Materialized View (that does).

FME Desktop Database Training Manual

Creative Feature Reading Page 36

3) Set WHERE Clause
Turn the Reader WHERE Clause into a
Published Parameter.

For the default value enter:

 TRACTCE00 = 1811

Advanced Task: As in the previous
example, try to create a concatenated
Choice-type parameter with the choices
1811, 1812 and 1813 for the WHERE
clause.

4) Add CsmapReprojector
The Oracle CENSUSTRACT data loaded in an earlier example is in a Lat/Long coordinate
system, but the ADDRESS_POINTS data is in TX83-CF.

If we wish to use one dataset to act as an Initiator for the other, the CENSUSTRACTS data must
be reprojected to match the ADDRESS_POINTS.

Add a CsmapReprojector transformer connected to the CENSUSTRACT feature type.
Open the properties dialog. Set:

Source Coordinate System Read from feature
Destination Coordinate System TX83-CF

5) Add FeatureReader
Add a FeatureReader transformer connected to the CsmapReprojector:REPROJECTED port.

FME Desktop Database Training Manual

Creative Feature Reading Page 37

6) Set Parameters
Open the parameters dialog for the FeatureReader and set the parameters as follows:

Panel 1:
Reader Format Oracle Spatial Object
Reader Parameters
Database Connection Enter the database connection parameters as before
Table List Select the ADDRESS_POINTS table

Panel 2:
Feature Types Query the Feature Types specified on the previous page
WHERE Clause <none>

Panel 3:
Spatial Interaction Select only features that satisfy “INITIATOR geometry… etc
Spatial Test ORACLE:INSIDE_INITIATOR

This will return all address features INSIDE the Initiator (Census Tract) feature.

Panel 4:
Attribute Handling Keep result attributes only
Geometry Handling Keep result geometry only

Click Finish. With only one Initiator feature there is no need to use a cache.

7) Add Inspectors and Run Workspace
Add Inspectors to the FeatureReader output ports.

Run the workspace using File > Prompt and Run Translation.
When prompted, enter census tract 1811.

The workspace will read addresses from the Oracle
database, only where they fall inside this census
tract.

Advanced Task
Experiment with a WHERE clause on the FeatureReader. For example:

LA_UPD_BY = 'name'

Be aware that only tracts 0303, 2201, 2112, and 2106 have records with LA_UPD_BY set.

A nice feature here is that the Feature Types (tables) to read can be obtained from the contents
of an attribute. For example, you could get the list of tables from a published parameter, and
extract that into an attribute for use here.

Note that the first set of predicates (those prefixed by ORACLE:) will be processed using a query
to the underlying database. Those without the prefix are internal predicates that use FME
functionality.

FME Desktop Database Training Manual

Coordinate System Granularity in Spatial Databases Page 38

Coordinate System Granularity in Spatial Databases

Granularity refers to the level at which different features can be
written to different coordinate systems

Some formats of database support improved coordinate system granularity in FME. This means
different tables may be written simultaneously, each with a different coordinate system.

Supported Formats
This functionality is supported in the following database formats:

• Geodatabase and SDE
• SQL Server
• Informix
• Teradata
• IBM DB2

…however it is not yet supported in Oracle (or GeoMedia). This means that each Oracle Writer
can only write to a single coordinate system. If you need to write multiple tables, each in a
different coordinate system, then you need to use multiple Oracle Writers.

FME Desktop Database Training Manual

Multiple Geometries Page 39

Multiple Geometries

Multiple Geometries are permitted where supported by the
database, usually in the form of multiple geometry columns per
table

Most databases include the ability to have multiple geometry columns per table, and FME
supports this too. However, the table must exist beforehand – FME cannot create multiple
geometry tables.

Multiple Geometry Writing
There are two multiple-geometry writing scenarios:

• Reading AND Writing multiple geometries
• Reading single geometry features and converting them to multiple geometries

Reading and Writing Multiple Geometries
In a Multiple -> Multiple translation FME handles the reading and writing automatically.

Reading Single and Writing Multiple Geometries
When converting single geometries to multiple, the key is in how to identify two features that are
related, and how to assign each of them to the appropriate geometry column.

Because FME doesn’t yet handle Single -> Multiple translations automatically within Workbench,
the setup for each database record to be written must be defined manually. It will be composed of
two or more features, each of which contributes its geometry to the final record.

The functionality used to do this involves geometry names and aggregates.

1) A geometry name is applied to each feature with a GeometryNameSetter and this geometry

name identifies the geometry columns to write to.

2) The features are grouped together as an aggregate—usually with an Aggregator

transformer—and this identifies which features form a particular database record.

FME Desktop Database Training Manual

Multiple Geometries Page 40

Multiple Geometry Reading
Similar to writing, multiple geometry reading
involves aggregates.

Each multiple geometry feature that FME reads is
an aggregate. The Deaggregator transformer can be
used to split up the record into individual geometries, and an attribute
(_geometry_name) used to determine which geometry came from which column.

Creating Multiple Geometry Tables
FME isn’t yet able to create tables with multiple geometry columns. You may either use an
existing table with multiple geometry columns, or you can use a SQL script within the FME
translation to create one.

The goals of the SQL script are to:

• Check if the table already exists and, if so, drop (delete) it
• Delete any existing metadata records for the table
• Create the new table
• Insert new metadata records for the table

There are two example SQL scripts you can use as examples:

• C:\FMEData\Resources\Databases\OraclePLSQL.txt
• C:\FMEData\Resources\Databases\OracleSimpleSQL.txt

The default FME behaviour is
to read and write single columns.
Multiple column behaviour is
activated only by a Handle
Multiple Spatial Columns
parameter on either the Reader
or the Writer.

FME Desktop Database Training Manual

Multiple Geometries Page 41

PL/SQL Script Example:
An example PL/SQL script (OraclePLSQL.txt) is as follows:

FME_SQL_DELIMITER !
DECLARE
 cnt NUMBER;
BEGIN
 SELECT COUNT(*)
 INTO cnt
 FROM ALL_TABLES
 WHERE TABLE_NAME = 'CITY_PARKS' AND OWNER = 'TRAINING';
IF (cnt > 0)
 THEN

EXECUTE IMMEDIATE 'DROP TABLE CITY_PARKS';
EXECUTE IMMEDIATE 'DELETE FROM USER_SDO_GEOM_METADATA WHERE
TABLE_NAME=''CITY_PARKS'' ';

END IF;
END;
!
CREATE table CITY_PARKS (
 "PARK_ID" INTEGER,
 "NAME" CHAR(64),
 "NAME_ALT" CHAR(64),
 "POINTS" SDO_GEOMETRY,
 "POLYGONS" SDO_GEOMETRY
)!
INSERT into USER_SDO_GEOM_METADATA (table_name,column_name,diminfo,srid) VALUES
('CITY_PARKS','POINTS',
sdo_dim_array(sdo_dim_element('X',3000000,10000000,0.005),sdo_dim_element('Y',32
00000,10100000,0.005)), 2277)!
INSERT into USER_SDO_GEOM_METADATA (table_name,column_name,diminfo,srid) VALUES
('CITY_PARKS','POLYGONS',
sdo_dim_array(sdo_dim_element('X',3000000,10000000,0.005),sdo_dim_element('Y',32
00000,10100000,0.005)), 2277)!

Notes:
The script is divided into four sections:

o An FME keyword to define the SQL delimiter
o A PL/SQL script to drop an existing table and delete its metadata
o A SQL command to create the CITY_PARKS table
o Two insert statements to create metadata

• The FME_SQL_DELIMITER keyword specifies a character to separate multiple SQL

statements. Usually you would use a semi-colon (;) but here we have a section of
PL/SQL that already uses semi-colon delimiters within itself, and so this script uses the
exclamation mark (!) instead.

• The PL/SQL section is used in order to check if the table exists before dropping it. It is

equivalent to – though not as elegant as – the SQL Server “IF EXISTS” function.

• In the line that deletes existing metadata records, CITY_PARKS is bracketed by two
single quote characters (''CITY_PARKS''). This is a requirement of the FME parser.

• There are two lines to create metadata (one for each geometry column). Without these

records FME would not be able to find the table to read it back!

Commits are performed automatically, and do not need to be included.

FME Desktop Database Training Manual

Multiple Geometries Page 42

Alternate Script:
An alternative to the above (OracleSimpleSQL.txt) script is as follows:

FME_SQL_DELIMITER ;
-DROP TABLE CITY_PARKS;
-DELETE FROM USER_SDO_GEOM_METADATA WHERE TABLE_NAME='CITY_PARKS';
CREATE table CITY_PARKS (
 "PARK_ID" INTEGER,
 "NAME" CHAR(64),
 "NAME_ALT" CHAR(64),
 "POINTS" SDO_GEOMETRY,
 "POLYGONS" SDO_GEOMETRY
);
INSERT into USER_SDO_GEOM_METADATA (table_name,column_name,diminfo,srid) VALUES
('CITY_PARKS','POINTS',
sdo_dim_array(sdo_dim_element('X',3000000,10000000,0.005),sdo_dim_element('Y',32
00000,10100000,0.005)), 2277);
INSERT into USER_SDO_GEOM_METADATA (table_name,column_name,diminfo,srid) VALUES
('CITY_PARKS','POLYGONS',
sdo_dim_array(sdo_dim_element('X',3000000,10000000,0.005),sdo_dim_element('Y',32
00000,10100000,0.005)), 2277);

Notes:
The difference here is, rather than trap errors in the script, a specific FME device is used to
ignore them. Notice the hyphen character that precedes the DROP and DELETE commands.
This prompts FME to ignore any errors from these commands, such as would occur when trying
to drop a table that does not exist.

Pros A shorter, simpler script
Cons Non-standard SQL

Executing SQL Scripts
There are various ways you can execute SQL Scripts within FME.

The next exercise uses SQL Statement to Execute Before Translation which is one of the
database reader and writer parameters.

Later sections will introduce you to the SQLCreator and the SQLExecutor.

FME Desktop Database Training Manual

Multiple Geometries Page 43

In this example, FME will be used to create multiple geometries where the two geometries are
different representations (point and polygon) of the same park objects.

A workspace will then be created to read the data back, and filter it (either points or polygons)
depending on the scale required for the output.

1) Start FME Workbench
Start FME Workbench, and open the Generate Workspace dialog.
Set up a translation as follows:

Reader Format MapInfo TAB (MFAL)
Reader Dataset C:\FMEData\Data\Parks\city_parks.tab

Writer Format Oracle Spatial Object

Writer Parameters
Database Connection Enter the database connection parameters

Click OK, and then OK again, to create the workspace.

2) SQL Statement to Execute Before Translation
Because FME isn’t yet able to create tables with multiple geometry columns you will use a SQL
script to create one. There are two example SQL scripts you can use:

 C:\FMEData\Resources\Database\OraclePLSQL.txt
 C:\FMEData\Resources\Database\OracleSimpleSQL.txt

Locate and double-click the writer parameter ‘SQL Statement to Execute Before Translation’.

Open one of the example SQL scripts from the resources folder in a text editor and cop/ypaste
the contents into the FME SQL edit dialog.

Example 6: Multiple Geometry Writing

Scenario FME user; City of Interopolis, Planning Department

Data City Parks (MapInfo TAB, Oracle Spatial Object)

Overall Goal Write to multiple geometry columns

Demonstrates Multiple Geometry Writing

Starting Workspace None

Finished Workspace C:\FMEData\Workspaces\PathwayManuals\Database6(Oracle)-Complete.fmw

FME Desktop Database Training Manual

Multiple Geometries Page 44

3) Edit Schema
Notice that the new CITY_PARKS table (as defined in the SQL script) has columns NAME,
NAME_ALT, and PARK_ID the latter of which is not defined in the workspace.

Edit the writer feature type and add the new PARK_ID field, with integer type.
Remove the unnecessary fields ROTATION, HEIGHT and TEXTSTRING

You may wish to rename the attributes name and name_alt to NAME and NAME_ALT. The
Oracle writer will automatically do this to the output anyway, so this is not compulsory at this point.

4) Add Counter
To create PARK_ID, add a Counter
transformer.

Open the properties dialog and set
Count Output Attribute to PARK_ID
Change the Count Start parameter
to start at 1 (instead of 0 because
IDs should be non-zero)

If you run the workspace now you will get a table with attributes, but two null geometry fields:

FME Desktop Database Training Manual

Multiple Geometries Page 45

5) Add CenterPointReplacer
Now to create the multiple geometries: The park features are originally polygons; to create points
insert a CenterPointReplacer transformer, connected to a second output stream from the Counter.

The transformer has no parameters (except name) to worry about.

The workspace will now look something like this:

6) Add GeometryPropertySetter
Now there are two sets of geometries, and they must be given different names. The names
should match the geometry column names in the database: POINTS and POLYGONS

Place two GeometryPropertySetter transformers. Open the parameters dialog for the first and set
the parameters:

Property to Set Geometry Name
Geometry Name POLYGONS

Repeat the process for the second transformer, except name the geometry as POINTS

The workspace will now look like this:

FME Desktop Database Training Manual

Multiple Geometries Page 46

7) Add Aggregator
The next step is to identify the matching features. This is done with an Aggregator transformer.
Place an Aggregator transformer and connect both streams of data to it.

In the parameters dialog set:

Group By = PARK_ID;

This is how the two sets of
features are paired off and
aggregated together.

Keep Input Attributes = Yes
This keeps all source attributes.

Aggregate Type = Multiple Geometry
This tags the aggregate features as actually being multiple geometries.

8) Set Multiple Geometry Parameter
In the Navigator window, locate the writer parameter Handle Multiple Spatial Columns, and set it
to Yes.

 If you use a different method to merge features such as a transformer (like the FeatureMerger)
or the source data is already in this form, then you can use the MultipleGeometrySetter
transformer to tag the aggregate as representing multiple geometries.

FME Desktop Database Training Manual

Multiple Geometries Page 47

9) Set Create Table to No
As a final task, open the writer Feature Type properties. Set these parameters:

Create Table = No.
Truncate Existing Table = Yes.

10) Save and Run Workspace
Save the workspace and then run it. The City Park features will be written to Oracle with multiple
geometries.

The FME Data Inspector does not yet display multiple geometry columns. If you view the
results of this translation in the Data Inspector you will only see one of the two geometries you
have written, either points or polygons, depending on which geometry column is first in the
database.

FME Desktop Database Training Manual

Multiple Geometries Page 48

Example 7: Multiple Geometry Reading

Scenario FME user; City of Interopolis, Planning Department

Data City Parks (Oracle Spatial Object, KML)

Overall Goal Read and filter multiple geometry columns

Demonstrates Multiple Geometry Reading

Starting Workspace Create from scratch

Finished Workspace C:\FMEData\Workspaces\PathwayManuals\Database7(Oracle)-Complete.fmw

In this example, FME will be used to read the previous data back, and filter it (either points or
polygons) depending on the scale required for the output.

NB: Workbench will be used to read the data back, as the FME Universal Viewer does not yet
support the selection of geometry column.

1) Start FME Workbench
Start FME Workbench, and open the Generate Workspace dialog.
Set up a translation as follows:

Reader Format Oracle Spatial Object

Reader Parameters
Database Connection Enter the database connection parameters as before
Table List Select CITY_PARKS as the table to read

Writer Format Google Earth KML
Writer Dataset C:\FMEData\Output\DemoOutput\Parks.kml

Click OK to create the workspace.

2) Set Multiple Geometry Parameter
In the Navigator window, set the reader
parameter Handle Multiple Spatial
Columns = Yes.

3) Add Deaggregator
Add a Deaggregator transformer. This will divide the data into its two geometry types. This
dividing is based on the Geometry Name Attribute, by default called _geometry_name.

FME Desktop Database Training Manual

Multiple Geometries Page 49

4) Add Tester
Add a Tester transformer. Set up a test to check if the geometry name attribute
(_geometry_name) has a value of POINTS

To prove that the workspace is doing what is expected so far, disconnect the output feature type
so that no data is written, and attach an Inspector transformer to each Tester output port

Run the translation. Points and polygons should get separated out.

Optional: Define the KML Output Styles
Because it’s no longer database related, you can skip the rest of the steps if you desire.
Otherwise, continue work to make the KML display the different features at different zoom levels.

5) Delete Inspectors. Add Bufferer.
Delete the Inspectors that were attached to the Tester transformer.

Add a Bufferer transformer to Tester:PASSED to buffer the point features by 1000ft.
This makes it easier to turn the point features on/off as we zoom.

6) Add KMLRegionSetters
Add two KMLRegionSetter transformers; one for the buffered points, one for the polygons.

FME Desktop Database Training Manual

Multiple Geometries Page 50

The parameters for the buffered POINTS version should be set to:

Bounding Box: Calculate: Yes – 2D
Minimum Display Size 10
Maximum Display Size 30

The POLYGONS version should be set to:

Bounding Box: Calculate: Yes – 2D
Minimum Display Size 50
Maximum Display Size -1

7) Add KMLStylers
Add two KMLStyler transformers; one for the buffered POINTS, one for the POLYGONS.
Assign the buffered POINTS a red fill color, and the POLYGONS green.
Connect the KMLStylers to the writer.

The workspace will now look like this:

8) Set Coordinate System
Set the source coordinate system for the
reader to TX83-CF

9) Save and Run Workspace
Save the workspace and then run it.
If you like, open the output in Google Earth (it may be slow on a Virtual Machine)

The POINT geometry will show when the view is zoomed out; as you zoom into the view, the
points will disappear to be replaced by the actual polygons.

FME Desktop Database Training Manual

Database Transformers Page 51

Database Transformers

Besides the FeatureReader there are a number of database-related
transformers for submitting SQL statements directly to the
database.

There are several methods to submit SQL statements from FME to a database.

Firstly, SQL statements can be entered into parameters to run before and after a translation.
These were used in the previous section.

Secondly, there is a Reader WHERE clause, a Feature Type WHERE clause, and a Feature
Type SELECT Statement parameter.

Thirdly, there are SQL-related transformers such as the FeatureReader.

Such statements might be used to:

• Create, drop, modify or truncate a database table
• Carry out a database join
• Drop constraints prior to data loading
• Any other function that is usually carried out using a SQL statement.

This section focuses on the use of transformers to run SQL statements.

SQLExecutor
The SQLExecutor is a transformer for executing SQL statements against a database.
Each incoming feature initiates the SQL statement that has been defined.

If the SQL is a query, and if features are returned from the
database, those features form the output from the transformer.
One feature will be output for each row of the results.

This transformer exposes result attributes and does not need to be followed by an
AttributeExposer. The SQLExecutor can also return geometry columns if requested.

SQLCreator
The SQLCreator transformer is similar to the SQLExecutor, but
does not rely on incoming features to initiate it. Therefore it has
no INPUT port and the statement is executed once only.

The SQLCreator is executed before features are read from any Readers, so this is an alternative
way you could have executed the table creation SQL used in an earlier example.

Like the SQLExecutor, there will be a feature output for each row of the results.

FME Desktop Database Training Manual

Database Transformers Page 52

Uses
SQLExecutor can also be used for many things, including obtaining a foreign key value and:

Working with Sequence Numbers
A sequence number is a field for automatic numbering of features. The syntax
<sequenceName>.NextVal is used (in SQL) to interrogate the database and return the next
available sequence number.

If you wish to handle sequences manually in FME (rather than through a Reader/Writer) you can
use a SQL transformer to read the next sequence number like so:

 select MyField1.NextVal as MYFIELD from MyTable

…or to write a sequence ID like this:

 insert into MyTable (MyField1, MyField2)
 values (MySequence1.NextVal, MySequence2.NextVal)

Carrying out a Join
The SQLExecutor can carry out multiple table joins very efficiently, for example:

SELECT parcel.*, Landuse.LANDUSE, Landuse.USES FROM parcel
 INNER JOIN Landuse ON (parcel.LULU = Landuse.Code)
 WHERE PARCEL_ID = '@Value(_key_field)';

This would require two Joiner transformers but can be done with a single SQLExecutor

Executing a file of SQL Statements
Because the transformer allows the
SQL to come from an attribute, you
can read a file of SQL statements into
an attribute (with the Text File Reader)
and then run them through the
SQLExecutor.

When writing data through a Writer, an Oracle sequence number can also be
specified in the Feature Type Properties dialog. The syntax is:

<ColumnName>:<SequenceName>;<ColumnName>:<SequenceName>;etc

FME Desktop Database Training Manual

Database Transformers Page 53

Example 8: SQLExecutor

Scenario FME user; City of Interopolis, Planning Department

Data Address Data (Oracle Spatial) Emergency Facilities (Access Database)

Overall Goal Carry out a join using the SQLExecutor

Demonstrates SQLExecutor transformer

Starting Workspace Create from scratch

Finished Workspace C:\FMEData\Workspaces\PathwayManuals\Database8(Oracle)-Complete.fmw

The city has a database of emergency facilities (in Microsoft Access format).

In this example, FME will be used to update an Oracle address database, to flag addresses that
are an emergency facility. This will be done by using a SQLExecutor transformer to do a
database join.

1) Inspect Source Data
Use the FME Data Inspector to open the source file:

Reader Format Microsoft Access
Reader Dataset C:\FMEData\Data\Emergency\e911_facilities.mdb

Inspect the text records in the Table View window.

Notice that one of the available fields is an address. It is this field that will be used to create a join
between the Access and Oracle tables.

2) Start FME Workbench
Start Workbench if necessary and begin with a blank workspace.

FME Desktop Database Training Manual

Database Transformers Page 54

3) Add Reader
Add a Reader using Readers > Add Reader. Set it up as follows:

Reader Format Oracle Spatial Object
Reader Parameters
Database Connection Enter the database connection parameters as before
Table List ADDRESS_POINTS

Also, because we don’t want to
work with inactive addresses, set a
WHERE Clause:

 STAT != 'INAC'

Click OK, and OK again to close
the dialogs and add the new reader.

Connect an Inspector transformer to the Reader Feature Type and run the workspace.
If the reader and WHERE clause are functioning correctly, you should read 11,723 point features.

4) Add SQLExecutor
Add a SQLExecutor transformer to the workspace.
Open the SQLExecutor parameters dialog. Set up the parameters as follows:

Reader Format Microsoft Access
Reader Dataset C:\FMEData\Data\Emergency\e911_facilities.mdb

SQL Statement select * from E911_FACILITIES where ADDRESS = '@Value(ADDRESS)

@Value(STREET_NAM) @Value(STREET_TYP)'
Attributes to Expose NAME
Combine Attributes Keep Initiator Attributes if Conflict

The easiest method to create the SQL Statement is to use the builder dialog.

This dialog has
shortcuts to
database tables
and FME
attributes.

NB1: There needs to be space characters between the three attributes in the SQL Statement.

NB2: To populate Attributes to Expose from the SQL Query you will first need to set the SQL
statement without the WHERE clause, and only add the WHERE clause once the list is populated.

FME Desktop Database Training Manual

Database Transformers Page 55

5) Add AttributeCopier
Add an AttributeCopier transformer to copy NAME to COMMENT_
This will populate the name of the emergency facility in the comments field of the address table.

6) Save and Run Workspace
Save the workspace and then run it.

Inspect the output to confirm the COMMENT_ field
now includes the contents of the emergency data NAME attribute.

Advanced Task
Now this data could be written back to the address database table – using update mode and
PRIMARYINDEX as a key – to flag database records that are also emergency facilities.

To do this you would need to:

• Add an Oracle Writer
• Import the Address Points table schema (or duplicate the Reader Feature Type)
• Set the Writer mode to UPDATE
• Set PRIMARYINDEX as the key field
• Set the attribute LA_UPD_BY to your own name.

Why not give this a try, as an advanced task.

FME Desktop Database Training Manual

Transactions Page 56

Transactions

Transactions are an important piece of functionality, with several
different uses, and are controlled by a number of parameters.

Transactions and Performance
One purpose of Writer transactions is to control performance. There are two parameters that are
of use here: Features to Bulk Write and Transaction Interval.

Features to Bulk Write
In FME, features sent to a database writer are cached in memory until this number of features is
reached, and then sent to the database. This is what is known in FME as CHUNK SIZE.

Transaction Interval
Transaction Interval specifies the number of features sent to the database before a commit is
issued. Committing means data written to the database is confirmed and made permanent.

In this screenshot the Oracle Writer writes 200 features at a time (the Chunk Size) to the
database. When 1000 features have been written, then the data is committed to the database.

Increasing the interval of these two parameters can help performance because it takes fewer
write operations and fewer database transactions to actually load a dataset.

However, after a certain point the amount of features cached in memory – either in FME or the
database – is such that system resources become low and performance is adversely affected.

 Any data written by the SQLExecutor is NOT considered to be part of the

same transaction as that written by a writer.

Some database writers also support a format attribute called fme_db_transaction
that can be used to control commits and rollbacks at the feature level. See the
Readers and Writers manual for more documentation on this functionality.

FME Desktop Database Training Manual

Transactions Page 57

Transactions and Recovery
A second use of transactions is to handle data loading failures.

In this screenshot 1,000 features are written to the database before they are committed.

If feature number 1,005 caused the process to fail, then the first 1,000 features have already
been committed and are safe in the database. Only 5 features will be rolled-back.

Therefore, for purposes of data recovery, it makes sense to decrease the interval of this
parameter, because any failure will cause fewer features to be rolled-back.

Transaction to Start Writing At
Whenever a translation fails mid-write, FME will report in the log window how many transactions
had been applied up to that point. Features written but not yet committed will be rolled back.

If the problem can be easily fixed, then the translation can be re-run, but this time specifying
which transaction to start at. This is done using the parameter “Transaction To Start Writing At”.

In this example the previous translation failed during transaction 20. The user has fixed the
problem feature and is re-running the translation from that point onwards.

The process is then quicker because the entire dataset isn’t being reloaded – only data after the
failure point.

If the “Transaction to Start Writing At” parameter is set to zero – the default – then all data is
written as usual.

Setting this parameter to 1 means that every single feature is committed as it is written. It
means that only 1 feature can ever be rolled back, although performance can be adversely
affected by the volume of transactions.

Setting this parameter to a very high number (greater than the number of features in the
dataset) means that all features must be written before any are committed. This is useful
where the user wishes to commit no data unless it is all correct. Correct setting of “Features
Per Bulk Write” will ensure that performance is not impacted.

FME Desktop Database Training Manual

Transactions Page 58

Forcing a Transaction Failure
A translation can be made to fail mid-write by using a Terminator transformer to abort the
translation.

In this case the user is testing data with the GeometryValidator transformer. If the data is found to
be invalid then it is sent to a Terminator transformer.

When a translation is terminated, then FME reports which transaction to restart from:

FME Desktop Database Training Manual

Creative Feature Writing Page 59

Creative Feature Writing

Sometimes, for complex scenarios, it’s necessary to be creative in
how features are written with an Oracle Writer.

There are a few writing scenarios that require careful consideration and an aspect of creativity.

Parent/Child Tables
This scenario is where two tables are connected by a foreign key value. The table being
referenced is called the Parent Table, whereas the table referencing it is called the Child Table.

This scenario is complicated because there must be referential integrity between the two tables;
i.e. each foreign key in a child table must be a match to a primary key in the parent table.
Sometimes this integrity is enforced by a Dependency (or Constraint) that is defined in the
database.

So, when it comes to writing data with FME, it’s important to ensure that the parent table is
loaded first. Child records that refer to a non-existent primary key will be rejected by the Writer.

There are a couple of solutions that can be used to avoid violating such a dependency.

Remove the Constraint
The simplest method is to remove the Constraint from the database before writing any data. This
can be done using a SQL statement in the parameter “SQL Statement to Execute Before
Translation”:

The statement would be something along the lines of:

ALTER TABLE MyChildTable DROP CONSTRAINT MyConstraint

Then, in the parameter “SQL Statement to Execute After Translation” a SQL statement could be
used to recreate the constraint:

ALTER TABLE MyChildTable ADD CONSTRAINT MyConstraint FOREIGN KEY
(MyChildKey) REFERENCES MyParentTable(MyParentKey)

This way data can be entered into the Parent and Child in any order, without violating a constraint.

FME Desktop Database Training Manual

Creative Feature Writing Page 60

Multiple Writers and Parent/Child Tables
The more complex method of handling referential integrity is to ensure that features are loaded
into the parent table before the child table. This way the constraint is not violated because all
child records will already have matches in the parent table.

This can be done in FME either by using two Oracle Writers or by using one Writer and carefully
controlling the order data is written.

With two Writers, Writer A writes to the Parent table and is set to write first. Writer B writes to the
child table and is set to write second. The trick is to make sure that all of Writer A’s features are
committed before any of Writer B’s are.

By dragging the Parent Writer to the top of the list (in the Navigator) the user makes sure that
features are sent to the parent table first of all…

There is no equivalent way to control the order of two tables within a single writer. FME would still
try to write to the child table simultaneously.

Therefore, this user has added a FeatureHolder transformer. This will force child records to be
cached until all parent records have been processed.

FME Desktop Database Training Manual

Session Review Page 61

Session Review

This session was all about spatial databases and FME.

What You Should Have Learned from this Session
The following are key points to be learned from this session:

Theory

• Connecting to a database requires a set of connection parameters that may vary from
database to database

• Updating features is done with two FME Format Attributes

• Reader Parameters can be used to improve data reading performance

• FME can read and write multiple geometries, but cannot create a table with multiple

geometry columns

• Transactions help deal with performance and write failures

• Referential Integrity is important in Child/Parent tables

FME Skills

• The ability to connect to a database, write data, and update individual features

• The ability to use reader parameters, both alone and with concatenated parameters

• The ability to read and write multiple geometries

• The ability to use the SQLExecutor and SQLCreator transformers

• The ability to use transaction parameters

• The ability to use multiple writers for referential integrity

